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Big data, big problem? 

 The big data meme has taken root 

– Organizations jumped on the bandwagon 

– Entered the public vocabulary 

 But this data is mostly about individuals  

– Individuals want privacy for their data 

– How can researchers work on sensitive data? 

 The easy answer: anonymize it and share 

 The problem: we don’t know how to do this 
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Data Release Horror Stories 
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We need to solve this 
data release problem... 



Differential Privacy (Dwork et al 06) 

A randomized algorithm K satisfies ε-differential 
privacy (DP) if: 

Given two data sets that differ by one individual, 
D and D’, and any property S: 
 
 Pr[ K(D)  S]  ≤  eε Pr[ K(D’)  S]  
 

• Can achieve DP for counts by adding a random noise value 
• Uncertainty “hides” whether someone is present in the data 
• Slowly being adopted in practice (e.g. US Census 2020) 



Privacy with a coin toss 

Perhaps the simplest possible DP algorithm 

 Each user has a single private bit of information 

– Encoding e.g. political/sexual/religious preference, illness, etc. 

 Toss a (biased) coin 

– With probability p > ½, report the true answer 

– With probability 1-p, lie 

 Collect the responses from a large number N of users 

– Can ‘unbias’ the estimate (if we know p) of the population fraction 

– The error in the estimate is proportional to 1/√N 

 Gives differential privacy with parameter ε = ln (p/(1-p)) 

– Works well in theory, but would anyone ever use this?  
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Privacy in practice 

 Differential privacy based on coin tossing is widely deployed 

– In Google Chrome browser, to collect browsing statistics 

– In Apple iOS and MacOS, to collect typing statistics 

– By Snap(chat) to instantiate machine learning models 

– This yields deployments of over 100 million users 

 The model where users apply differential privately and then 
aggregated is known as “Local Differential Privacy” 

– The alternative is to give data to a third party to aggregate 

– The coin tossing method is known as ‘randomized response’  

 Local Differential privacy is state of the art in 2019: 
Randomized response invented in 1965: five decade lead time! 
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RAPPOR: Bits with a twist 

 Each user has one value out of a very large set of possibilities 

– E.g. their favourite URL, www.bbc.co.uk 

 First attempt: run randomized response for all possible values 

– Do you have google.com? Nytimes.com? Bing.com? Bbc.co.uk?... 

 Meets required privacy guarantees with parameter 2 ln(p/(1-p)) 

– If we change a user’s choice, then at most two bits change:  
a 1 goes to 0 and a 0 goes to 1 

 Slow: sends 1 bit for every possible choice 

– And limited: can’t easily handle new options being added 

 Try to do better by reducing domain size through hashing 
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http://www.bbc.co.uk/


Bloom Filters + Randomized Response 

 Idea: apply Randomized response to the bits in a Bloom filter 

– Not too many bits in the filter compared to all possibilities 

 Each user maps their input to at most k bits in the filter 

– New choices can be counted (by hashing their identities) 

 Privacy guarantee with parameter k ln (p/(1-p)) 

– Combine all user reports and observe how often each bit is set 
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item 

1/0 1/0 1/0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 



Decoding noisy Bloom filters 

 We obtain a Bloom filter, where each bit is now a probability 

 To estimate the frequency of a particular value: 

– Look up its bit locations in the Bloom filter 

– Compute the unbiased estimate of the probability each is 1 

– Take the minimum of these estimates as the frequency 

 More advanced decoding heuristics to decode all at once 

 How to find frequent strings without knowing them in advance? 

– Subsequent work: build up frequent strings character by character 
(using statistics on character co-occurrences) 
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Rappor in practice 

 The Rappor approach was implemented in the Chrome browser 

– Collects data from opt-in users, tens of millions per day 

– Open source implementation available 

 Tracks settings in the browser (e.g. home page, search engine) 

– Identify if many users unexpectedly change their home page 
(indicative of malware) 

 Typical configuration: 

– 128 bit Bloom filter, 2 hash functions, privacy parameter ~0.5 

– Needs about 10K reports to identify a value with confidence 
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Apple: sketches and transforms 

 Similar problem to Rappor:  
want to count frequencies of many possible items 

– For simplicity, assume each user holds a single item 

– Want to reduce the burden of collection: 
can we further reduce the size of the summary? 

 Instead of Bloom Filter, make use of sketches [C, Muthukrishnan 04]  

– Similar idea, but better suited to capturing frequencies 
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Count-Min Sketch + Randomized Response 

 Each user encodes their (unit) input with a Count-Min sketch 

– Then applies randomized response to each entry 

 Aggregator adds up all received sketches, unbiases the entries 

 Take an unbiased estimate from the sketch based on mean 

– More robust than taking min when there is random noise 

 Can bound the accuracy in the estimate via variance computation 

– Error is a random variable with variance proportional to ‖x‖2
2/(sn) 

– I.e. (absolute) error decreases proportional to 1/√n, 1/√sketch size 

 Bigger sketch size s  more accuracy   

– But we want smaller communication? 
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One weird trick: Hadamard transform 

 The distribution of interest could be sparse and spiky 

– This is preserved under sketching 

– If we don’t report the whole sketch, we might lose information 

 Idea: transform the data to ‘spread out’ the signal 

– Hadmard transform is a discrete Fourier transform 

– We will transform the sketched data 

 Aggregator reconstructs the transformed sketch 

– Can invert the transform to get the sketch back 

 Now the user just samples one entry in the transformed sketch 

– No danger of missing the important information – it’s everywhere 

– Variance is essentially unchanged from previous case 

 User only has to send one bit of information  
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Apple’s Differential Privacy in Practice 

 Apple use their system to collect data from iOS and OSX users 

– Popular emjois: (heart) (laugh) (smile) (crying) (sadface) 

– “New” words: bruh, hun, bae, tryna, despacito, mayweather 

– Which websites to mute, which to autoplay audio on! 

– Which websites use the most energy to render 

 Deployment settings:  

– Sketch size w=1000, d=1000 

– Number of users not stated 

– Privacy parameter 2-8 
(some criticism of this) 
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Going beyond counts of data 

 Simple frequencies can tell you a lot, but can we do more?  

 Our work [SIGMOD18]: materializing marginal distributions 

– Each user has d bits of data (encoding sensitive data) 

– We are interested in the distribution of combinations of attributes 
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Gender Obese High BP Smoke Disease 

Alice 1 0 0 1 0 

Bob 0 1 0 1 1 

… 

Zayn 0 0 1 0 0 

Disease/Smoke 0 1 

0 0.55 0.15 

1 0.10 0.20 

Gender/Obese 0 1 

0 0.28 0.22 

1 0.29 0.21 



Nail, meet hammer 

 Could apply Randomized Reponse to each entry of each marginal 

– To give an overall guarantee of privacy, need to change p 

– The more bits released by a user, the closer p gets to ½ (noise) 

 Need to design algorithms that minimize information per user 

 First observation: the sampling trick 

– If we release n bits of information per user, the error is n/√N 

– If we sample 1 out of n bits, the error is √(n/N) 

– Quadratically better to sample than to share! 
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What to materialize? 

Different approaches based on how information is revealed 

1. We could reveal information about all marginals of size k 

– There are (d choose k) such marginals, of size 2k each 

2. Or we could reveal information about the full distribution  

– There are 2d entries in the d-dimensional distribution 

– Then aggregate results here (obtaining additional error) 

 Still using randomized response on each entry 

– Approach 1 (marginals): cost proportional to 23k/2 dk/2/√N 

– Approach 2 (full): cost proportional to 2(d+k)/2/√N 

 If k is small (say, 2), and d is large (say 10s), Approach 1 is better 

– But there’s another approach to try… 
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Hadamard transform (again) 

Instead of materializing the data, we can transform it 

 The Hadamard transform is the discrete  
Fourier transform for the binary hypercube 

– Very simple in practice 

 Property 1: only (d choose k) coefficients  
are needed to build any k-way marginal 

– Reduces the amount of information to release 

 Property 2: Hadamard transform is a linear transform 

– Can estimate global coefficients by sampling and averaging 

 Yields error proportional to 2k/2dk/2/√N 

– Better than both previous methods (in theory) 
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Outline of error bounds 

How to prove these error bounds? 

 Create a random variable Xi encoding the error from each user 

– Show that it is unbiased: E[Xi]=0, error is zero in expectation 

 Compute a bound for its variance, E[Xi
2] (including sampling) 

 Use appropriate inequality to bound error of sum, |∑i=1
N Xi| 

– Bernstein or Hoeffding in equalities: error like √(N/E[Xi
2]) 

– Typically, error in average of N goes as 1/√N 

 Possibly, second round of bounding error for further aggregation 

– E.g. first bound error to reconstruct full distribution, then error 
when aggregating to get a target marginal distribution 
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Empirical behaviour 

 Compare three methods: Hadamard based (Inp_HT), marginal 
materialization (Marg_PS), Expectation maximization (Inp_EM) 

 Measure sum of absolute error in materializing 2-way marginals 

 N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4 
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Applications – χ-squared test 

 Anonymized, binarized NYC taxi data 

 Compute χ-squared statistic to test correlation 

 Want to be same side of the line as the non-private value! 
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Application – building a Bayesian model 

 Aim: build the tree with highest mutual information (MI) 

 Plot shows MI on the ground truth data for evaluation purposes 
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Range Queries 

 Given data from an ordered domain, we study range queries: 

– “How many data points fall in the range [l, r]”? 

 Hierarchical approaches improve over summing point queries: 

a) Impose a regular tree over the input domain, and sample nodes 

 Need to do post-processing to obtain consistent answers 

b) Apply a Haar wavelet transform to input, and sample coefficients 

 Which method is best?  Answer: both are competitive! 

– Similar variance (up to leading constant) for optimal settings 

– Similar empirical performance 

– In contrast to the centralized case, where trees are preferred 
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Quantile queries 

 Use range queries to find ranges that cover a given fraction 

– E.g. the median is the 0.5 quantile query 

 Both Hierarchical Histograms (HH) and Haar wavelets obtain 
similar results: very accurate answers for N large enough 
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Conclusions 

 Private data release is a confounding problem! 

– We haven’t yet got it right consistently enough 

– The idea of “1 click privacy” is still a long way off 

 Current privacy work gives some cause for optimism 

– Statistical privacy, safety in numbers, and massive deployments 

 Lots of opportunity for new work:  

– Designing optimal mechanisms for local differential privacy 

– Extend beyond simple counts and marginals 

– Structured data: graphs, movement patterns 

– Unstructured data: text, images, video? 

 

 
25 

Joint work with Divesh Srivastava (AT&T), Tejas Kulkarni (Warwick) 
Supported by AT&T, Royal Society, European Commission 


