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Abstract— Collaborative robots need to possess the ability to
hand objects properly to humans. Earlier studies on robot-to-
human handovers have centred around enhancing the human
partner’s performance and reducing the physical exertion
required to grip the object. Nonetheless, robots exhibiting overly
altruistic behaviours may generate protracted and awkward
movements that create uncomfortable feelings for humans
and affect perceived safety and social acceptance. This paper
examines whether applying the cognitive science principle
that “humans act coefficiently as a group” in human-robot
collaboration - i.e. maximising the benefits for all parties
involved simultaneously - leads to a smoother and more natural
interaction. Human-robot coefficiency is modelled by online
monitoring of human comfort and discomfort indicators and
computing robot energy consumption. This score is used by a
reinforcement learning problem to adaptively learn the optimal
combination of robot interaction parameters to maximise such
coefficiency during the task execution. Results demonstrated that
by acting coefficiently, the robot accommodated the individual
preferences of the majority of participants and enhanced the
human perceived comfort.

Index Terms— Human Factors and Human-in-the-Loop;
Mutual Human-Robot Adaptation; Explainable Robotics

I. INTRODUCTION

Handover is a crucial ability for robots assisting humans
in unstructured environments such as factories, households,
and hospitals. Previous research has focused on optimising
physical aspects of the interaction, such as accurate object
transfer and reduced physical exertion for the human partner.
Based on a variety of human ergonomic metrics (e.g. distance
to a neutral position, overloading joint torque, posture-based
observational methods), the robot adapted the position [1], [2]
and orientation [3], [4] of the object, and learned its optimal
location in space [5], whole-body configuration [6], [7], and
accomplished trajectory [8], [9]. However, for human-robot
interaction to be seamless and trustworthy, robots should
also consider the socio-cognitive aspects of the interaction
and aim to match human preferences and skills [10], [11].
This is particularly important in scenarios such as object
handovers, where how a robot grasps and configures the object
affects the user’s perceived safety, comfort, and efficiency in
accomplishing the subsequent action.
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Research in cognitive science investigating human joint
actions has indicated that individuals are sensitive to the
aggregate dyad effort and typically act in a coordinated
manner as a team [12], [13]. To clarify, when working with
others towards a common objective, individuals consider
the dyadic interaction as a whole and opt for actions that
optimise the overall efficiency of the joint action (also known
as coefficiency) rather than focusing solely on individual
components [14], [15].

The objective of this preliminary research is to enable
collaborative robots to learn to make coefficient decisions
akin to those selected by humans in social contexts. Indeed,
robot behaviours that are more natural or human-like tend
to be transparent, predictable, and explainable and foster
trust in their human partners [6], [16]. Thus, we propose
a novel approach in which the robot evaluates the comfort
level of the specific human it interacts with, both on a socio-
cognitive (i.e. analysing human reaction time and attention
distribution) and physical (i.e. monitoring the upper-body
kinematics) level, while also considering its internal costs (i.e.
energy consumption). Based on this information, we define
the human-robot coefficiency score, estimating the aggregate
efficiency of the two agents (i.e. the robot passer and the
human receiver) during the interaction, and we learn through
a reinforcement learning (RL) approach the actions that
maximise such coefficiency. At each robot-to-human handover
iteration, the robot explores different values of the considered
interaction parameters, i.e. (i) the object orientation, (ii) the
interaction distance, and (iii) the velocity in approaching
the human partner. It reads the obtained reward, i.e. the
aforementioned human-robot coefficiency score, and decides
whether to exploit the collected information to maximise the
short-term reward (by selecting the subsequent interaction
parameters accordingly) or keep exploring the environment.

However, achieving robot motions that align with human
preferences is challenging. Research has demonstrated that
human preferences are highly subjective and can change as
individuals become familiar with the task. Moreover, the
perceived comfortable distance depends on factors such as
the velocity and smoothness of the executed trajectory [17].
Therefore, we propose a system that learns the interaction
parameters together to identify the combination that best
suits users’ individual preferences. The proposed handover
learning and adaptation system, which differs from altruistic
behaviour commonly adopted in the literature [1], [3], is
tested on twelve subjects in a daily activity, where the robot
hands over a mug to the human for making coffee1.

1The video can also be found at youtu.be/VYwnkW5AIJU.

https://youtu.be/VYwnkW5AIJU


II. HUMAN-ROBOT COEFFICIENCY MODEL

The section describes how to evaluate coefficiency online
without disrupting the natural flow of the interaction. To
compute human cognitive and physical ergonomics, we
adopted a reduced-complexity representation of the human
musculoskeletal structure, characterised by a floating-based
sequence of rigid links interconnected by N joints featuring
D ≤ 3 degrees of freedom (DoFs) denoted by qH ∈ RN×D. For
the robot, we measure the energy consumed by a M -DoFs
manipulator (i.e. qR ∈ RM ) to accomplish the trajectory.

A. Human Cognitive Ergonomic Cost

Concerning the social-cognitive aspect of the interaction,
the human receiver’s reaction time τ and their attention
towards the object they need to handle are examined. We
measure the time elapsed between the robot motion start and
the human motion initiation time, normalised to the total
execution time of the robot trajectory [18]. This is because
studies on the control of human body motion in social contexts
show that human actions that require more planning result in
motion initiation latencies [19].

Moreover, behavioural and neuroscientific studies suggested
that discomfort and cognitive load usurp executive resources
responsible for attentional control, thus increase distraction
[20]. To estimate the level of attention toward the task, we
consider the head frame, translate it in correspondence to the
centre of the head link and tilt it ten degrees to approximate
the gaze direction [21] (denoted as Σgaze from now on, see
Fig.1). Consequently, the Cartesian vector expressing the
relative position between Σgaze and Σobject, namely the frame
associated with the object that should be handled, is mapped
into spherical coordinates (azimuth angle θ, elevation angle
φ and radial distance). A fuzzy logic membership function
exploiting the Raised-Cosine Filter [22] is then applied to
normalise the measured attention angles at each time instant
t (θ(t) and φ(t) angles, indicated in Eq.(1) as α(t)) in the
range [αmin(t), αmax(t)].

f(α(t))=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if ∣α(t)∣ ≤ αmin(t)
1

2
[1− cos ( ∣α(t)∣ − αmin(t)

αmax(t) − αmin(t)
π)], if ∣α(t)∣> αmin(t)

& ∣α(t)∣ ≤ αmax(t)

0, otherwise.
(1)

Note that the threshold values on α(t) (i.e. control points
αmin(t), αmax(t) > 0) depend on the current distance of the
moving object from the human operator.

The attention level Λ(t) toward the task is thus defined as
the product between the normalised azimuth and elevation
indicators and values of Λ(t) closer to 1 indicate a total focus
on the region of interest

Λ(θ(t), φ(t)) = f(θ(t)) f(φ(t)) ∈ [0,1] (2)

B. Human Physical Ergonomic Cost

Physical comfort is based on the common claim that a
human is exposed to physical effort if one of the joints is close
to its Range of Motion (RoM) extrema [23]. We parametrise

the ergonomic cost for each k-th DoF of the i-th joint at the
instant t as

ζki (t) =
2min{ ∣qH

i,k − qH
i,k,min∣ , ∣qH

i,k − qH
i,k,max∣ }

∣qH
i,k,max − qH

i,k,min∣
∈ [0,1].

(3)
Then, we identify the most stressed DoF for each joint (i.e.
the minimum ζki (t)) and average the effects over N joints

ζ̄(t) = 1

N

N

∑
i=1
[ min
k=1,...D

ζki (t)]. (4)

C. Robot Consumption Cost

The robot efficiency is parametrised in this work by the
robot power consumption [24]. At a specific time instant t,
the power consumed by the j-th robot joint is obtained by

Pj(t) = ∣τj(t) q̇R
j (t)∣ , (5)

where τi(t) is the torque applied at j-th joint and q̇R
j (t) is

the j-th joint velocity. We sum up the contributions of all
the M robot joints

P (t) =
M

∑
j=1

Pj(t). (6)

D. Coefficiency of Human-Robot Joint Actions

A human-robot coefficiency score is associated with each
conjoint action a, representing how efficient the latter is
in terms of aggregate costs of the involved agents. More
specifically, the score is modelled by integrating the quantities
described in the above sections over the entire interaction
duration (e.g. pre-handover phase, physical exchange and
subsequent action) as follows

CHR
coefficiency(a) =

1

3
[CH

cognitive erg +CH
physical erg +CR

energy cons]
(7)

where CH
cognitive erg and CH

physical erg parametrise the human
efficiency while CR

energy cons refers to the robot efficiency. In
particular, the human cognitive ergonomic cost is defined as

CH
cognitive erg(a) =

1

2
[(1 − τ) + E

t=t0,...tf
[Λ(t)]]. (8)

The formulation is based on a study of human-robot inter-
action [25], where human body movements were analysed
and correlated with subjective evaluations of robot behaviour.
Results showed that higher-ranked interactions were char-
acterised by intensive attention and motion synchronisation
to the robot and these aspects were equally significant in
determining user appreciation. Thus, drawing from that study,
we establish that our cognitive cost is positively correlated to
the average attention an individual dedicates to the task and
is inversely associated with the reaction time (as a higher τ
implies less synchronisation to the robot motion).

On the other hand, the physical ergonomic cost

CH
physical erg = min

t=t0,...tf
ζ̄(t) (9)

identifies the worst posture assumed during the interaction.



Fig. 1: Overall structure of the proposed framework to transfer
human paradigm of acting coefficiently in human-robot handovers.

Finally, the robot efficiency is computed as the normalised
energy consumption to execute the desired trajectory, e.g.

CR
energy cons(a) = 1 −

1

Emax
∫

tf

t0
P (t)dt. (10)

The reader should note that the costs defined in Eq.(7), (8),
(9), and (10) are normalised in [0,1], and values of these
indexes closer to 1 denote high comfort for the agents.

III. HANDOVER ADAPTATION SYSTEM

Our system adapts robot behaviour based on implicit
user responses and the robot energy consumption, using a
combined score called human-robot coefficiency. Specifically,
this score is used as reward for a RL algorithm, allowing
the robot to learn and adapt online without separating data
collection and learning phases (see Fig.1 for a system
overview).

A. Adapted Parameters and Observed Reward

The handover strategy in this work involves adjusting three
interaction parameters: (i) the object’s orientation on the
horizontal plane, (ii) the interaction distance, and (iii) the
robot velocity profile. These parameters were chosen for
easy implementation, the desire to limit the search space’s
dimensionality, and, above all, their impact on the interaction.
Indeed, the ergonomics of the handover process and the
ease of completing subsequent actions depend on how the
robot positions and orients the transferred object. However,
human comfort is also affected by personal characteristics and
technology confidence levels [26]. Some individuals prefer
extra physical effort for a perceived safer distance [27] and
are sensitive to changes in robot velocity profiles [28].

To summarise, optimising the interaction to the user
preferences requires considering all the combinations of these
parameters simultaneously. Nevertheless, an extreme focus
on maximising user convenience could result in protracted
and unnatural robot motions and negatively affect perceived
safety and social acceptance. Thus, in our RL scenario, we
use the aforementioned human-robot coefficiency as reward

Rt(a) to optimise the handover execution both considering
human ergonomics and robot convenience.

B. Multi-Armed Bandit Problem

When learning to interact with a new human partner,
an agent must balance between exploring new actions and
performing the ones that have earned the highest rewards
so far. This is particularly important in human-in-the-loop
systems where testing time is limited. To address this dilemma,
the RL community proposed the principle of optimism in
the face of uncertainty, where the agent makes an optimistic
guess about the expected reward of each action and selects
the one with the highest guess. If the guess is incorrect, the
agent updates its knowledge and explores other actions. As
the agent learns more about the environment, the effects of
optimism decrease, and the policy improves.

Our work focuses on a finite-horizon MAB problem, i.e.
a specific form of RL enabling the exploration-exploitation
of the environment without changing the state. Other RL
techniques would require defining a set of possible states and
transition probabilities in a Markov decision process that can
not be done for our application. Specifically, we consider a
finite set of possible values for each parameter and define
a K-armed bandit problem, where each arm corresponds to
a robot action with a different combination of interaction
parameters. At each iteration t, among the actions A ∈ RK ,
the robot performs an action (i.e. arm a ∈ A) and receives a
reward Rt(a). Then, the robot updates its internal knowledge
about the expected reward

µ̂t+1(a) = µ̂t(a) +
Rt(a) − µ̂t(a)

Nt(a)
. (11)

Note that the expected reward µ̂t+1(a) is no more than
the average reward associated with the action a estimated
iteratively on the basis of the observed reward Rt(a) and the
number Nt(a) of times a was taken prior to t.

To improve the robot policy required to select the subse-
quent action, we use the Upper Confidence Bound (UCB)
algorithm [29] that asymptotically achieves the logarithmic
regret2. For each action a, we compute UCB1-tuned value

Qt(a) = µ̂t(a) + c

¿
ÁÁÀ ln(t)

Nt(a)
min{1

4
, Vt(a)}, (12)

where the second term denotes the confidence level of the
estimate (c > 0). Vt(a) is the upper confidence bound on the
variance of the action a, based on rewards obtained until t,

Vt(a) = ∑
k={t∣Ak=a}

µ̂k(a)2

Nt(a)
− µ̂t(a)2 +

¿
ÁÁÀ2 ln(t)

Nt(a)
, (13)

and the factor 1/4 is the upper bound on the variance of
a Bernoulli random variable. On each subsequent pull, the
agent picks the action At that maximises Qt(a), namely

At = arg max
a∈A

Qt(a). (14)

2The regret for a policy is defined as the difference between the reward
obtained and the highest expected reward.



The UCB algorithm shifts its focus from prioritising
exploration, which involves selecting the least attempted
actions, to emphasising exploitation, which chooses actions
with the highest estimated rewards.

IV. EXPERIMENTS

Twelve participants, three men, eight women, and one
non-binary (26.1 ± 3.3 years), with no prior experience with
robots were recruited to test the proposed framework’s ability
to make coefficient decisions and improve human-robot
interaction3. In particular, two research questions were tested:
(i) Are the interaction parameters learned by our framework
resulting in efficient actions for the involved agents? (ii) Does
the proposed coefficiency-based decision-making strategy
allow aligning the robot behaviour to the preferences of
the human partner? The experiment involved a collaborative
robot (Franka Emika Panda) handing a mug to a human,
who then placed it under a coffee machine. We exploited a
button board to measure human reaction times and a wearable
MVN Biomech suit (Xsens Technologies BV) to measure the
kinematics of the right wrist and elbow joints.

The robot utilised an impedance controller to track trajecto-
ries computed by smoothly interpolating a sequence of desired
configurations. Different robot behaviours were implemented,
adapting online the performed trajectory. The starting point
of the trajectory was fixed to the robot configuration to
grasp the mug on the table. The following configurations
the robot passes through and the associated timing law
varied according to the parameters learned by the adaptation
system. The participants experienced three different final
object orientations (β1 = π/6, β2 = π/2 and β3 = 5π/6), two
interaction distances (d1 = 0.30m and d2 = 0.45m) and two
total execution times of the robot trajectory (∆t1 = 5.0s and
∆t2 = 8.0s). Thus, a twelve-armed bandit problem based
on UCB1-tuned is defined. The confidence value was set to
infinity (c = +∞) for the unexplored arms, inducing an initial
priming round to be performed, in which each action a was
sampled once to obtain the initial value of µ̂t(a). This avoided
divide-by-zero errors in the exploration term Qt(a) when
actions have not yet been tried and Nt(a) is equal to zero.
The policy then explored with c = 0.1, reduced the uncertainty
and learned the optimal combination of parameters for the
specific user the robot is collaborating with. For the test,
Emax was set to the maximum energy consumed among the
proposed trajectories.

After the experiment, participants were asked to select
their preferred interaction parameters and rate the naturalness
and seamlessness of the handover using a Likert scale. They
also used a NASA-developed technique to assess the relative
importance of factors in determining the final score.

A. Experimental Results

A statistical analysis using the non-parametric Wilcoxon
signed-rank test (WSRT) was conducted to compare the

3Experiments were carried out at HRII Lab in accordance with the
Declaration of Helsinki, and the protocol was approved by the ethics
committee ASL Genovese N.3 (IIT ERC IMOVEU version 03.1 29/06/2022).

Fig. 2: Comparison of human ergonomics, robot energy consump-
tion and human-robot coefficiency score running the action learned
by the framework and all the other iterations. Significance levels of
Wilcoxon’s test are indicated at *p<0.05, **p<0.01, ***p<0.001.

Fig. 3: Comparison of human-robot coefficiency score obtained ex-
ploiting a specific interaction parameter value (i.e. object orientation,
interaction distance and robot velocity) learned by the framework
and all the other iterations.

implicit comfort signals acquired while the robot exploited
the learned parameters and in all other iterations. Overall,
the action efficiency improved in value thanks to the learning
(see Fig.2). A significant increase in the human ergonomic
cost (as the sum of CH

cognitive erg and CH
physical erg) was registered

by executing the optimal action learned by the system for
each specific user (pA = 0.027)4. Moreover, the human-robot
coefficiency cost experienced a growth of 10.6% in the median
(pA < 0.001). From Fig.3, we can also notice a significant
effect of each interaction parameter on the reward of our
RL algorithm. Indeed, the mug’s orientation and distance
learned by the presented policy predominately increased the
coefficiency of the human-robot dyad (pβ , pd < 0.001). The
same can be stated for the robot velocity (p∆t = 0.002)
although with lower significance.

Figure 4 shows the adaptation system’s results for 12
participants involved in the experiments. Full red circles
represent the learned parameters (i.e. the most selected values
over the last twenty-five iterations), red crosses indicate the
average parameter value, and blue circles show the preferred
values indicated by each participant in the questionnaire.

Considering all subjects, at least two of the parameters
reached convergence with the stated preferences within about
7 minutes from the beginning of the interaction, which is,

4We denote as pV the p-value obtained from Wilcoxon test between
iterations exploiting learned values and all the others. It should be noticed
that V could refer to a specific interaction parameter, i.e. orientation β,
distance d or velocity ∆t, or a combination of them, i.e. an action A.



Fig. 4: Learned parameters and preferences for twelve subjects.
Red full circles indicate the learned parameters, i.e. mode, and red
crosses the weighted average over last twenty-five steps. Reported
preferred values are depicted through blue circles.

TABLE I: Results of post-study subjective questionnaires.

Custom Questionnaire Mean Std

Q1: The way the robot moved at the end of the experiment
met my preferences.

3.58 1.00

Q2: The robot behaved in an awkward and unnatural way. 2.25 1.22
Q3: I felt comfortable while performing the task as I
would be with another human.

4.17 0.83

Q4: In planning how to configure the object and hand it over to you,
the robot should take into account:

your mental load and perceived safety. 3.67 0.87
your physical effort. 3.33 1.41
the appropriateness and fluency of robot motion. 4.11 0.93

after 21.1 iterations, on average. Convergence was defined
as the human-preferred value being selected by the policy
most of the time and chosen at least five times in a row. The
learning converged to the preferred orientation for 7 subjects
and to the preferred distance and velocity for 9 out of 12
subjects. The contribution of each parameter to a fruitful
interaction was determined by computing the mean distance
between the learned parameter and the average parameter
value during the last iterations, which was 0.13, 0.10, and 0.33
for orientation, distance, and velocity, respectively. The higher
this distance, the lower the parameter contribution indicating
that the algorithm jumps between its possible values.

Table I presents the results of post-study subjective
questionnaires. Participants agreed that the robot motion’s
appropriateness should be taken into account and considered
the proposed costs equally relevant to plan well-coordinated
robot behaviours. Indeed, patterns of choices in the custom
questionnaire indicated that the means of the weights given by
participants to CH

cognitive erg, CH
physical erg, and CR

energy cons were
0.33, 0.26, and 0.41, respectively.

V. DISCUSSION

The findings demonstrated the effectiveness of the proposed
online learning approach in maximising the benefits and

reducing the effort required by the agents involved in the
collaborative task. The system’s ability to learn optimal
interaction parameters led to a significant improvement
in human cognitive and physical ergonomics, as well as
a noticeable decrease in robot expenses. As a result, we
successfully incorporated the notion of coefficiency based on
cognitive and physical factors inspired by human joint action
theories into human-robot interactions.

It is worth noting that through acting in a coefficient manner,
the robot successfully met the individual preferences of most
of the subjects involved in the experiments. Despite expressing
actual human preferences is not straightforward, the metrics
proposed to measure human comfort were found to be suitable
for adjusting the robot interaction parameters on the fly and
learning the personalised behaviour that best suits the user’s
needs. Nevertheless, not all parameters have the same impact
on determining a fruitful interaction. Parameters that have
a more significant effect on coefficiency were learned more
quickly and accurately, while less significant ones may not
even converge. As shown in Fig. 4, the mean distance between
the learned velocity and the average parameter value during
the last iterations is higher than that obtained for orientation
and distance across all subjects. This implies that the robot
velocity is less relevant to the decision-making strategy.

The main limitation of the proposed framework is linked to
the assumptions made in defining human-robot coefficiency.
For example, relying on the behavioural analysis in [25], it is
expected that participants would shift their attention from the
mug when the interaction is annoying and not legible (e.g.
the robot moves too slowly or rotates excessively after the
handover to return to the homing configuration). But, two
participants exhibited behaviours far from our expectations,
thus preventing the system from appropriately learning.
Subject 12 forced herself to be overfocused and always
performed the task in the same way, despite the parameters
being far from her preferences, leading to learning interaction
parameters based only on robot expenses. Conversely, subject
2 tended to get distracted and delayed the motion initiation
when the robot ran actions that were more legible and
predictable for him. To address these issues, we could expand
the concept of coefficiency by including additional variables
beyond those currently used to overcome learning difficulties
encountered by the framework for some participants.

Although the questionnaire revealed that, on average,
subjects ranked the costs equally important to plan a seamless
interaction, it would also be valuable to explore the advantages
of a personalised model of human-robot coefficiency score. By
evaluating the weights that each subject would assign to each
cost, we could formulate a reward function as a customised
weighted combination to address the individual demands and
characteristics of the user.

Furthermore, according to subjective impressions reported
in the questionnaires, participants perceived well-adapted
robot behaviours as natural and appropriate. This positive
outcome is a clear indication that the proposed coefficiency
framework represents a significant step towards developing
robots that can be interacted with as seamlessly as humans.



VI. CONCLUSIONS

This study examined whether transferring the human
paradigm of acting coefficiently, i.e. simultaneously max-
imising the benefits of all involved agents, to human-robot
cooperative tasks facilitates a more seamless and natural
interaction. We first modelled human-robot coefficiency
by monitoring implicit indicators of human comfort and
discomfort and calculating the energy expended by the robot
to accomplish the desired trajectory. Then, we proposed a
RL strategy to adapt online the behaviour of the robot, which
exploits the human-robot coefficiency score as a reward to
learn the actions that maximise such coefficiency. Initially, the
robot explores different interaction parameters, then learns
and selects the combination of parameters that best fits human
preferences.

The proposed framework showed satisfactory results for
ten out of twelve participants, where at least one interaction
parameter converged to the preferences stated in the question-
naires. Nonetheless, the occasional contradictory outcomes
cast doubt on the dependability of the self-reported values
and motivate further exploration of additional variables, such
as those related to human body language and emotional cues
discussed in literature [30]. Future studies could consider
developing a personalised reward function model for each
subject to address situations where our costs are not equally
relevant or the assumptions are not completely fulfilled.

Overall, the adaptation mechanism developed in this study
showed promising features to be applied in more complex
cooperative tasks, analysing, for instance, human whole-
body movements and stress-related motion patterns such
as hyperactivity and self-touching. Ultimately, the study of
coefficiency in human-robot handovers presented in this paper
laid the groundwork for future applications of cognitive
psychology to hybrid interaction settings.
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