
1

Distributed Private Data

Collection at Scale
Graham Cormode

g.cormode@warwick.ac.uk

Tejas Kulkarni (Warwick)

Divesh Srivastava (AT&T)

Big data, big problem?

 The big data meme has taken root

– Organizations jumped on the bandwagon

– Entered the public vocabulary

 But this data is mostly about individuals

– Individuals want privacy for their data

– How can researchers work on sensitive data?

 The easy answer: anonymize it and share

 The problem: we don’t know how to do this

2

Data Release Horror Stories

3

We need to solve this
data release problem...

Differential Privacy (Dwork et al 06)

A randomized algorithm K satisfies ε-differential
privacy (DP) if:

Given two data sets that differ by one individual,
D and D’, and any property S:

 Pr[K(D) S] ≤ eε Pr[K(D’) S]

• Can achieve DP for counts by adding a random noise value
• Uncertainty “hides” whether someone is present in the data
• Slowly being adopted in practice (e.g. US Census 2020)

Privacy with a coin toss

Perhaps the simplest possible DP algorithm

 Each user has a single private bit of information

– Encoding e.g. political/sexual/religious preference, illness, etc.

 Toss a (biased) coin

– With probability p > ½, report the true answer

– With probability 1-p, lie

 Collect the responses from a large number N of users

– Can ‘unbias’ the estimate (if we know p) of the population fraction

– The error in the estimate is proportional to 1/√N

 Gives differential privacy with parameter ε = ln (p/(1-p))

– Works well in theory, but would anyone ever use this?

5

Privacy in practice

 Differential privacy based on coin tossing is widely deployed

– In Google Chrome browser, to collect browsing statistics

– In Apple iOS and MacOS, to collect typing statistics

– By Snap(chat) to instantiate machine learning models

– This yields deployments of over 100 million users

 The model where users apply differential privately and then
aggregated is known as “Local Differential Privacy”

– The alternative is to give data to a third party to aggregate

– The coin tossing method is known as ‘randomized response’

 Local Differential privacy is state of the art in 2019:
Randomized response invented in 1965: five decade lead time!

6

RAPPOR: Bits with a twist

 Each user has one value out of a very large set of possibilities

– E.g. their favourite URL, www.bbc.co.uk

 First attempt: run randomized response for all possible values

– Do you have google.com? Nytimes.com? Bing.com? Bbc.co.uk?...

 Meets required privacy guarantees with parameter 2 ln(p/(1-p))

– If we change a user’s choice, then at most two bits change:
a 1 goes to 0 and a 0 goes to 1

 Slow: sends 1 bit for every possible choice

– And limited: can’t easily handle new options being added

 Try to do better by reducing domain size through hashing

7

http://www.bbc.co.uk/

Bloom Filters + Randomized Response

 Idea: apply Randomized response to the bits in a Bloom filter

– Not too many bits in the filter compared to all possibilities

 Each user maps their input to at most k bits in the filter

– New choices can be counted (by hashing their identities)

 Privacy guarantee with parameter k ln (p/(1-p))

– Combine all user reports and observe how often each bit is set

8

item

1/0 1/0 1/0 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Decoding noisy Bloom filters

 We obtain a Bloom filter, where each bit is now a probability

 To estimate the frequency of a particular value:

– Look up its bit locations in the Bloom filter

– Compute the unbiased estimate of the probability each is 1

– Take the minimum of these estimates as the frequency

 More advanced decoding heuristics to decode all at once

 How to find frequent strings without knowing them in advance?

– Subsequent work: build up frequent strings character by character
(using statistics on character co-occurrences)

9

Rappor in practice

 The Rappor approach was implemented in the Chrome browser

– Collects data from opt-in users, tens of millions per day

– Open source implementation available

 Tracks settings in the browser (e.g. home page, search engine)

– Identify if many users unexpectedly change their home page
(indicative of malware)

 Typical configuration:

– 128 bit Bloom filter, 2 hash functions, privacy parameter ~0.5

– Needs about 10K reports to identify a value with confidence

10

Apple: sketches and transforms

 Similar problem to Rappor:
want to count frequencies of many possible items

– For simplicity, assume each user holds a single item

– Want to reduce the burden of collection:
can we further reduce the size of the summary?

 Instead of Bloom Filter, make use of sketches [C, Muthukrishnan 04]

– Similar idea, but better suited to capturing frequencies

11

Count-Min Sketch + Randomized Response

 Each user encodes their (unit) input with a Count-Min sketch

– Then applies randomized response to each entry

 Aggregator adds up all received sketches, unbiases the entries

 Take an unbiased estimate from the sketch based on mean

– More robust than taking min when there is random noise

 Can bound the accuracy in the estimate via variance computation

– Error is a random variable with variance proportional to ‖x‖2
2/(sn)

– I.e. (absolute) error decreases proportional to 1/√n, 1/√sketch size

 Bigger sketch size s more accuracy

– But we want smaller communication?

12

One weird trick: Hadamard transform

 The distribution of interest could be sparse and spiky

– This is preserved under sketching

– If we don’t report the whole sketch, we might lose information

 Idea: transform the data to ‘spread out’ the signal

– Hadmard transform is a discrete Fourier transform

– We will transform the sketched data

 Aggregator reconstructs the transformed sketch

– Can invert the transform to get the sketch back

 Now the user just samples one entry in the transformed sketch

– No danger of missing the important information – it’s everywhere

– Variance is essentially unchanged from previous case

 User only has to send one bit of information
13

Apple’s Differential Privacy in Practice

 Apple use their system to collect data from iOS and OSX users

– Popular emjois: (heart) (laugh) (smile) (crying) (sadface)

– “New” words: bruh, hun, bae, tryna, despacito, mayweather

– Which websites to mute, which to autoplay audio on!

– Which websites use the most energy to render

 Deployment settings:

– Sketch size w=1000, d=1000

– Number of users not stated

– Privacy parameter 2-8
(some criticism of this)

14

Going beyond counts of data

 Simple frequencies can tell you a lot, but can we do more?

 Our work [SIGMOD18]: materializing marginal distributions

– Each user has d bits of data (encoding sensitive data)

– We are interested in the distribution of combinations of attributes

15

Gender Obese High BP Smoke Disease

Alice 1 0 0 1 0

Bob 0 1 0 1 1

…

Zayn 0 0 1 0 0

Disease/Smoke 0 1

0 0.55 0.15

1 0.10 0.20

Gender/Obese 0 1

0 0.28 0.22

1 0.29 0.21

Nail, meet hammer

 Could apply Randomized Reponse to each entry of each marginal

– To give an overall guarantee of privacy, need to change p

– The more bits released by a user, the closer p gets to ½ (noise)

 Need to design algorithms that minimize information per user

 First observation: the sampling trick

– If we release n bits of information per user, the error is n/√N

– If we sample 1 out of n bits, the error is √(n/N)

– Quadratically better to sample than to share!

16

What to materialize?

Different approaches based on how information is revealed

1. We could reveal information about all marginals of size k

– There are (d choose k) such marginals, of size 2k each

2. Or we could reveal information about the full distribution

– There are 2d entries in the d-dimensional distribution

– Then aggregate results here (obtaining additional error)

 Still using randomized response on each entry

– Approach 1 (marginals): cost proportional to 23k/2 dk/2/√N

– Approach 2 (full): cost proportional to 2(d+k)/2/√N

 If k is small (say, 2), and d is large (say 10s), Approach 1 is better

– But there’s another approach to try…

17

Hadamard transform (again)

Instead of materializing the data, we can transform it

 The Hadamard transform is the discrete
Fourier transform for the binary hypercube

– Very simple in practice

 Property 1: only (d choose k) coefficients
are needed to build any k-way marginal

– Reduces the amount of information to release

 Property 2: Hadamard transform is a linear transform

– Can estimate global coefficients by sampling and averaging

 Yields error proportional to 2k/2dk/2/√N

– Better than both previous methods (in theory)

18

Outline of error bounds

How to prove these error bounds?

 Create a random variable Xi encoding the error from each user

– Show that it is unbiased: E[Xi]=0, error is zero in expectation

 Compute a bound for its variance, E[Xi
2] (including sampling)

 Use appropriate inequality to bound error of sum, |∑i=1
N Xi|

– Bernstein or Hoeffding in equalities: error like √(N/E[Xi
2])

– Typically, error in average of N goes as 1/√N

 Possibly, second round of bounding error for further aggregation

– E.g. first bound error to reconstruct full distribution, then error
when aggregating to get a target marginal distribution

19

Empirical behaviour

 Compare three methods: Hadamard based (Inp_HT), marginal
materialization (Marg_PS), Expectation maximization (Inp_EM)

 Measure sum of absolute error in materializing 2-way marginals

 N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4

20

Applications – χ-squared test

 Anonymized, binarized NYC taxi data

 Compute χ-squared statistic to test correlation

 Want to be same side of the line as the non-private value!

21

Application – building a Bayesian model

 Aim: build the tree with highest mutual information (MI)

 Plot shows MI on the ground truth data for evaluation purposes

22

Range Queries

 Given data from an ordered domain, we study range queries:

– “How many data points fall in the range [l, r]”?

 Hierarchical approaches improve over summing point queries:

a) Impose a regular tree over the input domain, and sample nodes

 Need to do post-processing to obtain consistent answers

b) Apply a Haar wavelet transform to input, and sample coefficients

 Which method is best? Answer: both are competitive!

– Similar variance (up to leading constant) for optimal settings

– Similar empirical performance

– In contrast to the centralized case, where trees are preferred

23

Quantile queries

 Use range queries to find ranges that cover a given fraction

– E.g. the median is the 0.5 quantile query

 Both Hierarchical Histograms (HH) and Haar wavelets obtain
similar results: very accurate answers for N large enough

24

Conclusions

 Private data release is a confounding problem!

– We haven’t yet got it right consistently enough

– The idea of “1 click privacy” is still a long way off

 Current privacy work gives some cause for optimism

– Statistical privacy, safety in numbers, and massive deployments

 Lots of opportunity for new work:

– Designing optimal mechanisms for local differential privacy

– Extend beyond simple counts and marginals

– Structured data: graphs, movement patterns

– Unstructured data: text, images, video?

25

Joint work with Divesh Srivastava (AT&T), Tejas Kulkarni (Warwick)
Supported by AT&T, Royal Society, European Commission

