An Analysis of Call Admission Problems on Grids
LSD & LAW

Hans-Joachim Böckenhauer, Dennis Komm, Raphael Wegner

Department of Computer Science
ETH Zürich

February 9, 2018
Outline

1. Motivation and Definitions

2. Results
 - Lower Bounds
 - Upper Bounds

3. Conclusion
Online Problems

Definition (Online Maximization Problem Π)

- Sequence of requests
- Satisfy one request before the next one arrives
- Maximize the gain
The Disjoint Path Allocation Problem (DPA)
How much information are we missing

- ...to be optimal?
- ...to achieve some competitive ratio?

⇒ New measure for complexity of online problems
Definition (Online Algorithm ALG with Advice for Π)

- Adversary chooses online input instance
- Oracle with unlimited power knows instance and chooses infinite advice string
- ALG can read an arbitrary long, but finite prefix
- $q(\cdot)$ is the advice complexity of ALG $\iff \text{ALG}$ reads at most first $q(\cdot)$ bits of advice from start
- Advice complexity $s(n)$ of Π: maximum over all inputs of length n, for best pair of oracle and algorithm
Definition (Competitive ratio with advice)

- Π is online maximization problem
- ALG is online algorithm with advice for Π
- $\text{OPT}(I)$ is an optimal (offline) solution for instance I of Π

ALG is c-competitive for Π if there exists a constant $\alpha \geq 0$ such that

$$\text{gain (OPT}(I)) \leq c \cdot \text{gain (ALG}(I)) + \alpha$$

for all instances I of Π.
Extended to Grids

- Height: $m - 1$
- Length: $n - 1$
The Call Admission Problem on Grids (CAPG)

Definition (CAPG)

- Online maximization problem Π_{CAPG}
- Request is a pair of servers asking for a connection
- Every connection is fixed (no termination or modification)
- Only one connection per wire
- Goal: maximize the number of granted connections
Outline

1. Motivation and Definitions
2. Results
 - Lower Bounds
 - Upper Bounds
3. Conclusion
Theorem ([BBF+14])

To solve DPA optimally, $|E| - 1$ advice bits are necessary and sufficient.
$|E| - 1$ Advice Bits for DPA

- Optimal solution $\text{OPT}(I)$ indicated by bit string: $1 \iff$ end one request, start another one
- P_i contains all requests of length $|E| - i + 1$ which do not contradict requests in $\text{OPT}(I)$ of earlier phase
$|E| - 1$ Advice Bits for DPA

- Optimal solution is unique
- $2^{|E|-1}$ different instances
- Optimal solutions S_1, S_2 have to differ before instances I_1, I_2 are distinct on their asked prefixes of requests
 \[\implies \log_2(2^{|E|-1}) = |E| - 1 \text{ advice bits required for optimality} \]
Almost $|E|$ Advice Bits for CAPG

Can we just ask these instances on each column and row for CAPG?

- Consider long request in solution indicated by bit string
- If not satisfied we have much space for detours
 \[\Rightarrow \text{bit string solution is not optimal anymore} \]

Mitigation:

- Ask only sufficiently small requests, i.e., only last four phases
 \[\Rightarrow \text{bit string solution is optimal again} \]
- Still no unique optimal solution in general
Lemma

There are t_{n+2} bit strings of length $n \in \mathbb{N}$ which contain at most three consecutive 0s, where t_n denotes the nth tetranacci number a.

\[^a t_n = t_{n-1} + t_{n-2} + t_{n-3} + t_{n-4}, \quad t_0 = 1, \quad t_1 = t_2 = 0, \quad t_3 = 1 \]
Proof sketch:

- Optimal solutions differ only in requests satisfied with paths of length 4 and have specific forms.
- Every optimal solution has to grant a detour before rejecting a request intended by bit string.
 \[\implies \text{optimal solutions are distinct before the prefixes of respective instances are different} \]
- \(t_m^n \cdot t_n^n \) instances with different optimal solutions.
 \[\implies \geq m \cdot \log_2(t_n) + n \cdot \log_2(t_m) \] advice bits required for optimality.
Theorem

Every optimal online algorithm with advice for CAPG on an \((m \times n)\)-grid \(G\) has to read at least \(m \cdot \log_2(t_n) + n \cdot \log_2(t_m)\) advice bits.
Corollary

Every optimal online algorithm with advice for CAPG on an $(m \times n)$-grid G has to read at least $0.94677 \cdot |E(G)| - m - n$ advice bits.
Theorem

Every online algorithm with advice for CAPG which achieves a competitive ratio of $c \leq \frac{12}{11}$ on a grid G has to read at least

\[
\left(1 + \left(6 - \frac{6}{c}\right) \log_2 \left(6 - \frac{6}{c}\right) + \left(\frac{6}{c} - 5\right) \log_2 \left(\frac{6}{c} - 5\right)\right) \frac{|E(G)|}{2}
\]

bits of advice.
Outline

1. Motivation and Definitions

2. Results
 - Lower Bounds
 - Upper Bounds

3. Conclusion
Trivial Bound

Theorem

There is an optimal online algorithm with advice for CAPG which reads at most $2|E| \cdot \lceil \log_2(|V|) \rceil \leq 2|E| \cdot \log_2(|E| + m + n)$ bits of advice for every $(m \times n)$-grid $G = (V, E)$.

- Oracle chooses some optimal solution
- $\leq |E|$ requests
- Encode both endpoints of every granted request
 $\implies 2 \cdot \lceil \log_2(|V|) \rceil$ bits per satisfied request
- Overall: $\leq 2|E| \cdot \lceil \log_2(|V|) \rceil$
How can we improve?

- Knowing which edges are used in an optimal solution sometimes not helpful (e.g., in case all edges are used, but some requests are contradicting)
- Need to transmit the “membership” to a request
- “Neighbouring” paths need to be distinguishable

\Rightarrow Coloring problem in some auxiliary graph
The Auxiliary Graph \hat{G}

Definition ($\hat{G}(S) = (\hat{V}, \hat{E})$)

- Path p in S satisfying a request $\implies v_p \in \hat{V}$
- $\{v_g, v_h\} \in \hat{E} \iff g$ and h share some vertex in G
- Edges of G unused by S are split up into connected components, $s.t.$ component q corresponds to $v_q \in \hat{V}$ and the chromatic number $\chi(\hat{G}(S))$ is minimized
The Auxiliary Graph \hat{G}
Theorem

Let \(\mathcal{I} \) denote all possible instances of CAPG on a grid \(G = (V, E) \), and let \(S_{\text{opt}}(I) \) be the set of optimal solutions for an instance \(I \in \mathcal{I} \). Then, there is an optimal online algorithm with advice for CAPG using at most

\[
\max_{I \in \mathcal{I}} \min_{S \in S_{\text{opt}}(I)} \left[|E| \cdot \log_2(\chi(\hat{G}))\right] + 2\left[\log_2(\chi(\hat{G}(S))) \right]
\]

advice bits.
Oracle:

- Can compute all optimal solutions
- Selects optimal solution S, s.t.
 \[
 \lceil |E| \cdot \log_2(\chi(\hat{G})) \rceil + 2\lceil \log_2(\chi(\hat{G}(S))) \rceil
 \]
 is minimal
- Uses $2\lceil \log_2(\chi(\hat{G}(S))) \rceil$ bits to transmit $\chi(\hat{G}(S))$ in a self-delimiting encoding
- Colors corresponding connected components of G according to $\chi(\hat{G}) \Rightarrow \chi(\hat{G})^{|E|}$ possibilities
- $\lceil |E| \cdot \log_2(\chi(\hat{G})) \rceil$ bits for transmitting the coloring
Algorithm (receiver):
- Recomputes the length of the encoding
- Reads off the coloring
- Decides accordingly
Corollary

There is an optimal online algorithm with advice for CAPG that reads at most \(\lceil |E| \cdot \log_2(\frac{1}{3}(2|E| + 7)) \rceil \) bits of advice.
Motivation and Definitions

Results

Conclusion

Lower Bounds

Upper Bounds

\(\hat{G} \) Bound – Limitations

- All paths are “neighboring”
 \[\implies \hat{G} \text{ contains } n \text{ clique} \]

- Since \(\chi(\hat{G}) \geq \omega(\hat{G}) \) this upper bound can not be stronger than
 \[\lceil |E| \cdot \log_2(n) \rceil \]
 \[= \lceil |E| \cdot \log_2(\sqrt{|V|}) \rceil \]
 \[\in O(|E| \cdot \log(|E|)) \]
Can we still improve?

It suffices to be able to

- Distinguish the end vertices of different satisfied requests
- Follow the path that is used to satisfy the request
 - Only three possible direction at every inner vertex
Theorem

There is an online algorithm with advice for CAPG that computes an optimal solution using at most $3|E|$ advice bits.

Corollary

Let \mathcal{I} denote all possible instances of CAPG on a grid $G = (V, E)$, and let $S_{\text{opt}}(I)$ be the set of optimal solutions for an instance $I \in \mathcal{I}$. Then, there is an optimal online algorithm with advice for CAPG that uses at most

$$\left\lceil \log_2(5) \cdot k + \log_2(3) \cdot |V| \right\rceil + \left\lceil 2 \log_2(k) \right\rceil$$

advice bits, where k is the number of requests in I.
Proof Sketch

- Choose some optimal solution
- Treat each row and each column separately
- Cut off requests
- Color edges as before using the auxiliary graph

⇒ Can distinguish aligned paths in solution
Proof Sketch

- Color edges of unaligned paths in optimal solution additionally red
 \[\Rightarrow\] Can distinguish aligned and non-aligned paths in solution
Proof Sketch

- **Yellow**: next edge in clockwise direction belongs to same path, pivot around lower, left vertex of edge
- **Cyan**: next edge in clockwise direction belongs to same path, pivot around lower, left vertex of edge

implies Can follow non-aligned paths in solution
Proof Sketch

\[\Rightarrow \] Eight color combinations

\[\Rightarrow \] \(\log_2(8) = 3 \) bits per edge
1 Motivation and Definitions

2 Results
 - Lower Bounds
 - Upper Bounds

3 Conclusion
Conclusion

- Lower and upper bound already close
- Upper bounds applicable for other graphs