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Abstract— Can robots’ observable behavior give human ob-
servers insights into their hidden internal processes? This paper
examines this idea with the aim of developing a framework
for explainability in robotics. This framework constitutes a
promising avenue for the development of intuitive human-
robot interactions in which people would use the same brain
mechanisms on which they rely to understand other humans
during social interactions.

I. INTRODUCTION

In recent years, research in artificial intelligence (AI) and
robotics has witnessed the rise of increasingly sophisticated
machine learning algorithms. Some of these techniques have
been able to achieve impressive results and push the state
of the art forward in a variety of applications. However, this
leap in performance often came at the cost of a complexity
rendering it hard to understand how and why the algorithm
works. Consequently, concerns from both the scientific com-
munity and the general public have caused explainability to
reemerge as a major topic in the field [1][2].

In this paper, we focus on the issue of explainability
in robotics, and in human-robot interactions in particular.
Indeed, while the need for explainability is relevant in
many areas of applications of artificial intelligence, it is of
outstanding importance in domains where these techniques
are integrated in robots which operate in close vicinity to
humans. In such contexts, it is crucial for users to understand
why they behave as they do [3][4]. Because the issue of
explainability is multifaceted, it should be addressed from
various angles. Here, I focus on how the robot’s observable
behavior can provide users with insights into its hidden
internal processes. Inspired by the central role of behavior in
explaining brain mechanisms and by the importance of com-
municative behavior in human-human social understanding,
Explanation through behavior is proposed as a framework
for explainability in robotics and human-robot interactions
in particular.

II. EXPLANATION THROUGH BEHAVIOR:
HOW NEUROSCIENCE AND PSYCHOLOGY DEAL WITH

BLACK-BOX COGNITIVE SYSTEMS

In the past years, the issue of explainability has been
put in the spotlight to a great extent due to the success
of deep learning techniques. Deep neural networks are de-
signed to recognize patterns in data by iteratively processing
and refining inputs through multiple layers of elementary
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operations. Trained on large amounts of data, they have
been able to reach impressive results in various contexts,
including robotics. Indeed, the strength of these methods
lies in their capacity to build representations from high
dimensional data, which makes them a good candidate for
many robotic applications. However, the efficiency of these
sophisticated machine learning techniques comes at the cost
of explainability.

Compared to other methods such as decision trees or rule-
based algorithms, it can be challenging to describe how
deep networks generate their output. Consequently, they
are often described as ‘black-box’ methods [1][2]. There
is ongoing research aiming to develop more explainable
models [2]. For instance, a large portion of research work in
explainable artificial intelligence focuses on how to describe
the processing steps which led to the system’s output in
human-interpretable terms. This approach can be very useful
in many applications to enable tracing every decision step
and identifying potentials errors or biases in order to address
them. However, it is not necessarily the best candidate for
robotic applications. To caricature, a robot verbally describ-
ing all its processing steps would overload the user with
useless information.

Interestingly, the issue of explaining the inner workings
of a black-box system is not specific to modern artificial
intelligence. In fact, understanding why complex computing
systems act as they do is essentially the challenge that psy-
chologist and neuroscientists have been facing for decades.
To study the human brain, experimental psychologists try
to infer latent mental processes and computations from the
behaviors they observe. While modern recording and ma-
nipulation techniques provide important insights into brain
mechanisms, many researchers emphasize the need to re-
focus neuroscientific studies on behavior [5][6]. Because the
fundamental function of the brain is to generate behavior,
the best way to understand how the brain works is through a
detailed analysis and characterization of the elicited behavior.

I argue that there is a lesson for roboticists to learn from
this. Much like the brain’s computations generate behavior, a
robot’s control algorithm determines the machine’s actions.
Crucially, unlike many other AI-powered systems, robots are
embodied systems. Because they are physically present in the
real world, their behavior is observable from the outside and
can provide insights into the system’ inner workings. This
is a unique opportunity to tackle the issue of explainability
in robotics. Others previously emphasized how behavior
can be a medium for explainability [7]. Here I propose
to ask how to make it a design principle. In other words,



how to design cognitive architectures for robots such that
their output behavior gives the human observer insights into
hidden internal processes.

III. COMMUNICATIVE BEHAVIOR AND SOCIAL SIGNALS
IN HUMAN-HUMAN INTERACTION

Human interactions rely on both verbal and non-verbal
communication. While language is essential, extensive re-
search in social psychology also highlighted the importance
of non-verbal social signals, i.e. social cues which are
exchanged through non-verbal communicative behavior[8].

Humans use a large variety of non-verbal signals, from
facial expressions and gaze to postures, gestures and interper-
sonal distance. Body cues like posture and gestures can indi-
cate personality traits such as dominance or trustworthiness
[9]. In addition, they serve as co-speech cues which can be
used to infer useful information such as whether one is being
addressed during a social interaction [10]. Another example
of the information humans extract from gestures is provided
by a series of studies showing that people can predict from
the onset of a reaching motion whether the intention is to
place the object somewhere or to pass it to someone [11].

Furthermore, in human interactions, a lot of information
can be communicated through the face. For instance, face
cues have been extensively examined in the study of emotion
expression, where patterns of configurations in face muscles
are associated with certain internal states The role of face
cues in communicating intention has also been emphasized
[12][13]. Combined, gaze direction and facial expressions
are an essential feature of interpersonal communication in
social contexts [14]

In particular, because it often indicates the focus of atten-
tion, gaze can be very informative [14]. For example, when
directed toward an object, gaze may indicate preference for
the object or the intention to grasp it for example. On the
other hand, gazing at someone may signal one’s willingness
to initiate interaction. One of the most commonly used
experimental paradigms to study gaze in social contexts is the
gaze cueing paradigm[15]: a face is presented on the screen,
then its gaze is shifted toward the screen’s left or right side.
Subsequently, a target is shown either at the gazed-at location
or at the opposite location. Typically, participants are faster in
indicating validly cued targets (i.e. when gaze was directed to
the target side) compared to invalidly cued targets (i.e. when
gaze was directed to the opposite side). This gaze cueing
effect highlights the facilitating role of others’ gaze as well
as the natural tendency of human to follow such a cue.

Overall, non-verbal signals can be highly informative
about one’s goals, intentions, emotions and other mental
states. Non-verbal communication can be explicit or implicit,
in the sense that individuals can voluntarily emit a signal to
communicate with another person, but can also provide a cue
without being aware of it. But most importantly, it provides
a key communication channel enabling intuitive and often
effortless social understanding.

IV. COMMUNICATIVE BEHAVIOR AND SOCIAL SIGNALS
IN HUMAN-ROBOT INTERACTION

Given their importance in human-human interactions, sev-
eral studies investigated the use of non-verbal social signals
by robots. In particular, robots with human-like appearances
may exploit features of their physical to exhibit commu-
nicative behaviors. Thus, humanoid robots can use bodily
cues including head and arm movements in the form of
postures and gestures, as well as interpersonal distance
[16][17]. In addition, robot heads with anthropomorphic
features enable the study of robot face cues [18][19]. Studies
showed that even with minimalistic features mostly focusing
on movements of the eyes, eyebrows and mouth, humans
can recognize stereotypical facial expressions of emotion
categories such as anger, joy or surprise [20], and report
higher feeling of trust and empathy toward to machine [19].

Overall, adding co-speech behavioral cues can improve
human-robot communication. Various combinations of so-
cial cues have been examined. For example, robot pointing
gestures were found to help provide guidance for customers
inside a shopping mall [17]. Bodily cues – including head
orientation, gesture and distance – appear to be more effec-
tive than vocal cues to convince participants to change their
mind and follow the robot’s advice [16]. Such bodily signals
also have an impact on subjective impressions people have
about the robot, related to (negative) social reactance [21],
perception of social presence [22] and trust [23].

Because of its key role in human interactions, several re-
search works focused on gaze. In some cases, head orienting
provided a coarse indication of gaze direction [16][24][25].
Others used more anthropomorphic heads allowing eye
movements [26][27][28]. Thus, previous studies showed that
robot gaze improves interactions in handover [29], con-
versational [24] and cooperative tasks [27]. In particular,
eye contact plays an important role in these interactions
[29][27] and increases the attribution of intentionality [30]
and subjective feelings of engagement [30][31]. In the pre-
vious section, I mentioned the gaze cueing paradigm widely
used in psychology. Kompatsiari and colleagues conducted
a series of experiments recreating this paradigm with the
humanoid robot iCub; i.e. replacing static stimuli shown
on screen with embodied robot eye movement [28][31].
These studies successfully replicate the gaze cueing effect
and further demonstrate the facilitating role of gaze in
naturalistic, situated interactions with embodied agents.

Humans rely on robots’ gaze direction in contexts where
a social meaning can be extracted from the signals; for
instance signaling turn-taking or intimacy [26], hinting to-
ward a preferred object [26], or indicating the location of
a future stimulus [28]. But robot gaze is also processed in
situations where it is irrelevant. In a recent study, we created
a task in which participants played a strategic game with
the robot iCub [32]. Just before they chose their next move,
participants looked at the robot which either established
eye contact with them or avoided it with an averted gaze.
Crucially, the nature of the gaze was totally irrelevant to



the task: it was neither related to the robot’s choice nor to
the participant’s. Yet, our results showed effects on both
behavioral and neural levels, with robot gaze impacting
response times and brain oscillation during decision-making.
We also found that participants who interacted with a robot
often establishing eye contact with them had a reduced
tendency to use self-oriented which did not take the robot’s
actions into account. These results provide additional support
for the notion that robot gaze carries a social meaning, and
has the potential to reinforce the socialness of an interaction.
Interestingly, gaze is such a powerful social signal that it can
have an effect on human-robot interaction even when it is not
programmed to communicate something in particular.

V. EXPLANATION THROUGH BEHAVIOR:
A FRAMEWORK FOR HUMAN-ROBOT INTERACTION

This paper examines the idea that robot behavior can be a
medium for explainability, providing human observers with
insights into their inner workings. Because social under-
standing in human interactions relies heavily on non-verbal
communicative behaviors, I argue that exploiting these com-
munication channels could be the basis of a framework for
Explanation through behavior in human-robot interactions.
I provided various examples of studies investigating non-
verbal robot signals. But are robot signals actually perceived
as social signals? Based on previous research, it seems
reasonable to consider that this is possible, at least to some
extent. Indeed, various works highlighted humans’ tendency
to anthropomorphize robots, i.e. to attribute human-like qual-
ities and characteristics to them despite the fact that they are
not human [33][34]. Socialness is one of those qualities. In
many cases, people have been found to see robots as social
agents and expect them to behave in a socially intelligent way
[35] [36]. This is shown in some studies through participants
explicit responses to questionnaires. Concurring evidence
with more implicit measures is provided by studies like
the one mentioned above where we showed that the nature
of robot’s gaze modulated the socialness of participants’
strategy in a joint decision-making task [32]. Altogether, it
appears that robot signals can indeed be perceived by humans
as social signals.

In a recent paper, Wallkotter and colleagues reviewed the
existing literature about the use of social signals in contexts
related to explainability in human-robot interactions [37]. For
instance, one line of research focuses on the legibility of
robot motion and the communication of intent though motion
[38]. Other studies made use of specific gestures or gaze cues
to provide feedback about what the robot has learned to a
human tutor [39][40]. Promising results from these research
works offer initial support for the approach advocated here.
Nevertheless, how to ensure that communicative behaviors
be meaningful and useful to users in complex scenarios
remains an open question. As it has been pointed out, it is
challenging for humans to build accurate mental models of
sophisticated robots [3]. Therefore, I submit that developing
the framework of Explanation through behavior requires
progress in two challenging aspects: 1) how to design robot

architectures that generate informative social signals, and 2)
how to evaluate the ability of those architectures to improve
users’ understanding of robots’ inner workings.

A. Generating grounded social signals for robots

Studies examining social signals in human-robot interac-
tion often employ the Wizard of Oz technique, where an
experimenter controls the robot’s behavior to make sure it
is triggered at the right moment [17], [21]. Other studies
involve controlled interactions allow the robot’s behavior to
be preprogrammed by the task designer [32]. Another case
is where behaviors are triggered by ad-hoc rules tailored for
specific tasks [39]. Overall, it is a challenge to design robot
architectures such that social signals are not teleoperated,
preprogrammed, or scripted. Moving beyond the state of
the art requires designing architectures capable of generating
social signals more autonomously.

In recent years, reinforcement learning (RL) has been one
of the most popular frameworks in the study of autonomous
behaviors. It has proven to be a successful model of human
(and animal) learning [41] and a powerful computational
framework for robot learning [42]. The core idea in RL is that
autonomous behavior is driven by the process of learning and
selecting actions that maximize the agent’s rewards. Rewards
are typically obtained from the environment after performing
an action. Intrinsically motivated RL goes a step further by
using reward functions based not only on external signals
but also on internal signals [43]. For instance, a decrease in
a prediction error function can serve as an intrinsic reward
indicating a progress in some task learning. Robots using
these sophisticated techniques have the potential to develop
skills with little to no human intervention. Yet, it has been
pointed out that these systems also need to be equipped with
the ability to interact intelligently with humans [44].

How can robot architectures connect autonomous and
social behaviors? Examining natural cognition offers useful
insight in this regard. Indeed, research in affective sciences
emphasizes the dual role of emotion in regulating both
autonomous behaviors and social interactions [45][46]. On
the one hand, emotion determines how organisms perceive
and respond to threats and reward opportunities in their en-
vironment. On the other hand, interpersonal communication
is facilitated by emotional expressions through non-verbal
face and body cues like facial expressions and gestures.
Therefore, I posit that for robots’ social behaviors to be
truly communicative and meaningful, they must be grounded
in the system’s internal processes. To this end, affective
states must serve as a bridge between internal processes and
communicative, social behavior.

Previous studies provide good starting points on how to
achieve this. Broekens and Chetouani proposed that emotion
expression can rely on a definition of certain emotions as
a function of temporal difference errors which are at the
core of most RL models [4]. In this context, joy and distress
are respectively elicited by situations where the outcome is
better or worse than predicted by the system. Similarly, other
models also derive robot affect from variables related to task



learning. In previous works, we developed a model where
repeated failure and long-lasting success respectively lead to
states of frustration and boredom [47][48]. Related to the
framework of intrinsic motivation, these affects are derived
from prediction errors which enable the characterization of
novelty and progress in task performance based on learned
sensorimotor associations. These affective signals were then
used to modulate visual attention, subsequently orient the
robot’s gaze [48]. Taken together, these examples show a
promising approach for how to go from internal signals to
social signals. Further research is needed to consolidate these
models and build architecture capable of producing grounded
communicative behaviors which can inform human observes
about the system’s internal states.

B. Assessing human response to robot social signals

Previous studies reported that participants sometimes mis-
interpreted robot non-verbal signals [39][40]. This observa-
tion stresses the importance of rigorously evaluating how
people interpret and respond to those behaviors, and whether
the latter ultimately help them understand the robot’s func-
tioning. I contend that to fulfill their communicative role,
robot signals must be perceived as social signals by human
users. In this regard, the literature suggests that robots’ per-
ceived socialness depends on a variety of factors such as the
robot’s appearance, the robot’s behavior, but also the person’s
prior beliefs and expectations [35][49]. Regarding robot-
related factors, Wiese and colleagues speculate that behavior
probably outweighs appearance[49]. In line with this, we
recently found that displaying communicative gestures was
associated with higher trust ratings, a measure that correlated
positively with both the performance-related scale and the
social scale of the MDMT (Multi-Dimensional Measure of
Trust) questionnaire [23].

The attribution of intentionality can also be considered a
good index of perceived socialness. Indeed, one core process
in social cognition is the adoption of intentional stance, a
strategy that humans use to interpret the behavior of others
with reference to mental states. The InStance Test (IST) was
developed to assess the extent to which people adopted the
intentional stance toward robots [50]. Watching a movie with
a (teleoperated) robot with a rich social behavior was found
to increase IST scores [51]. Similarly, interacting with a
socially communicative robot in the context of a decision-
making task resulted in higher IST scores compared to the
mere observation of the same communicative behaviors with
no interaction context [52].

In addition to subjective measures by means of explicit
reporting, Wiese and colleagues proposed to make use of
neuroscientific methods to assess how humans respond to
robots [49]. This can be achieved by adapting psychological
paradigms to human-robot interaction in order to obtain
well-controlled behavioral measures. One example of this
approach is the gaze cueing paradigm mentioned above [28].
A complementary approach is to measure brain activity in
areas typically associated with social cognition [49]. Indeed,
studies suggest that robots can activate similar brain networks

as those involved in human-human interactions [35]. Inter-
estingly, the resting state activity in social brain networks
was found to predict the adoption of the intentional stance
toward robots [53]. Employing these methods to evaluate
real-time, naturalistic interactions remains a challenge [35].
Nevertheless, these examples show the benefit of combining
subjective (explicit) and objective (implicit) measures. This
applies to the general question of perceived socialness of
robots, but also to assessing whether the use of communica-
tive behavior is a viable solution to the issue of explainability
in human-robot interaction more specifically .

VI. CONCLUSIONS

Social understanding strongly relies on communicative
behavior. Specifically, humans are very good at guessing
others’ internal states from various non-verbal social signals.
In addition to often being accurate, this process is also rather
effortless. In this paper, I explored the idea of exploiting non-
verbal communicative behavior as a medium for explain-
ability in human-robot interactions, setting up the basis of
Explanation through behavior as a framework for robotics.
I identified two challenges facing the development of this
framework: 1) designing robot architecture that generate
social signals such that they can effectively inform humans
about their internal processes; and 2) assessing whether
humans indeed interpret those signals in a way that can
help them better understand robots. Promising directions
for future works have been put forward to address these
challenges. Overall, the proposed framework constitutes a
compelling avenue for the development of intuitive human-
robot interactions in which people would use the same brain
mechanisms they rely on to understand other humans.
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