
1

Distributed Private Data

Collection at Scale
Graham Cormode

g.cormode@warwick.ac.uk

Tejas Kulkarni (Warwick)

Divesh Srivastava (AT&T)

Big data, big problem?

 The big data meme has taken root

– Organizations jumped on the bandwagon

– Entered the public vocabulary

 But this data is mostly about individuals

– Individuals want privacy for their data

– How can researchers work on sensitive data?

 The easy answer: anonymize it and share

 The problem: we don’t know how to do this

2

Data Release Horror Stories

3

We need to solve this
data release problem...

Differential Privacy (Dwork et al 06)

A randomized algorithm K satisfies ε-differential
privacy (DP) if:

Given two data sets that differ by one individual,
D and D’, and any property S:

 Pr[K(D)  S] ≤ eε Pr[K(D’)  S]

• Can achieve DP for counts by adding a random noise value
• Uncertainty “hides” whether someone is present in the data
• Slowly being adopted in practice (e.g. US Census 2020)

Privacy with a coin toss

Perhaps the simplest possible DP algorithm

 Each user has a single private bit of information

– Encoding e.g. political/sexual/religious preference, illness, etc.

 Toss a (biased) coin

– With probability p > ½, report the true answer

– With probability 1-p, lie

 Collect the responses from a large number N of users

– Can ‘unbias’ the estimate (if we know p) of the population fraction

– The error in the estimate is proportional to 1/√N

 Gives differential privacy with parameter ε = ln (p/(1-p))

– Works well in theory, but would anyone ever use this?

5

Privacy in practice

 Differential privacy based on coin tossing is widely deployed

– In Google Chrome browser, to collect browsing statistics

– In Apple iOS and MacOS, to collect typing statistics

– By Snap(chat) to instantiate machine learning models

– This yields deployments of over 100 million users

 The model where users apply differential privately and then
aggregated is known as “Local Differential Privacy”

– The alternative is to give data to a third party to aggregate

– The coin tossing method is known as ‘randomized response’

 Local Differential privacy is state of the art in 2019:
Randomized response invented in 1965: five decade lead time!

6

RAPPOR: Bits with a twist

 Each user has one value out of a very large set of possibilities

– E.g. their favourite URL, www.bbc.co.uk

 First attempt: run randomized response for all possible values

– Do you have google.com? Nytimes.com? Bing.com? Bbc.co.uk?...

 Meets required privacy guarantees with parameter 2 ln(p/(1-p))

– If we change a user’s choice, then at most two bits change:
a 1 goes to 0 and a 0 goes to 1

 Slow: sends 1 bit for every possible choice

– And limited: can’t easily handle new options being added

 Try to do better by reducing domain size through hashing

7

http://www.bbc.co.uk/

Bloom Filters + Randomized Response

 Idea: apply Randomized response to the bits in a Bloom filter

– Not too many bits in the filter compared to all possibilities

 Each user maps their input to at most k bits in the filter

– New choices can be counted (by hashing their identities)

 Privacy guarantee with parameter k ln (p/(1-p))

– Combine all user reports and observe how often each bit is set

8

item

1/0 1/0 1/0 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Decoding noisy Bloom filters

 We obtain a Bloom filter, where each bit is now a probability

 To estimate the frequency of a particular value:

– Look up its bit locations in the Bloom filter

– Compute the unbiased estimate of the probability each is 1

– Take the minimum of these estimates as the frequency

 More advanced decoding heuristics to decode all at once

 How to find frequent strings without knowing them in advance?

– Subsequent work: build up frequent strings character by character
(using statistics on character co-occurrences)

9

Rappor in practice

 The Rappor approach was implemented in the Chrome browser

– Collects data from opt-in users, tens of millions per day

– Open source implementation available

 Tracks settings in the browser (e.g. home page, search engine)

– Identify if many users unexpectedly change their home page
(indicative of malware)

 Typical configuration:

– 128 bit Bloom filter, 2 hash functions, privacy parameter ~0.5

– Needs about 10K reports to identify a value with confidence

10

Apple: sketches and transforms

 Similar problem to Rappor:
want to count frequencies of many possible items

– For simplicity, assume each user holds a single item

– Want to reduce the burden of collection:
can we further reduce the size of the summary?

 Instead of Bloom Filter, make use of sketches [C, Muthukrishnan 04]

– Similar idea, but better suited to capturing frequencies

11

Count-Min Sketch + Randomized Response

 Each user encodes their (unit) input with a Count-Min sketch

– Then applies randomized response to each entry

 Aggregator adds up all received sketches, unbiases the entries

 Take an unbiased estimate from the sketch based on mean

– More robust than taking min when there is random noise

 Can bound the accuracy in the estimate via variance computation

– Error is a random variable with variance proportional to ‖x‖2
2/(sn)

– I.e. (absolute) error decreases proportional to 1/√n, 1/√sketch size

 Bigger sketch size s  more accuracy

– But we want smaller communication?

12

One weird trick: Hadamard transform

 The distribution of interest could be sparse and spiky

– This is preserved under sketching

– If we don’t report the whole sketch, we might lose information

 Idea: transform the data to ‘spread out’ the signal

– Hadmard transform is a discrete Fourier transform

– We will transform the sketched data

 Aggregator reconstructs the transformed sketch

– Can invert the transform to get the sketch back

 Now the user just samples one entry in the transformed sketch

– No danger of missing the important information – it’s everywhere

– Variance is essentially unchanged from previous case

 User only has to send one bit of information
13

Apple’s Differential Privacy in Practice

 Apple use their system to collect data from iOS and OSX users

– Popular emjois: (heart) (laugh) (smile) (crying) (sadface)

– “New” words: bruh, hun, bae, tryna, despacito, mayweather

– Which websites to mute, which to autoplay audio on!

– Which websites use the most energy to render

 Deployment settings:

– Sketch size w=1000, d=1000

– Number of users not stated

– Privacy parameter 2-8
(some criticism of this)

14

Going beyond counts of data

 Simple frequencies can tell you a lot, but can we do more?

 Our work [SIGMOD18]: materializing marginal distributions

– Each user has d bits of data (encoding sensitive data)

– We are interested in the distribution of combinations of attributes

15

Gender Obese High BP Smoke Disease

Alice 1 0 0 1 0

Bob 0 1 0 1 1

…

Zayn 0 0 1 0 0

Disease/Smoke 0 1

0 0.55 0.15

1 0.10 0.20

Gender/Obese 0 1

0 0.28 0.22

1 0.29 0.21

Nail, meet hammer

 Could apply Randomized Reponse to each entry of each marginal

– To give an overall guarantee of privacy, need to change p

– The more bits released by a user, the closer p gets to ½ (noise)

 Need to design algorithms that minimize information per user

 First observation: the sampling trick

– If we release n bits of information per user, the error is n/√N

– If we sample 1 out of n bits, the error is √(n/N)

– Quadratically better to sample than to share!

16

What to materialize?

Different approaches based on how information is revealed

1. We could reveal information about all marginals of size k

– There are (d choose k) such marginals, of size 2k each

2. Or we could reveal information about the full distribution

– There are 2d entries in the d-dimensional distribution

– Then aggregate results here (obtaining additional error)

 Still using randomized response on each entry

– Approach 1 (marginals): cost proportional to 23k/2 dk/2/√N

– Approach 2 (full): cost proportional to 2(d+k)/2/√N

 If k is small (say, 2), and d is large (say 10s), Approach 1 is better

– But there’s another approach to try…

17

Hadamard transform (again)

Instead of materializing the data, we can transform it

 The Hadamard transform is the discrete
Fourier transform for the binary hypercube

– Very simple in practice

 Property 1: only (d choose k) coefficients
are needed to build any k-way marginal

– Reduces the amount of information to release

 Property 2: Hadamard transform is a linear transform

– Can estimate global coefficients by sampling and averaging

 Yields error proportional to 2k/2dk/2/√N

– Better than both previous methods (in theory)

18

Outline of error bounds

How to prove these error bounds?

 Create a random variable Xi encoding the error from each user

– Show that it is unbiased: E[Xi]=0, error is zero in expectation

 Compute a bound for its variance, E[Xi
2] (including sampling)

 Use appropriate inequality to bound error of sum, |∑i=1
N Xi|

– Bernstein or Hoeffding in equalities: error like √(N/E[Xi
2])

– Typically, error in average of N goes as 1/√N

 Possibly, second round of bounding error for further aggregation

– E.g. first bound error to reconstruct full distribution, then error
when aggregating to get a target marginal distribution

19

Empirical behaviour

 Compare three methods: Hadamard based (Inp_HT), marginal
materialization (Marg_PS), Expectation maximization (Inp_EM)

 Measure sum of absolute error in materializing 2-way marginals

 N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4

20

Applications – χ-squared test

 Anonymized, binarized NYC taxi data

 Compute χ-squared statistic to test correlation

 Want to be same side of the line as the non-private value!

21

Application – building a Bayesian model

 Aim: build the tree with highest mutual information (MI)

 Plot shows MI on the ground truth data for evaluation purposes

22

Range Queries

 Given data from an ordered domain, we study range queries:

– “How many data points fall in the range [l, r]”?

 Hierarchical approaches improve over summing point queries:

a) Impose a regular tree over the input domain, and sample nodes

 Need to do post-processing to obtain consistent answers

b) Apply a Haar wavelet transform to input, and sample coefficients

 Which method is best? Answer: both are competitive!

– Similar variance (up to leading constant) for optimal settings

– Similar empirical performance

– In contrast to the centralized case, where trees are preferred

23

Quantile queries

 Use range queries to find ranges that cover a given fraction

– E.g. the median is the 0.5 quantile query

 Both Hierarchical Histograms (HH) and Haar wavelets obtain
similar results: very accurate answers for N large enough

24

Conclusions

 Private data release is a confounding problem!

– We haven’t yet got it right consistently enough

– The idea of “1 click privacy” is still a long way off

 Current privacy work gives some cause for optimism

– Statistical privacy, safety in numbers, and massive deployments

 Lots of opportunity for new work:

– Designing optimal mechanisms for local differential privacy

– Extend beyond simple counts and marginals

– Structured data: graphs, movement patterns

– Unstructured data: text, images, video?

25

Joint work with Divesh Srivastava (AT&T), Tejas Kulkarni (Warwick)
Supported by AT&T, Royal Society, European Commission

