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Introduction

Fuzzy Logic:

Can a computer compute with words?

Expert can solve a lot of complex problems using imprecision such as
common sense and expert knowledge.

Common sense and expert knowledge can be represented by linguistic rules,
say, in If-Then format.

Fuzzy logic is the theory of fuzzy sets, which is used to handle
fuzziness/imprecision/ambiguity/vagueness.

Fuzzy set theory which can mimic the human spirit for approximation
reasoning based on imprecise information.

By using fuzzy logic, “human spirit” can be computed/represented
mathematically.

Serves as a structure for represent knowledge and learning using natural
inspired learning algorithms
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Introduction

Classical Sets and Fuzzy Sets:

How do we represent imprecision and vagueness?

How do you understand the phrase “Today is Weekend”?

Foundations of Fuzzy Logic

To summarize the concept of fuzzy inference depicted in this figure, fuzzy
inference is a method that interprets the values in the input vector and, based
on some set of rules, assigns values to the output vector.

This topic guides you through the fuzzy logic process step by step by providing
an introduction to the theory and practice of fuzzy logic.

Fuzzy Sets
Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a
crisp, clearly defined boundary. It can contain elements with only a partial
degree of membership.

To understand what a fuzzy set is, first consider the definition of a classical
set. A classical set is a container that wholly includes or wholly excludes
any given element. For example, the set of days of the week unquestionably
includes Monday, Thursday, and Saturday. It just as unquestionably excludes
butter, liberty, and dorsal fins, and so on.
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This type of set is called a classical set because it has been around for a long
time. It was Aristotle who first formulated the Law of the Excluded Middle,
which says X must either be in set A or in set not-A. Another version of this
law is:

Of any subject, one thing must be either asserted or denied.

To restate this law with annotations: HOf any subject (say Monday), one thing
(a day of the week) must be either asserted or denied (I assert that Monday
is a day of the week).L This law demands that opposites, the two categories
A and not-A, should between them contain the entire universe. Everything
falls into either one group or the other. There is no thing that is both a day of
the week and not a day of the week.

2-3

(h) Classical set.

2 Tutorial

Now, consider the set of days comprising a weekend. The following diagram
attempts to classify the weekend days.
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Most would agree that Saturday and Sunday belong, but what about Friday?
It feels like a part of the weekend, but somehow it seems like it should be
technically excluded. Thus, in the preceding diagram, Friday tries its best to
@straddle on the fence.A Classical or normal sets would not tolerate this kind of
classification. Either something is in or it is out. Human experience suggests
something different, however, straddling the fence is part of life.

Of course individual perceptions and cultural background must be taken into
account when you define what constitutes the weekend. Even the dictionary is
imprecise, defining the weekend as the period from Friday night or Saturday
to Monday morning. You are entering the realm where sharp-edged, yes-no
logic stops being helpful. Fuzzy reasoning becomes valuable exactly when you
work with how people really perceive the concept weekend as opposed to a
simple-minded classification useful for accounting purposes only. More than
anything else, the following statement lays the foundations for fuzzy logic.

In fuzzy logic, the truth of any statement becomes a matter of degree.

Any statement can be fuzzy. The major advantage that fuzzy reasoning
offers is the ability to reply to a yes-no question with a not-quite-yes-or-no
answer. Humans do this kind of thing all the time (think how rarely you get
a straight answer to a seemingly simple question), but it is a rather new
trick for computers.

How does it work? Reasoning in fuzzy logic is just a matter of generalizing
the familiar yes-no (Boolean) logic. If you give true the numerical value of 1
and false the numerical value of 0, this value indicates that fuzzy logic also
permits in-between values like 0.2 and 0.7453. For instance:

2-4

(i) Fuzzy set.

Figure 6: Classical and fuzzy sets for weekend (diagram from Matlab).
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Introduction

Classical Sets and Fuzzy Sets:
Use membership functions to measure the degree (membership grade).

How do you understand the phrase “The current season is Summer”?

Foundations of Fuzzy Logic

Q: Is Saturday a weekend day?
A: 1 (yes, or true)
Q: Is Tuesday a weekend day?
A: 0 (no, or false)
Q: Is Friday a weekend day?
A: 0.8 (for the most part yes, but not completely)
Q: Is Sunday a weekend day?
A: 0.95 (yes, but not quite as much as Saturday).

The following plot on the left shows the truth values for weekend-ness if you
are forced to respond with an absolute yes or no response. On the right, is a
plot that shows the truth value for weekend-ness if you are allowed to respond
with fuzzy in-between values.

!
""

#"
$%

&$
"'

'

!"#$%&'()"*$%&

+,-

-,-

()*'+,-+./"+!""#"$%+012.34)21"%+0"05"6'/37

!
""

#"
$%

&$
"'

'

!"#$%& .%/)"$%& .)0$%& 120$%&'()"*$%&

+,-

-,-

()*'+,-+./"+!""#"$%+.!,&4)21"%+0"05"6'/37

.%/)"$%& .)0$%& 120$%&

Technically, the representation on the right is from the domain ofmultivalued
logic (or multivalent logic). If you ask the question LIs X a member of set
A?N the answer might be yes, no, or any one of a thousand intermediate
values in between. Thus, X might have partial membership in A. Multivalued
logic stands in direct contrast to the more familiar concept of two-valued (or
bivalent yes-no) logic.

To return to the example, now consider a continuous scale time plot of
weekend-ness shown in the following plots.

2-5

(a) Discrete membership function.

2 Tutorial
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By making the plot continuous, you are defining the degree to which any given
instant belongs in the weekend rather than an entire day. In the plot on the
left, notice that at midnight on Friday, just as the second hand sweeps past
12, the weekend-ness truth value jumps discontinuously from 0 to 1. This is
one way to define the weekend, and while it may be useful to an accountant, it
may not really connect with your own real-world experience of weekend-ness.

The plot on the right shows a smoothly varying curve that accounts for the fact
that all of Friday, and, to a small degree, parts of Thursday, partake of the
quality of weekend-ness and thus deserve partial membership in the fuzzy set
of weekend moments. The curve that defines the weekend-ness of any instant
in time is a function that maps the input space (time of the week) to the output
space (weekend-ness). Specifically it is known as a membership function. See
HMembership FunctionsJ on page 2-7 for a more detailed discussion.

As another example of fuzzy sets, consider the question of seasons. What
season is it right now? In the northern hemisphere, summer officially begins
at the exact moment in the earthOs orbit when the North Pole is pointed most
directly toward the sun. It occurs exactly once a year, in late June. Using the
astronomical definitions for the season, you get sharp boundaries as shown
on the left in the figure that follows. But what you experience as the seasons
vary more or less continuously as shown on the right in the following figure
(in temperate northern hemisphere climates).

2-6

(b) Continuous membership functions.

Figure 7: Discrete and continuous membership functions (diagram from Matlab).
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Introduction

Classical Sets and Fuzzy Sets:

Multiple fuzzy sets where membership functions are with different labels
(fuzzy terms or linguistic terms).

Foundations of Fuzzy Logic
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Membership Functions
A membership function (MF) is a curve that defines how each point in the
input space is mapped to a membership value (or degree of membership)
between 0 and 1. The input space is sometimes referred to as the universe of
discourse, a fancy name for a simple concept.

One of the most commonly used examples of a fuzzy set is the set of tall
people. In this case, the universe of discourse is all potential heights, say from
3 feet to 9 feet, and the word tall would correspond to a curve that defines
the degree to which any person is tall. If the set of tall people is given the
well-defined (crisp) boundary of a classical set, you might say all people taller
than 6 feet are officially considered tall. However, such a distinction is clearly
absurd. It may make sense to consider the set of all real numbers greater
than 6 because numbers belong on an abstract plane, but when we want to
talk about real people, it is unreasonable to call one person short and another
one tall when they differ in height by the width of a hair.
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If the kind of distinction shown previously is unworkable, then what is the
right way to define the set of tall people? Much as with the plot of weekend
days, the figure following shows a smoothly varying curve that passes from

2-7

Figure 8: Fuzzy sets with different labels (diagram from Matlab).

Dr H.K. Lam (KCL) Advanced Topics of Nature-Inspired Learning Algorithms NILAs 2020-21 62 / 110



Introduction

Driving problem: I am driving and want to keep a safety distance between cars.
When the distance from the front car is x, what speed should I keep?
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Introduction

Linguistic Rules:

Rule 1: If distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high

More specific question: When the distance from the front car is 3.5 m or so, what

speed should I keep?

Remark: Different people have different meaning of small, medium, large, high, steady and low. How do you

define them? How do you explain these terms to computers?
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Introduction

Linguistic Rules:
Rule 1: If distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high
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Figure 9: Fuzzification Process.

More specific question: When the distance from the front car is 3.5 m or so, what speed should I keep? My
Answer: The speed should be not very “low”, more toward “steady” but definitely not “high”.
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Fuzzy Inference System
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Fuzzy Inference System

A fuzzy inference system (FIS) is also known as fuzzy-rule-based system, fuzzy expert

system, fuzzy logic system, fuzzy model, fuzzy associative memory (FAM) and fuzzy logic

controller and fuzzy system.

An FIS is a computing framework based on the concepts of fuzzy set theory, fuzzy (If-Then)
rules and fuzzy reasoning.

An FIS consists of 4 components: fuzzifier, Knowledge base (rule base or database), fuzzy

inference engine and defuzzifier.

Fuzzifier

Knowldedge Base

Fuzzy Inference Engine

Input
(Crisp)

Defuzzifier
Output
(Crisp)

Fuzzy
Input

Fuzzy
Output

Figure 10: A diagram of fuzzy inference system.
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Fuzzy Inference System

Fuzzifiers: It maps the crisp (real-valued) input into a fuzzy set defined in the
universe of discourse (the domain of the fuzzy set) X characterised by membership
functions. This process is called fuzzification. Note: The input can also be a fuzzy
set.

Knowledge Base: It is a database consisting of linguistic rules in If-Then format.

Fuzzy Inference Engine: Using the If-Then rules in Knowledge base, it performs
reasoning by producing a fuzzy output according to the fuzzy input given by the
fuzzifier.

Defuzzifiers: It converts the fuzzy output given by the fuzzy inference engine to
produce a crisp (real-valued) output. This process is called defuzzifiaction.
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Fuzzy Inference System
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Fuzzifiers

Fuzzifier

Knowldedge Base

Fuzzy Inference Engine

Input
(Crisp)

Defuzzifier
Output
(Crisp)

Fuzzy
Input

Fuzzy
Output
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Fuzzifiers

The input is turned to fuzzy sets thought membership functions.

A fuzzy set is represented by a membership functions (associated with a label
called fuzzy term or linguistic term).

Property of membership functions:

A membership function can be discrete or continuous.

A membership function denoted by µA(x) corresponding to fuzzy set A (A is the
fuzzy term or linguistic term) is characterised by a linear/nonlinear function of
premise variable x.

E.g., “If x is Positive Then y is Fast”; “If distance is small Then speed is low”

It is in the range of 0  µA(x)  1.

Considering a particular reading, say, x0, 0  µA(x0)  1 is called the membership

degree/grade or degree/grade of membership.
E.g., µA(x0) = 0.5 when x0 = 2; µsmall(distance) = 0.8333 when distance = 3.5
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Fuzzifiers

Notation for discrete fuzzy set: A =
n

µA(x1)
x1

+ µA(x2)
x2

+ · · ·
o

=
n

Âxi2X
µA(xi)

xi

o
.

The horizontal bar is not a quotient but rather a delimiter.

The summation symbol is not for algebraic summation, but denotes the collection or aggregation of each
element. The “+” signs are not the algebraic “add” but are an aggregation or collection operator.

Example: A =
� 0

�2 + 0
�1.5 + 0.03

�1 + 0.14
�0.5 + 0.41

0 + 0.8
0.5 + 1

1 + 0.8
1.5 + 0.41

2 + 0.14
2.5 + 0.03

3 + 0
3.5 + 0

4
 

µA(0.2) = 0.41
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Fuzzifiers

Notation for continuous fuzzy set: A =
nR

X
µA(x)

x

o
.

The horizontal bar is not a quotient but rather a delimiter.

The integral sign is not an algebraic integral but a continuous function-theoretic
aggregation operator for continuous variables.
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Fuzzifiers

More properties of membership functions:

Core: The core of a membership function for a fuzzy set
˜
A is the region of the

universe of which µ
˜
A(x) = 1.

Support: It is defined as the region of the universe of which µ
˜
A(x) > 0.

Boundaries: It is defined as the region of the universe of which 0 < µ
˜
A(x) < 1.

90 MEMBERSHIP FUNCTIONS, FUZZIFICATION, AND DEFUZZIFICATION

it is not possible to turn the plane “slightly to the west”; an autopilot device does not
understand the natural language of a human. We have to turn the plane by 15◦, for example,
a crisp number. An electrical circuit typically is either on or off, not partially on.

The bulk of this textbook illustrates procedures to “fuzzify” the mathematical and
engineering principles we have so long considered to be deterministic. But, in various
applications and engineering scenarios, there will be a need to “defuzzify” the fuzzy
results we generate through a fuzzy systems analysis. In other words, we may eventually
find a need to convert the fuzzy results to crisp results. For example, in classification and
pattern recognition (Chapters 10 and 11), we may want to transform a fuzzy partition or
pattern into a crisp partition or pattern; in control (Chapter 13), we may want to give a
single-valued input to a semiconductor device instead of a fuzzy input command. This
“defuzzification” has the result of reducing a fuzzy set to a crisp single-valued quantity,
or to a crisp set; of converting a fuzzy matrix to a crisp matrix; or of making a fuzzy
number a crisp number.

Mathematically, the defuzzification of a fuzzy set is the process of “rounding it
off” from its location in the unit hypercube to the nearest (in a geometric sense) vertex
(Chapter 1). If one thinks of a fuzzy set as a collection of membership values, or a
vector of values on the unit interval, defuzzification reduces this vector to a single
scalar quantity – presumably to the most typical (prototype) or representative value.
Various popular forms of converting fuzzy sets to crisp sets or to single scalar values
are introduced later in this chapter.

FEATURES OF THE MEMBERSHIP FUNCTION

Since all information contained in a fuzzy set is described by its membership function,
it is useful to develop a lexicon of terms to describe various special features of this
function. For purposes of simplicity, the functions shown in the figures will all be
continuous, but the terms apply equally for both discrete and continuous fuzzy sets.
Figure 4.1 assists in this description.

The core of a membership function for some fuzzy set A∼ is defined as that region
of the universe that is characterized by complete and full membership in the set A∼ . That
is, the core comprises those elements x of the universe such that µA∼

(x) = 1.
The support of a membership function for some fuzzy set A∼ is defined as that region

of the universe that is characterized by nonzero membership in the set A∼ . That is, the
support comprises those elements x of the universe such that µA∼

(x) > 0.

1

0 x

Core

Support

Boundary
Boundary

m(x)

FIGURE 4.1
Core, support, and boundaries of a fuzzy set.

Figure 11: Core, support and boundaries of a fuzzy set.
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Fuzzifiers

More properties of membership functions:

Normal/subnormal fuzzy set: A fuzzy set is said to be normal if its membership
function has at least one element of x whose membership grade is 1, i.e., µ

˜
A = 1,

otherwise, a subnormal fuzzy set.

height of a fuzzy set hgt(
˜
A):

˜
A = max{µ

˜
A} which is the maximum membership

degree of a membership function. So, hgt(
˜
A) = 1 ) normal membership function;

hgt(
˜
A) < 1 ) subnormal membership function.

FEATURES OF THE MEMBERSHIP FUNCTION 91

The boundaries of a membership function for some fuzzy set A∼ are defined as
that region of the universe containing elements that have a nonzero membership but not
complete membership. That is, the boundaries comprise those elements x of the universe
such that 0 < µA∼

(x) < 1. These elements of the universe are those with some degree of
fuzziness, or only partial membership in the fuzzy set A∼ . Figure 4.1 illustrates the regions
in the universe comprising the core, support, and boundaries of a typical fuzzy set.

A normal fuzzy set is one whose membership function has at least one element
x in the universe whose membership value is unity. In fuzzy sets, where one and only
one element has a membership equal to one, the element is typically referred to as the
prototype of the set, or the prototypical element . Figure 4.2 illustrates typical normal and
subnormal fuzzy sets.

A convex fuzzy set is described by a membership function whose membership values
are strictly monotonically increasing, or whose membership values are strictly monotoni-
cally decreasing, or whose membership values are strictly monotonically increasing then
strictly monotonically decreasing with increasing values for elements in the universe. Said
another way, if, for any elements x , y , and z in a fuzzy set A∼ , the relation x < y < z
implies that µA∼

(y) ≥ min[µA∼
(x), µA∼

(z)], then A∼ is said to be a convex fuzzy set (Ross,
1995). Figure 4.3 shows a typical convex fuzzy set and a typical nonconvex fuzzy set.
It is important to remark here that this definition of convexity is different from some
definitions of the same term in mathematics. In some areas of mathematics, convexity of
shape has to do with whether a straight line through any part of the shape goes outside
the boundaries of that shape. This definition of convexity is not used here; Figure 4.3
succinctly summarizes our definition of convexity.

A special property of two convex fuzzy sets, say A∼ and B∼, is that the intersection
of these two convex fuzzy sets is also a convex fuzzy set, as shown in Figure 4.4. That
is, for A∼ and B∼, which are both convex, A∼ ∩ B∼ is also convex.

1

0

(a) (b)
x

1

x

A
A

0

~
~

m(x) m(x)

FIGURE 4.2
Fuzzy sets that are normal (a) and subnormal (b).
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A~ A~
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FIGURE 4.3
Convex, normal fuzzy set (a) and nonconvex, normal fuzzy set (b).

Figure 12: (a) Normal and (b) subnormal fuzzy sets.
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Fuzzifiers

More properties of membership functions:

Convex/non-convex fuzzy set: A fuzzy set is said to be convex if membership
function are strictly monotonically increasing/decreasing or strictly monotonically
increasing and then decreasing, otherwise, a non-convex fuzzy set.

FEATURES OF THE MEMBERSHIP FUNCTION 91

The boundaries of a membership function for some fuzzy set A∼ are defined as
that region of the universe containing elements that have a nonzero membership but not
complete membership. That is, the boundaries comprise those elements x of the universe
such that 0 < µA∼

(x) < 1. These elements of the universe are those with some degree of
fuzziness, or only partial membership in the fuzzy set A∼ . Figure 4.1 illustrates the regions
in the universe comprising the core, support, and boundaries of a typical fuzzy set.

A normal fuzzy set is one whose membership function has at least one element
x in the universe whose membership value is unity. In fuzzy sets, where one and only
one element has a membership equal to one, the element is typically referred to as the
prototype of the set, or the prototypical element . Figure 4.2 illustrates typical normal and
subnormal fuzzy sets.

A convex fuzzy set is described by a membership function whose membership values
are strictly monotonically increasing, or whose membership values are strictly monotoni-
cally decreasing, or whose membership values are strictly monotonically increasing then
strictly monotonically decreasing with increasing values for elements in the universe. Said
another way, if, for any elements x , y , and z in a fuzzy set A∼ , the relation x < y < z
implies that µA∼

(y) ≥ min[µA∼
(x), µA∼

(z)], then A∼ is said to be a convex fuzzy set (Ross,
1995). Figure 4.3 shows a typical convex fuzzy set and a typical nonconvex fuzzy set.
It is important to remark here that this definition of convexity is different from some
definitions of the same term in mathematics. In some areas of mathematics, convexity of
shape has to do with whether a straight line through any part of the shape goes outside
the boundaries of that shape. This definition of convexity is not used here; Figure 4.3
succinctly summarizes our definition of convexity.

A special property of two convex fuzzy sets, say A∼ and B∼, is that the intersection
of these two convex fuzzy sets is also a convex fuzzy set, as shown in Figure 4.4. That
is, for A∼ and B∼, which are both convex, A∼ ∩ B∼ is also convex.
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FIGURE 4.2
Fuzzy sets that are normal (a) and subnormal (b).
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FIGURE 4.3
Convex, normal fuzzy set (a) and nonconvex, normal fuzzy set (b).

Figure 13: (a) convex and (b) non-convex fuzzy sets.
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Fuzzifiers

Fuzzification is the process turning the crisp input to a fuzzy value (membership
grade).

Linguistic Rules:

Rule 1: If distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high
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Figure 14: Fuzzification Process.
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Rule 3: If distance is large Then speed is high
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Fuzzifiers

Common Membership Functions

Singleton membership function: µ
˜
A(x) =

(
1, if x = a
0, otherwise

Triangular membership function: µ
˜
A(x) =

8
>>>><

>>>>:

0, x  a
x�a
m�a , a < x  m
b�x
b�m , m < x < b
0, x � b

where a  m  b

a0

0.2

0.4

0.6

0.8

1

x

µ(
x)

Figure 15: Singleton membership function.
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Figure 16: Triangular membership function.
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Fuzzifiers

Common Membership Functions

Trapezoidal membership function: µ
˜
A(x) =

8
>>>><

>>>>:

0, x < a or x > d
x�a
b�a , a  x  b
1, b  x  c
d�x
d�c , c  x  d

where a  b  c  d

Gaussian membership function: µ
˜
A(x) = e� (x�m)2

2s2

a b c d
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0.8

1

x

µ(
x)

Figure 17: Trapezoidal membership function.
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Figure 18: Gaussian membership function.
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Fuzzifiers

Common Membership Functions

Z-shaped membership function: µ
˜
A(x) =

8
>><

>>:

0, x > d
d�x
d�c , c  x  d
1, x < c

where c  d

S-shaped membership function: µ
˜
A(x) =

8
>><

>>:

0, x < a
x�a
b�a , a  x  b
1, x > b

where a  b

c d
0
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1
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Figure 19: Z-shaped membership function.
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Figure 20: S-shaped membership function.
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Knowledge Base

Fuzzifier

Knowldedge Base

Fuzzy Inference Engine

Input
(Crisp)

Defuzzifier
Output
(Crisp)

Fuzzy
Input

Fuzzy
Output

Recall the example - Linguistic Rules:
Rule 1: If distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high
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Knowledge Base

The knowledge base is the rule base representing the expertise knowledge dealing with a specific problem.

Linguistic rule: IF premise (antecedent) THEN conclusion (consequent).

The knowledge base can have more than one rule.

General rule format:

Rule i: IF x1 is
˜
Ai1 and/or x2 is

˜
Ai2 and/or · · ·| {z }

antecedent

THEN y is
˜
Bi| {z }

consequent

, i = 1, 2, . . . , r

x1, x2, · · · are the fuzzy/linguistic variables.

y is the output of the fuzzy inference system.

“and’ and “or” are fuzzy operators.

˜
Ai1,

˜
Ai2, · · · are the fuzzy sets (associated with a linguistic variable) representing the ith antecedent pairs.

˜
Bi is the fuzzy set (associated with a linguistic variable) representing the ith consequent.

r is number of rules.
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Fuzzy Inference Engine

Fuzzifier

Knowldedge Base

Fuzzy Inference Engine

Input
(Crisp)

Defuzzifier
Output
(Crisp)

Fuzzy
Input

Fuzzy
Output
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Fuzzy Inference Engine

Fuzzy inference engine is to produce the fuzzy output according to the crisp inputs
based on the knowledge (knowledge base) represented by IF-THEN rule. This is the
process of reasoning. It generally involves two processes, i.e., rule evaluation and
rule aggregation

Rule evaluation (implication) is to apply the fuzzy set operators (AND, OR,
NOT) to the antecedents to determine the firing strength of each rule.

Rule aggregation is to combine the output (consequents) fuzzy sets using the
firing strengths obtained in the process of rule evaluation.

There are three standard fuzzy set operations

Fuzzy union operation (OR), also known as t-norm or conjunction operator.

Fuzzy intersection operation (AND), also known as t-conorm, s-norm

operation, disjunction operation.

Fuzzy complement operation (NOT ).
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Fuzzy Inference Engine

Example - Linguistic Rules (max for “or” and min for “and”; x = 3.5, y = 2)
Rule 1: If x is small and y is negative Then z is low

(Rule evaluation: min(µsmall(x),µnegative(y)) = min(0.8333,0.0561) = 0.0561)

Rule 2: If x is medium or y is zero Then z is middle

(Rule evaluation: max(µmedium(x),µzero(y)) = max(0.25,0.8007) = 0.8007)

Rule 3: If x is large or y is not positive Then z is high

(Rule evaluation: max(µlarge(x),µnot positive(y)) = max(0,1�0.2780) = 0.7220)
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Fuzzy Inference Engine

Fuzzy OR operator (fuzzy union operator)

Maximum: µ
˜
A[

˜
B(x,y) = µ

˜
A(x)_ µ

˜
B(y) = max(µ

˜
A(x),µ

˜
B(y)

Algebraic sum: µ
˜
A[

˜
B(x,y) = µ

˜
A(x)+ µ

˜
B(y)� µ

˜
A(x)⇥ µ

˜
B(y)

Fuzzy AND operator (fuzzy intersection operator)

Minimum: µ
˜
A\

˜
B(x,y) = µ

˜
A(x)^ µ

˜
B(y) = min(µ

˜
A(x),µ

˜
B(y))

Product: µ
˜
A\

˜
B(x,y) = µ

˜
A(x)⇥ µ

˜
B(y)

Fuzzy NOT operator (fuzzy complement operator)

Complement: µ
˜
A(x) = 1� µ

˜
A(x)
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Fuzzy Inference Engine

Example (rule evaluation - discrete fuzzy sets): Consider the fuzzy sets

small =

⇢
0
1

+
0
2

+
1
3

+
0
4

�
and negative =

⇢
0
1

+
0.5
2

+
1
3

+
0.5
4

+
0
5

�
, and

the following fuzzy rule:

Rule 1: If x is small and y is negative Then z is low .

Find the firing strength of Rule 1 when x = 3 and y = 2 where fuzzy “AND”
operation is the minimum operator.

Solution:

Firing strength (Rule evaluation):
µsmall\negative(3,2) = min(µsmall(3),µnegative(2)) = min(1,0.5) = 0.5

Dr H.K. Lam (KCL) Advanced Topics of Nature-Inspired Learning Algorithms NILAs 2020-21 87 / 110



Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-min
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Figure 21: Mamdani (max-min) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-min
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-min
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
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Fuzzy AND operator: min; Inference method: max-min
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-min
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-min
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-min
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-min
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-product
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Figure 22: Mamdani (max-product) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-product
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Figure 22: Mamdani (max-product) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-product
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Figure 22: Mamdani (max-product) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-product

0

0.2

0.4

0.6

0.8

1
˜
A11

x1

µ(x1)

0

0.2

0.4

0.6

0.8

1
˜
A12

x2

µ(x2)

0

0.2

0.4

0.6

0.8

1
˜
A22

x2

µ(x2)

0

0.2

0.4

0.6

0.8

1
˜
A21

x1

µ(x1)

0

0.2

0.4

0.6

0.8

1
˜
B1

y

µ(y)

0

0.2

0.4

0.6

0.8

1
˜
B2

y

µ(y)

0

0.2

0.4

0.6

0.8

1

y

µ(y)

Rule evaluation

min

min

Rule Aggregation

max-product

R
ul

e
1

R
ul

e
2

Figure 22: Mamdani (max-product) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is

˜
A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is

˜
B2(Positive)

Fuzzy AND operator: min; Inference method: max-product
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is
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A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is
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A22(Small) THEN y is
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is
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A11(Small) and x2 is

˜
A12(Large) THEN y is

˜
B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is

˜
A22(Small) THEN y is
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Fuzzy Inference Engine

Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is
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B1(Negative)

Rule 2: IF x1 is
˜
A21(Large) and x2 is
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A22(Small) THEN y is

˜
B2(Positive)
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Figure 22: Mamdani (max-product) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Defuzzification

Defuzzification is a process to convert the fuzzy output (an inferred
membership function) to a crisp value.

There are a number of methods available for defuzzification, e.g.,

max membership principle,

centroid method,

weighted average method,

mean max membership,

center of sums,

center of largest area,

first (or last) of maxima.
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Defuzzification

1. Max Membership Principle

Also known as the height method.

It is limited to peaked output functions.

µ
˜
C(z⇤) � µ

˜
C(z)8z 2 Z where z⇤ is the defuzzified value.

DEFUZZIFICATION TO SCALARS 99

process can involve many output parts (more than two), and the membership function
representing each part of the output can have shapes other than triangles and trapezoids.
Further, as Figure 4.11a shows, the membership functions may not always be normal. In
general, we can have

C∼k =
k⋃

i=1

C∼i = C∼. (4.3)

Among the many methods that have been proposed in the literature in recent years,
seven are described here for defuzzifying fuzzy output functions (membership functions)
(Hellendoorn and Thomas, 1993). Four of these methods are first summarized and illus-
trated in two examples, then the additional three methods are described and illustrated in
two other examples.

1. Max membership principle: Also known as the height method , this scheme is limited
to peaked output functions. This method is given by the algebraic expression

µC∼
(z∗) ≥ µC∼

(z), for all z ∈ Z, (4.4)

where z∗ is the defuzzified value, and is shown graphically in Figure 4.12.
2. Centroid method: This procedure (also called center of area or center of gravity) is the

most prevalent and physically appealing of all the defuzzification methods (Sugeno,
1985; Lee, 1990); it is given by the algebraic expression

z∗ =

∫
µC∼

(z) · z dz
∫

µC∼
(z) dz

, (4.5)

where
∫

denotes an algebraic integration. This method is shown in Figure 4.13.
3. Weighted average method: The weighted average method is the most frequently used

in fuzzy applications since it is one of the more computationally efficient methods.
Unfortunately, it is usually restricted to symmetrical output membership functions. It
is given by the algebraic expression

z∗ =

∑
µC∼

(z) · z
∑

µC∼
(z)

, (4.6)

where
∑

denotes the algebraic sum and where z is the centroid of each symmetric
membership function. This method is shown in Figure 4.14. The weighted aver-
age method is formed by weighting each membership function in the output by its

1

zz*

m

FIGURE 4.12
Max membership defuzzification method.

Figure 23: Max membership defuzzification method.
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Defuzzification

2. Centroid Method

Also known as the center of area (COA) or center of gravity (COG).

Continuous form: z⇤ =
R

µ
˜
C(z)zdzR

µ
˜
C(z)dz where

R
denotes an algebraic integration.

Discrete form: z⇤ =
Â

zi2Z
µ

˜
C(zi)zi

Â
zi2Z

µ
˜
C(zi)

where Â denotes an algebraic sum.
100 MEMBERSHIP FUNCTIONS, FUZZIFICATION, AND DEFUZZIFICATION

1

zz*

m

FIGURE 4.13
Centroid defuzzification method.

respective maximum membership value. As an example, the two functions shown in
Figure 4.14 would result in the following general form for the defuzzified value:

z∗ = a(0.5) + b(0.9)

0.5 + 0.9
.

Since the method can be limited to symmetrical membership functions, the values a
and b are the means (centroids) of their respective shapes. This method is sometimes
applied to unsymmetrical functions and various scalar outputs (see Sugeno, 1985).

4. Mean max membership: This method (also called middle-of-maxima) is closely related
to the first method, except that the locations of the maximum membership can be
nonunique (i.e., the maximum membership can be a plateau rather than a single point).
This method is given by the expression (Sugeno, 1985; Lee, 1990)

z∗ = a + b

2
(4.7)

where a and b are as defined in Figure 4.15.

Example 4.3. A railroad company intends to lay a new rail line in a particular part of
a county. The whole area through which the new line is passing must be purchased for
right-of-way considerations. It is surveyed in three stretches, and the data are collected
for analysis. The surveyed data for the road are given by the sets, B∼ 1

, B∼ 2, and B∼ 3, where
the sets are defined on the universe of right-of-way widths, in meters. For the railroad
to purchase the land, it must have an assessment of the amount of land to be bought.
The three surveys on right-of-way width are ambiguous, however, because some of the
land along the proposed railway route is already public domain and will not need to be
purchased. Additionally, the original surveys are so old (circa 1860) that some ambiguity
exists on boundaries and public right-of-way for old utility lines and old roads. The
three fuzzy sets, B∼ 1, B∼ 2, and B∼ 3, shown in Figures 4.16–4.18, respectively, represent
the uncertainty in each survey as to the membership of right-of-way width, in meters, in
privately owned land.

0 a b z

0.5

0.9
1

m

FIGURE 4.14
Weighted average method of defuzzification.

Figure 24: Centroid defuzzification method.
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Defuzzification

3. Weighted Average Method

It is computational efficient, however, symmetrical output membership
functions are required.

z⇤ =
Â µ

˜
C(z)z

Â µ
˜
C(z) where Â denotes an algebraic sum and z is the centroid of each

symmetric inferred membership function.

Example: z⇤ = 0.5⇥a+0.9⇥b
0.5+0.9

100 MEMBERSHIP FUNCTIONS, FUZZIFICATION, AND DEFUZZIFICATION
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zz*
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FIGURE 4.13
Centroid defuzzification method.

respective maximum membership value. As an example, the two functions shown in
Figure 4.14 would result in the following general form for the defuzzified value:

z∗ = a(0.5) + b(0.9)

0.5 + 0.9
.

Since the method can be limited to symmetrical membership functions, the values a
and b are the means (centroids) of their respective shapes. This method is sometimes
applied to unsymmetrical functions and various scalar outputs (see Sugeno, 1985).

4. Mean max membership: This method (also called middle-of-maxima) is closely related
to the first method, except that the locations of the maximum membership can be
nonunique (i.e., the maximum membership can be a plateau rather than a single point).
This method is given by the expression (Sugeno, 1985; Lee, 1990)

z∗ = a + b

2
(4.7)

where a and b are as defined in Figure 4.15.

Example 4.3. A railroad company intends to lay a new rail line in a particular part of
a county. The whole area through which the new line is passing must be purchased for
right-of-way considerations. It is surveyed in three stretches, and the data are collected
for analysis. The surveyed data for the road are given by the sets, B∼ 1

, B∼ 2, and B∼ 3, where
the sets are defined on the universe of right-of-way widths, in meters. For the railroad
to purchase the land, it must have an assessment of the amount of land to be bought.
The three surveys on right-of-way width are ambiguous, however, because some of the
land along the proposed railway route is already public domain and will not need to be
purchased. Additionally, the original surveys are so old (circa 1860) that some ambiguity
exists on boundaries and public right-of-way for old utility lines and old roads. The
three fuzzy sets, B∼ 1, B∼ 2, and B∼ 3, shown in Figures 4.16–4.18, respectively, represent
the uncertainty in each survey as to the membership of right-of-way width, in meters, in
privately owned land.
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FIGURE 4.14
Weighted average method of defuzzification.

Figure 25: Weighted average defuzzification method.
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Defuzzification

4. Mean Max Membership

Also known as middle-of-maxima.

It is computational efficient.

z⇤ = a+b
2 .

DEFUZZIFICATION TO SCALARS 101

0 a z* zb

1

m

FIGURE 4.15
Mean max membership defuzzification method.

We now want to aggregate these three survey results to find the single most nearly
representative right-of-way width (z ) to allow the railroad to make its initial estimate of
the right-of-way purchasing cost. Using Equations (4.5)–(4.7) and the preceding three
fuzzy sets, we want to find z∗.
According to the centroid method, Equation (4.5), z∗ can be found using

z∗ =

∫
µB∼

(z) · z dz
∫

µB∼
(z) dz

=
[∫ 1

0
(0.3z)z dz +

∫ 3.6

1
(0.3)z dz +

∫ 4

3.6

(
z − 3.0

2

)
z dz +

∫ 5.5

4
(0.5)z dz

+
∫ 6

5.5
(z − 5)z dz +

∫ 7

6
z dz +

∫ 8

7
(8 − z) z dz

]

÷
[∫ 1

0
(0.3z) dz +

∫ 3.6

1
(0.3) dz +

∫ 4

3.6

(
z − 3.6

2

)
dz +

∫ 5.5

4
(0.5) dz

+
∫ 6

5.5

(
z − 5.5

2

)
dz +

∫ 7

6
dz +

∫ 8

7

(
7 − z

2

)
dz

]

= 4.9 m,

where z∗ is shown in Figure 4.19. According to the weighted average method,
Equation (4.6),

z∗ = (0.3 × 2.5) + (0.5 × 5) + (1 × 6.5)

0.3 + 0.5 + 1
= 5.41 m,

and is shown in Figure 4.20. According to the mean max membership method,
Equation (4.7), z∗ is given by (6 + 7)/2 = 6.5 m, and is shown in Figure 4.21.

0.3

1 50 z (m)2 3 4

m

FIGURE 4.16
Fuzzy set B∼ 1: public right-of-way width (z ) for survey 1.

Figure 26: Mean max membership defuzzification method.
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Defuzzification

5. Center of Sums
Faster than many methods. Not restricted to symmetric membership functions.

This method finds the centroid of the individual output membership functions. The intersecting areas are
included twice (drawback ).

Continuous form: z⇤ =

n

Â
k=1

Z
µ

˜
Ck (z)zkdz

n

Â
k=1

Z
µ

˜
Ck (z)dz

where
R

denotes an algebraic integration, zk is the centroid

distance of the kth inferred output membership functions.

Discrete form: z⇤ =

n

Â
k=1

Â
zi2Z

µ
˜
Ck (zi)zk

n

Â
k=1

Â
zi2Z

µ
˜
Ck (zi)

where Â denotes an algebraic sum.

Example: z⇤ =
4⇥ (4+8)⇥0.5

2 +8⇥ 4⇥1
2

(4+8)⇥0.5
2 + 4⇥1

2
= 5.6

106 MEMBERSHIP FUNCTIONS, FUZZIFICATION, AND DEFUZZIFICATION
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FIGURE 4.28
Center of sums method: (a) first membership function; (b) second membership function; and (c)
defuzzification step.

This method is similar to the weighted average method, Equation (4.6), except that
in the center of sums method the weights are the areas of the respective member-
ship functions whereas in the weighted average method the weights are individual
membership values. Figure 4.28 is an illustration of the center of sums method.

6. Center of largest area: If the output fuzzy set has at least two convex subregions, then
the center of gravity (i.e., z∗ is calculated using the centroid method, Equation 4.5) of
the convex fuzzy subregion with the largest area is used to obtain the defuzzified value
z∗ of the output. This is shown graphically in Figure 4.29, and given algebraically as

z∗ =

∫
µC∼ m(z)z dz

∫
µC∼ m(z) dz

, (4.9)

where C∼ m is the convex subregion that has the largest area making up C∼ k . This
condition applies in the case when the overall output C∼ k is nonconvex. And, in the
case when C∼ k is convex, z∗ is the same quantity as determined by the centroid method
or the center of largest area method (because then there is only one convex region).

7. First (or last) of maxima: This method uses the overall output or union of all individual
output fuzzy sets C∼ k to determine the smallest value of the domain with maximized
membership degree in C∼ k. The equations for z∗ are as follows.

Figure 27: Center of sums defuzzification
method.
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Defuzzification

6. Center of Largest Area
It is the center of gravity method but the centroid is computed for the largest convex sub-region.

Continuous form: z⇤ =

Z
µ

˜
Cm (z)zdz

Z
µ

˜
Cm (z)dz

where
R

denotes an algebraic integration,
˜
Cm is the largest convex

sub-region of the inferred output membership functions.

Discrete form: z⇤ =

Â
zi2Z

µ
˜
Cm (zi)zi

Â
zi2Z

µ
˜
Cm (zi)

where Â denotes an algebraic sum.DEFUZZIFICATION TO SCALARS 107
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FIGURE 4.29
Center of largest area method (outlined with bold lines), shown for a nonconvex C∼k .

First, the largest height in the union (denoted hgt(C∼k)) is determined,

hgt(C∼k) = sup
z∈Z

µC∼k
(z). (4.10)

Then, the first of the maxima is found,

z∗ = inf
z∈Z

{z ∈ Z|µC∼k
(z) = hgt(C∼k)}. (4.11)

An alternative to this method is called the last of maxima , and it is given as

z∗ = sup
z∈Z

{z ∈ Z|µC∼k
(z) = hgt(C∼k)}. (4.12)

In Equations (4.10)–(4.12) the supremum (sup) is the least upper bound and the
infimum (inf) is the greatest lower bound. Graphically, this method is shown in
Figure 4.30, where, in the case illustrated in the figure, the first max is also the
last max and, because it is a distinct max, is also the mean max. Hence, the methods
presented in Equations (4.4) (max or height), (4.7) (mean max), (4.11) (first max), and
(4.12) (last max) all provide the same defuzzified value, z∗, for the particular situation
illustrated in Figure 4.30.

0 z
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2 4 6 8 10

z*

m

FIGURE 4.30
First of max (and last of max) method.

Figure 28: Center of largest area defuzzification method.
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Defuzzification

7. First (or last) of Maxima
The first of the maxima: z⇤ = inf

z2Z
{z 2 Z|µ

˜
C(z) = hgt(µ

˜
C)}.

The last of maxima: z⇤ = sup
z2Z

{z 2 Z|µ
˜
C(z) = hgt(µ

˜
C)}

where inf and sup stand for infimum and supremum, respectively.
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FIGURE 4.29
Center of largest area method (outlined with bold lines), shown for a nonconvex C∼k .

First, the largest height in the union (denoted hgt(C∼k)) is determined,

hgt(C∼k) = sup
z∈Z

µC∼k
(z). (4.10)

Then, the first of the maxima is found,

z∗ = inf
z∈Z

{z ∈ Z|µC∼k
(z) = hgt(C∼k)}. (4.11)

An alternative to this method is called the last of maxima , and it is given as

z∗ = sup
z∈Z

{z ∈ Z|µC∼k
(z) = hgt(C∼k)}. (4.12)

In Equations (4.10)–(4.12) the supremum (sup) is the least upper bound and the
infimum (inf) is the greatest lower bound. Graphically, this method is shown in
Figure 4.30, where, in the case illustrated in the figure, the first max is also the
last max and, because it is a distinct max, is also the mean max. Hence, the methods
presented in Equations (4.4) (max or height), (4.7) (mean max), (4.11) (first max), and
(4.12) (last max) all provide the same defuzzified value, z∗, for the particular situation
illustrated in Figure 4.30.
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2 4 6 8 10

z*

m

FIGURE 4.30
First of max (and last of max) method.

Figure 29: First (or last) of maxima defuzzification method.
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Three Fuzzy Inference Systems
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Three Fuzzy Inference Systems

Three common fuzzy inference systems:

Mamdani fuzzy inference systems

Sugeno fuzzy inference systems (also known as Sugeno fuzzy models, TSK
(Takagi, Sugeno, and Kang) fuzzy models)

Tsukamoto fuzzy inference systems (also known as Tsukamoto fuzzy models)

The main difference is in the consequents of the IF-THEN rules

Mamdani FIS: Consequent membership function is a general membership
function

Sugeno FIS: Consequent membership function is a mathematical function

Tsukamoto FIS: Consequent membership function is a monotonic membership
function (a shoulder function)
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Three Fuzzy Inference Systems

1. Mamdani fuzzy inference systems

General rule format:

Rule 1: IF x1 is
˜
A11 and/or x2 is

˜
A12 and/or · · · THEN y is

˜
B1

Rule 2: IF x1 is
˜
A21 and/or x2 is

˜
A22 and/or · · · THEN y is

˜
B2

...

Rule r: IF x1 is
˜
Ar1 and/or x2 is

˜
Ar2 and/or · · · THEN y is

˜
Br

Each consequent is a membership function.

Rule evaluation and defuzzification are done using any of the introduced
methods.
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Three Fuzzy Inference Systems

2. Sugeno fuzzy inference systems

General rule format:

Rule 1: IF x1 is
˜
A11 and/or x2 is

˜
A12 and/or · · · THEN y is f1(x1,x2, · · ·)

Rule 2: IF x1 is
˜
A21 and/or x2 is

˜
A22 and/or · · · THEN y is f2(x1,x2, · · ·)

...

Rule r: IF x1 is
˜
Ar1 and/or x2 is

˜
Ar2 and/or · · · THEN y is fr(x1,x2, · · ·)
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Three Fuzzy Inference Systems

2. Sugeno fuzzy inference systems
Each consequent is a function, fi(x1,x2, · · ·), so, each rule has a crisp output.

When fi(x1,x2, · · ·) is a constant, the Sugeno fuzzy inference system is reduced to
Mamdani fuzzy inference system with output membership functions as singletons.

Rule evaluation is done using any of the introduced methods.

Defuzzification is obtained by weighted average of all functions (Weighted average
defuzzification), i.e.,

y =
w1(x1,x2, · · ·)f1(x1,x2, · · ·)+w2(x1,x2, · · ·)f2(x1,x2, · · ·)+ · · ·+wr(x1,x2, · · ·)fr(x1,x2, · · ·)

w1(x1,x2, · · ·)+w2(x1,x2, · · ·)+ · · ·+wr(x1,x2, · · ·)

=
Âr

i=1 wi(x1,x2, · · ·)fi(x1,x2, · · ·)
Âr

i=1 wi(x1,x2, · · ·)

where wi(x1,x2, · · ·) = µ
˜
Ai1\

˜
Ai2\···(x1,x2, · · ·), i = 1, 2, . . . , r.
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Three Fuzzy Inference Systems

2. Sugeno fuzzy inference systems
Consider a two-rule Sugeno fuzzy model:
Rule 1: IF x is

˜
A1 and y is

˜
B1 THEN z is f1(x,y)

Rule 2: IF x is
˜
A2 and y is

˜
B2 THEN z is f2(x,y) PART II FUZZY SYSTEMS 153

A1

X

B1

Min or
product

w1 z1 = p1 x + q1y + r1

z2 = p2 x + q2y + r2

w1z1 + w2z2z = w1 + w2

Weighted average

Y

A2

X

x y

B2

w2

Y

m m

mm

FIGURE 5.14
The Sugeno fuzzy model. (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition ,
© 1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, New Jersey.)

point out that the output of a zero-order Sugeno model is a smooth function of its input
variables as long as the neighboring membership functions in the antecedent have enough
overlap. By contrast, the overlap of the membership functions in the consequent of a
Mamdani model does not have a decisive effect on the smoothness; it is the overlap
of the antecedent membership functions that determines the smoothness of the resulting
system behavior.

In a Sugeno model, each rule has a crisp output, given by a function. Because of this
the overall output is obtained via a weighted average defuzzification (Equation (4.6)), as
shown in Figure 5.14. This process avoids the time-consuming methods of defuzzification
necessary in the Mamdani model.

Example 5.16. An example of a two-input, single-output Sugeno model with four rules is
repeated from Jang et al. (1997):

IF X is small and Y is small, THEN z = −x + y + 1.

IF X is small and Y is large, THEN z = −y + 3.

IF X is large and Y is small, THEN z = −x + 3.

IF X is large and Y is large, THEN z = x + y + 2.

Figure 5.15a plots the membership function of inputs X and Y, and Figure 5.15b is the
resulting input – output surface of the system. The surface is complex, but it is still obvious
that the surface comprises four planes, each of which is specified by the output function of
each of the four rules. Figure 5.15b shows that there is a smooth transition between the four
output planes. Without the mathematically difficult process of a defuzzification operation, the
Sugeno model is a very popular method for sample-based fuzzy systems modeling.

The third inference method is due to Tsukamoto (1979). In this method, the con-
sequent of each fuzzy rule is represented by a fuzzy set with a monotonic membership
function, as shown in Figure 5.16. In a monotonic membership function, sometimes called
a shoulder function, the inferred output of each rule is defined as a crisp value induced by

Figure 30: Weighted average defuzzification method for Sugeno fuzzy model.

wi(x,y) = µ
˜
Ai\˜

Bi(x,y), i = 1, 2.

min: wi(x,y) = min(µ
˜
Ai(x),µ

˜
Bi(y)); product: wi(x,y) = µ

˜
Ai(x)⇥ µ

˜
Bi(y)
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Three Fuzzy Inference Systems

2. Sugeno fuzzy inference systems
Example: An example of 2-input single-output Sugeno fuzzy model with 4 rules:
Rule 1: IF x is Small and y is Small THEN z is � x+ y+1
Rule 2: IF x is Small and y is Large THEN z is � y+3
Rule 3: IF x is Large and y is Small THEN z is � x+3
Rule 4: IF x is Large and y is Large THEN z is x+ y+2

z =
w1(�x+ y+1)+w2(�y+3)+w3(�x+3)+w4(x+ y+2)

w1 +w2 +w3 +w4154 LOGIC AND FUZZY SYSTEMS

1

0.8

Small

M
em

be
rs

hi
p 

gr
ad

es
M

em
be

rs
hi

p 
gr

ad
es

Large

0.6

0.4

0.2

0
−5 −4 −3 −2 −1 0

X

0
Y

1 2 3 4 5

1

0.8

Small Large

0.6

0.4

0.2

0
−5 −4 −3 −2 −1 1 2 3 4 5

(a) (b)

10

8

6

4

2

0

−2
5

0
Y

X−5 −5

0

5

Z

FIGURE 5.15
Sugeno Model for Example 5.16. (a) antecedent and consequent membership functions; (b) overall
system response surface. (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition ,
© 1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, New Jersey.)
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FIGURE 5.16
The Tsukamoto fuzzy model. (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition ,
© 1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, New Jersey.)

the membership value coming from the antecedent clause of the rule. The overall output
is calculated by the weighted average of each rule’s output, as seen in Figure 5.16. Since
each rule infers a crisp output, Tsukamoto model’s aggregation of the overall output also
avoids the time-consuming process of defuzzification. Because of the special nature of
the output membership functions required by the method, it is not as useful as a general
approach, and must be employed in specific situations.

Figure 31: 2-input, single-output Sugeno fuzzy model with 4 rules. (a) Antecedent and consequent membership
functions. (b) Overall output surface.

min: w1(x,y) = min(µxSmall (x),µySmall (y)); w2(x,y) = min(µxSmall (x),µyLarge (y)); w3(x,y) = min(µxLarge (x),µySmall (y));

w4(x,y) = min(µxLarge (x),µyLarge (y))
product: w1(x,y) = µxSmall (x)⇥ µySmall (y); w2(x,y) = µxSmall (x)⇥ µyLarge (y); w3(x,y) = µxLarge (x)⇥ µySmall (y);

w4(x,y) = µxLarge (x)⇥ µyLarge (y)
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Three Fuzzy Inference Systems

3. Tsukamoto fuzzy inference systems

General rule format:

Rule 1: IF x1 is
˜
A11 and/or x2 is

˜
A12 and/or · · · THEN y is

˜
C1

Rule 2: IF x1 is
˜
A21 and/or x2 is

˜
A22 and/or · · · THEN y is

˜
C2

...

Rule r: IF x1 is
˜
Ar1 and/or x2 is

˜
Ar2 and/or · · · THEN y is

˜
Cr
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Three Fuzzy Inference Systems

3. Tsukamoto fuzzy inference systems

Consider a two-rule Tsukamoto fuzzy model:
Rule 1: IF x is

˜
A1 and y is

˜
B1 THEN z is

˜
C1

Rule 2: IF x is
˜
A2 and y is

˜
B2 THEN z is

˜
C2

154 LOGIC AND FUZZY SYSTEMS
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Sugeno Model for Example 5.16. (a) antecedent and consequent membership functions; (b) overall
system response surface. (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition ,
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FIGURE 5.16
The Tsukamoto fuzzy model. (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition ,
© 1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, New Jersey.)

the membership value coming from the antecedent clause of the rule. The overall output
is calculated by the weighted average of each rule’s output, as seen in Figure 5.16. Since
each rule infers a crisp output, Tsukamoto model’s aggregation of the overall output also
avoids the time-consuming process of defuzzification. Because of the special nature of
the output membership functions required by the method, it is not as useful as a general
approach, and must be employed in specific situations.

Figure 32: Weighted average defuzzification method for Tsukamoto fuzzy model.
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Three Fuzzy Inference Systems

3. Tsukamoto fuzzy inference systems

Example: An example of single-input single-output Tsukamoto fuzzy model with 3 rules:
Rule 1: IF X is Small THEN Y is C1
Rule 2: IF X is Medium THEN Y is C2
Rule 3: IF X is Large THEN Y is C3

Inferred Output:

Y =
µSmall(X)C1(X)+µMedium(X)C2(X)+µLarge(X)C3(X)

µSmall(X)+µMedium(X)+µLarge(X)
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Tsukamoto model for Example 5.17. (a) antecedent membership functions; (b) consequent mem-
bership functions; (c) each rule’s output curve; (d) overall system response curve. (Jang, Jyh-Shing
Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence, Ist Edition , © 1997. Reprinted by permission
of Pearson Education Inc., Upper Saddle River, New Jersey.)

Example 5.17. An example of a single-input, single-output Tsukamoto fuzzy model is given
by the following rules:

IF X is small, THEN Y is C1,

IF X is medium, THEN Y is C2,

IF X is large, THEN Y is C3,

where the antecedent and consequent fuzzy sets are as shown in Figure 5.17a and
Figure 5.17b, respectively. If we plot the output of each of the three rules as a function of
the input, X, we get the three curves shown in Figure 5.17c (the solid curve is Rule 1, the
dashed curve is Rule 2, and the dotted curve is Rule 3). The overall output of the three-rule
system is shown in Figure 5.17d. Since the reasoning mechanism of the Tsukamoto fuzzy
model does not strictly follow a composition operation in its inference, it always generates
a crisp output even when the input and output membership functions are fuzzy membership
functions.

Example 5.18. In heat exchanger design, a flexibility analysis requires the designer to
determine if the size of the heat exchanger is either small or large. In order to quantify
this linguistic vagueness of size, we form the general design equation for a heat exchanger,
Q = AU!Tlog mean, where the heat transfer coefficient U and area A need to be determined.
Figure 5.18 show a schematic of this exchanger.

Figure 33: Single-input, single-output Tsukamoto fuzzy model with 3 rules.
Dr H.K. Lam (KCL) Advanced Topics of Nature-Inspired Learning Algorithms NILAs 2020-21 108 / 110



Fuzzy Inference System and its Learning
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Fuzzy Inference System and its Learning

1 Understand the problem and formulate the problem as an optimisation
problem that help define the cost/fitness/objective function

2 Define the FIS, e.g., number of inputs and outputs, number of rules, AND/OR
operations, input/output membership functions

3 Define the decisions variables, e.g., the parameters of the membership
functions, the coefficients of the functions in the consequents, to be learnt so
that to optimise the cost/fitness/objective function

4 Choose a suitable learning algorithm (numerical optimisation, nature-inspired
learning algorithms) for learning
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