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Abstract— In this work, we investigate how the explanation of
a robot’s initially perceived capabilities is based on its surface-
level clues and morphology. We explore how explainable robots
tie into Robot Theory of Mind (RToM), a term we use to
describe how people develop a mental model of a robot. We have
developed a web-based platform to collect robot designs that are
expected to correspond to mental states. We will train a set of
Machine Learning (ML) models focused on feature extraction,
validation of desired robot design attributes, and eventually
use this as a tool to generate new robot designs targeting
designs that provide an initial explanation about the robot’s
capabilities. We propose a series of neuroscientific studies to
iteratively verify the outcomes from the data collection and
the ML models training on data provided by the Build-A-Bot
platform.

I. INTRODUCTION

The explainability of robot systems depends on the ability
of people to reliably predict the robot’s abilities [1]. This
means that people form certain expectations about a robot [2]
and they form a theory of mind (ToM) of the robot [3], [4].
A theory of mind (ToM) is the cognitive capacity to attribute
minds to others and describes the ability to perceive mental
states in others [5]. ToM or mental state reasoning represents
a critical cognitive input for behavior explanation, action
prediction, and moral evaluation [6]. That would mean that
they would ascribe mental states to a robot that go beyond the
actual robot’s abilities. This could manifest, for example, in
the human experiencing empathy or emotions towards the
robot, the attribution of beliefs, goals, and desires to the
robot, and ascribing mental states like agency and experience
[7] to the robot.

One research approach that immensely contributed to the
Social Robotics community is the research on how robot
behaviors lead humans to ascribe mental states. This work-
shop contribution, however, takes an even more foundational
approach and focuses solely on the impact of robot morphol-
ogy on forming of a Robot Theory of Mind (RToM). One
of the first things humans turn to when forming a mental
model of a robot are the surface-level cues they experience
when first seeing a robot. Creating an unambiguous first
impression could contribute to more effective communication
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with the robot, [8] and a clear mental model of the robot is
elicited if the robots match their task [9]. When investigating
RToM in the context of robot morphology, we want to be
able to determine which morphology features of a given
robot design are most important in whether a human forms
a RToM, which features elicit a clear mental model of the
robot, and also what specific features or the combination
thereof communicate about a robot’s abilities.

To achieve this, we developed a platform where users
design a robot towards a given attribute. For example, a
user is asked to design a robot that can act autonomously
or experience joy. This reverses the current paradigm where
participants are asked about an existing robot (design) and
what their perceptions, expectations, and discerned capabil-
ities of the robot are. It is expected that the resulting robot
designs shed light on what features a robot design should
have to display a certain robot capability.

II. RELATED WORK

Theory of Mind is a social-cognitive skill that involves
the ability to understand that other people’s thoughts can be
different from your own [10]. It is called a theory because
we have no direct way of knowing exactly what another
person might be thinking, so we rely on our theory that we
develop based on their appearance, behaviors, and what we
know about them. If we assume that people form a Theory
of Mind of a robot, they have mental state concepts of the
robot, such as “believe,” “know,” “want,” and “see,” and use
them to predict and explain robot behaviors. A human with
a Robot Theory of Mind believes that mental states play a
causal role in generating behavior and infers the presence
of mental states in robots by observing their appearance and
behaviors [11].

If people develop a RToM they would also, at a mini-
mum, develop empathy towards robots. Empathy refers to
emotional awareness of others’ feelings, or in case of robots,
simulated expressions of feelings. While it is an emotional
reaction that is appropriate given another person’s mental
state, it is just one component of ToM. ToM overall is a
more complex cognitive ability of grasping the other person’s
perspective [12]. Prior research has assessed that people
indeed show empathy towards robots [13], [14], [15], [16],
[17] and that robot morphology impacts perceived empathy
[18]. However, it is unclear which exact robot morphology
features elicit human empathy.

Also, if humans were to have a RToM they also would
anthropomorphize robots, i.e. interpret robots in terms of hu-
man characteristics and emotions. In essence, they would be



humanizing the robot. Research has come to the conclusion
that people anthropomorphize robots, especially those that
show a more human-like morphology [19], [20], [21], [22],
[23], [24]. Research has also shown that robots are perceived
to “see”, “want”, “know” [25], [26], and to be trusted [27],
[28], [29]. Further evidence that humans might indeed form
a RToM is that when the tests used to evaluate a Theory of
Mind for humans (white lie test, behavioral intention task,
facial affect inference, vocal affect inference, and false-belief
test) are applied to robots, it has been shown that people
implicitly assign mental states to robots [30].

It seems that robots might have all the necessary com-
ponents that would lead humans to create a Robot Theory
of Mind that is, at least initially, based on the robot’s
morphology. We hypothesize that we can determine which
robot design features de- and increase a RToM and that we
are able to predict what mental states are ascribed to a certain
robot morphology.

III. METHODOLOGY

In order to prove our hypothesis, we need to explore a wide
range of characteristics of robot design that entail both higher
order cognition (e.g., rationality and logic) and emotion (e.g.,
feelings and experience [31], [32]. These two core capacities
are mapped to two dimensions of the perception of the mind:
agency and experience [7]. It has been demonstrated that
people automatically evaluate a target’s mind along these two
dimensions [7], and non-human targets can be living entities
such as animals [33], and non-living entities such as robots
[32], [34].

Traditionally, investigating the effects of robot morphology
involved survey-style research in which an existing design
is presented to a user. The user is then asked to evaluate
the design in terms of a certain mind perception attribute.
Although this style of research works well for investigating
individual designs, it is difficult to generalize the findings to
other existing or new robot designs, due to the low number of
designs evaluated as compared to the total number of existing
and new designs. For example, the currently largest database
of robot designs classified by their human-like appearances
contains only about 250 existing robots [35]. This makes it
difficult to evaluate the level of Robot ToM (RToM) that a
new or existing unstudied design may elicit in a human.

The Build-A-Bot platform does not only intend to research
the explanability of robot’s perceived capabilities, it also
aims at making predictions about new, not yet existing robot
designs. With a large number of robot designs tied to an
attribute, we can employ Machine Learning (ML) algorithms
to evaluate the causal relationships of robot morphology and
mind perception. In addition, currently developed databases
and Machine Learning models are often not verified with
independent methods for their validity. We propose a series
of neuroscientific studies to iteratively verify the outcomes
from the data collection on robot morphology and the
Machine Learning models. Neuroscience technology such as
functional near-infrared spectroscopy (fNIRS) has been used
to understand neural responses to social robots as an implicit

response evaluation [36], [37] and will be used to validate
our approach while providing additional insights in novel
ways of measuring interactions with social robots.

The Build-A-Bot platform addresses the challenge of
significantly increasing the number of robot designs by a
wider range of designers than currently is the case. We
created a web-based research platform prototype where users
can create any robot design they deem appropriate to a given
prompt and use the Unity-based drag-and-drop interface to
assemble a robot.

To build a model that learns from the user-based input of
robot designs, we are looking to use the targeted attributes
and the associated robot designs created on the Build-A-Bot
platform to train a set of Machine Learning models focused
on feature extraction, validation of desired RToM attributes in
proposed robotic designs, and eventually as a tool to generate
new robot designs targeting a given RToM attribute.

An additional challenge we identified is that we cur-
rently lack an independent assessment of Machine Learning
models. We will use novel methods and technologies in
neuroscience (i.e. fNIRS) to validate our ML models. This
will serve as a novel metric to assess the validity of the data
generated from the platform and the ML models.

IV. CURRENT RESULTS

A fully functional prototype of the Build-A-Bot design
platform is available online at https://www.dubuildabot.com.
We explored several options before selecting the Unity 3D
game development platform [38] as the basis for Build-A-
Bot. The Unity system allowed for rapid development and
had the benefit that our platform could be deployed using
WebGL [39]. Through several design iterations, we created a
drag-and-drop system that allows users to combine 3D robot
parts in any manner that they see fit (see Figure1. In order for
the user to design for a specific attribute, they are prompted
with challenge card (see Figure 2. The included number of
parts requirements are needed as a measure of complexity for
the machine learning models and the neuroscience portions
of the project.

Fig. 1. A screenshot of the robot building tool with the part selection
for drag-and-drop and the left side, a demonstration of an attached (1) and
unattached part (2), the edit gestures on the right side, and the coloring and
action menu on the bottom of the screen.

Complexity is defined as the number of variables that
are related in a cognitive representation of a robotic design.

https://www.dubuildabot.com


Fig. 2. An example of a challenge cared presented to a user before they
start creating a new robot design.

Complexity has been shown to influence performance in ToM
tasks and depend on the functioning of the frontal lobe,
the area we aim to measure for RToM [40]. We obtain a
complexity measure for a given design by assigning several
attributes, including organizational information such as a
category and subcategory label, as well as a complexity
score for each new robot part created for the platform. The
complexity score for individual parts allows us to calculate an
overall complexity score for a robot design. We then use this
score to help us group different robot designs by complexity.

To increase universal usability of the platform to a
broad spectrum of users, we implemented several Human-
Computer-Interaction (HCI) best practices [41]. For example,
we created a tutorial that walks a first time user through the
process of creating a simple robot design. This gives a user
the opportunity to become more familiar with the platform
before creating a robot design. We also used a drag-and-
drop mechanism to select and position parts, manipulation
via mouse or keyboard of the individuals parts (see Figure
3, and visual and sound effects when parts attached to each
other (i.e., yellow sparks and a snap-like sounds effect). The
interface also allows to adjust to a users environment with
a light and dark mode. However, there are several areas
in this prototype where we still can improve on universal
usability. For example, the current challenge cards are text-
based and we are in the process of evaluating several icons
to support the understanding of the challenge cards for non-
native speakers or illiterate users. We also are employing
iterative user-testing and subsequent re-design of the website
and the robot builder interface where we change the interface
based on qualitative and quantitative user feedback.

Fig. 3. Examples of scale and rotation handles for modifying existing
parts.

When developing the Build-A-Bot platform, we realized
the need for an effective way to manage the data collected
from the platform. To achieve this, we are creating a re-
searcher dashboard through our website that our team can
use to perform queries against our database of submitted
robots. This will allow us to timely look for patterns within
different challenge cards presented to the user, such as one

part being used frequently between different designs for a
scenario. The dashboard will also allow us to incrementally
add and remove challenge cards that will be presented to
users to broaden data collection.

Since Build-A-Bot is hosted on a publicly accessible
website, we can use a standard web server and database
configuration to save data on robot designs. As the user
builds a robot design on the platform, we incrementally save
the changes they made. Each change, for example a change
in the position, rotation, scale, or color of a part, is recorded
in a JSON file. We are also tracking the order in which
parts are they were chosen as is crucial to identify which
components might be more important for users or if our
interface introduced confounding variables by introducing an
order of parts. For example, if we find that a certain part is
frequently used in designs targeting a certain attribute, this
would be an indicator that this part is important. If we find
that a certain set of parts are always used regardless of the
prompt given to the users, however, we need to reconsider
the interface design to make sure users aren’t being biased
towards selecting those parts. The data is also used to build
a tree-like structure of the path the user took to their final
design, and we anticipate using these models to represent
how different input variables can be used to predict a target
robot design.

Once the user has indicated that their design is complete
by submitting it, they are no longer able to edit it as we
want a snapshot of the design that the user believed best
represented the target attribute. A user however can copy
their own existing designs and make edits to the copied
version. Users can see all of their own robot designs in their
account. After the user has completed their robot design,
a screenshot of the robot design is taken and stored to a
database. We provide the user with a 360-degree turntable
animation of their design that they can download and keep.
An example of this is shown in Figure 4. The robot design
files themselves are stored as 3D objects and we plan to make
them available as STL files to the user in future iterations for
the platform to facilitate 3D printing of their robot designs.
The screenshot provides a simple visual representation of
the design that can be quickly re-visited during analysis or
presented to users on our website. This screenshot can be
used as an instrument for our neuroscience assessment as
stimuli and in our Machine Learning models to facilitate
learning via Convolutional Neural Networks (CNNs).

Fig. 4. An example of the 360-degree turntable animation for a created
robot design

The other data we collect through the Build-A-Bot plat-
form, such as the JSON data representing the robot and
the path taken to create it, will also be instrumental in the
other aims of our work. We plan to use this data to build
ML models that allow us to create new designs targeting a



specified RToM attribute. ML models like these require a
significant amount of data, which the Build-A-Bot platform
is built to provide.

V. DISCUSSION

We created a fully functional web-based platform to
collect robot designs that are expected to correspond to
mental states that play a causal role for RToM [11] and that
offer an initial explanation of a robot’s capabilities to the
user based on robot surface clues and its morphology. To
evaluate RToM based on the user input of robot designs, we
need to have as much information as possible on the user’s
design choices. This will be achieved by tracking a variety of
measurements for further analysis while the user is building
a robot design via the platform (e.g., resulting designs as
images, user actions as json file).

A. Limitations

The Build-A-Bot platform is currently limited by a com-
paratively small number of 3D robot parts available to choose
from. While there are a number of pre-built robot designs
available on the internet that we could use, very few of them
are created in a way that they could be used as versatile part
of the robot (i.e., a part could be a torso, hands, arms, legs,
head, etc.). This would significantly limit the creativity of
users and the models we can build. Since we are creating
a platform where users can assemble parts on their own, a
pre-built design represented as one model is of little use to
us. We therefore are creating all the 3D models of robot parts
on our own; however, this is a time-consuming process. We
are continually working to increase the number and variety
of parts available on the platform. Also, we are looking into
enabling an advanced function where user-submitted parts
could potentially be used. In either case, we still would need
to validate the parts for appropriateness and polygon count,
as parts with very high polygon counts have been found to
cause the platform to become unresponsive.

Another limitation is the current lack of iterative design,
user testing, and expert review. While we have run pre-
liminary user testing as well as a first round of qualitative
and quantitative user evaluation, we can only evaluate the
universal usability of the platform after including a broader
demographics of users (e.g., include children, adolescents,
and elderly), and after including expert reviews of a (mostly)
bug-free version of the platform. After the recent focus on
rapid and iterative development of the platform, a good next
step at this point seems to be to focus on improving the
overall interface by hypothesis-driven testing. The enable
universal usability is expected to correlate with the quality
of the data that we will be collecting for the analysis of an
RToM and how to develop explainable robots by design.

VI. FUTURE WORK

A. Improving Robotic Designs Using Human-Centered AI

Human-Centered Artificial Intelligence (AI) is a special-
ization focused on bridging the gap between humans and ma-
chines by developing intelligent systems that can understand

how humans perceive and interact with the world around
them. As part of this project, we will develop a Human-
Centered AI approach to processing the design data collected
as part of the Build-A-Bot platform. Specifically, we will
be turning to Machine Learning (ML) to help us better
understand how the perception of a robot mind and the per-
ception of the explanation of robot capabilities are causally
related to robot design. By creating machine learning models
capable of predicting the RToM perception of a given design,
we can create robots with designs targeting a given RToM
attribute. In order to better understand what kinds of ML
models are best suited for identifying robot design features
tied to explainable robots, we will be experimenting with
combinations of data preprocessing techniques and deep
learning configurations to find ideal ML pipelines suited to
explain RToM and how to develop robot designs that increase
the explanability of robot capabilites.

Our data consist of both images of the created robot
designs and low-level model information, including features
such as what parts were selected, where it was attached to
the design, and what rotation or scale was applied. We will
create models based on the pixel information provided by
the screenshots of the images as well as models based on
the robot design’s composition, and compare the accuracy of
these models to see which can be used as a better predictor
explanability for a given design. Our hypothesis during this
comparison is that the pixel values can serve as a better
predictor of whether a new design conforms to a given
RToM target, while the design composition data will serve
as a better training dataset for models used to generate new
designs. We will also look at grouping models by the relative
complexity of the training examples to test the hypothesis
that ML models focused on a given complexity will be more
accurate than ones trained with a mixture of complexity
values.

In order for our human-centered AI system to continuously
improve itself, all models developed as part of the project
will be updated as new designs are submitted to the system.
The models will be made available for public use via
our project’s website, allowing users to experiment with
testing their own designs, generating new designs on the fly,
and contributing to the research community by increasing
available broad-spectrum robot designs.

A critical aspect of our project is to build trust with the
community that the predictions and designs created by our
ML models can be trusted. To help engender this trust,
we will take the predictions and designs created by our
system and validate them using neuroscientific experiments.
By comparing the data collected through these experiments
for a given design with a known baseline set of values, we
can determine whether the response of a given user matches
the predicted response of our ML models. This provides
us with an objective measurement of precision that can be
used to build trust in the results and creates a novel way of
assessing the explanibility and perception of robot design.



B. Validating RToM Perception Using Neuroscience
Independent of the results of the platform design, we are

developing implicit and explicit measures to build a model
of the perception of the robot mind. Novel metrics are used
to assess and verify the results of the platform robot designs,
as well as to assess and refine the ML models. To date, robot
mind perception research is in its infancy and has no models
based on a large dataset and implicit measures to verify
its validity. Additionally, no prior research attempted to use
implicit measures to link robot design features with robot
mind attribution. The interactive testbed we are developing
includes explicit measures (e.g. questionnaires), as well
as neuroscientific measures (i.e. fNIRS). Functional Near-
Infrared Spectroscopy (fNIRS) explores functional activation
of the human cerebral cortex through optical topography. It
is noninvasive, silent, low cost, portable, allows participants
movements, and has good temporal resolution, which is
highly desired as we investigate responses to stimuli (see
Figure 5). Studies using physiological measures have shown
that EEG can pick up on differences in neural responses
to pain stimuli for cross-racial empathy [42], that fMRI
can show emotional and neural processing differences when
observing human-human vs. human-robot interactions [43],
and that Functional Near-Infrared Spectroscopy (fNIRS) is
suitable to detect modulation of empathy [37]. fNIRS has
also been mentioned to be a physiological method necessary
in future HRI studies to determine how social robots should
be designed to best perceive user needs [44]. In order to
investigate how fNIRS can help reinforce our findings into
RToM produced from the machine learning models training
on data provided by the Build-A-Bot platform, we are
planning to integrating prior work on fNIRS and HRI to
build a new experimental approach in order to establish a
proof of concept for measuring RToM. It is strongly expected
that these insights on mind perception of a robot correlate
with the way users explain a robot’s expected capabilities
and behaviors.

Fig. 5. Stimuli examples for a planned preliminary study comparing pain
vs. no-pain and human vs. robot conditions.

Our study will focus on investigating an event-related
reaction of participants’ empathy reactions to human and
robot faces displayed in a painful condition (i.e., with a
needle penetrating the skin) and in a nonpainful condition
(i.e., with a Q-tip touching the skin, see Figure 5). A repeated
measure ANOVA will be performed to determine the effect

of the touch condition on the fNIRS results, which will allow
us to determine whether there is a difference in activation
between a painful touch and a pleasant touch. This will help
us determine if fNIRS can provide insights into RToM that
we can use as a validation method for the findings from our
machine learning model, and provide a novel experimental
method into RToM that can lead to significant new insights.

VII. CONCLUSION

We have successfully developed a comprehensive experi-
mental design that has the potential to significantly increase
the knowledge of how people develop Robot Theory of Mind
(RToM) and how to use this knowledge to design robots
whose capabilities can be explained by the user based on
their surface-level cues. We created a web-based platform
that will collect a large amount of robot designs associated
with a mental state. We will be able to determine what mental
states are ascribed to robots and how a robot needs to be
designed to display a certain mental state and trigger a certain
expectation or user explanation. In the future, this work will
utilize machine learning and neuroscience to significantly
contribute to knowledge in each respective field and give
insights on a more comprehensive assessment of interactions
with social robots.
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