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Fuzzy Logic:
@ Can a computer compute with words?

Expert can solve a lot of complex problems using imprecision such as
common sense and expert knowledge.

Common sense and expert knowledge can be represented by linguistic rules,
say, in If-Then format.

Fuzzy logic is the theory of fuzzy sets, which is used to handle
fuzziness/imprecision/ambiguity/vagueness.

Fuzzy set theory which can mimic the human spirit for approximation
reasoning based on imprecise information.

By using fuzzy logic, “human spirit” can be computed/represented
mathematically.

Serves as a structure for represent knowledge and learning using natural
inspired learning algorithms
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Classical Sets and Fuzzy Sets:
@ How do we represent imprecision and vagueness?

@ How do you understand the phrase “Today is Weekend”?

Shoe ; Shoe Liberty
Polish Monday Liberty Polish
Saturday
Thursday Friday ~ Thursday
Monday Sund
Saturday Dorsal SR Dorsal
Butter Fins Butter Fins
Days of the week Days of the weekend
(h) Classical set. (i) Fuzzy set.

Figure 6: Classical and fuzzy sets for weekend (diagram from Matlab).
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Classical Sets and Fuzzy Sets: )
@ Use membership functions to measure the degree (membership grade).

@ How do you understand the phrase “The current season is Summer”?
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(a) Discrete membership function.
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(b) Continuous membership functions.

Figure 7: Discrete and continuous membership functions (diagram from Matlab).
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Classical Sets and Fuzzy Sets:

@ Multiple fuzzy sets where membership functions are with different labels
(fuzzy terms or linguistic terms).

10 sprin summer fall winter 10 sprin summer fall winter
degree degree
of of
member- member-
ship ship
0.0 0.0

March June September December  March March June September December  March
Time of the Time of the
year year

Figure 8: Fuzzy sets with different labels (diagram from Matlab).
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Driving problem: | am driving and want to keep a safety distance between cars.
When the distance from the front car is x, what speed should | keep?

vy i vy
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Linguistic Rules:
Rule 1: If distance is small Then speed is low
Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high

More specific question: When the distance from the front car is 3.5 m or so, what

speed should | keep?

Remark: Different people have different meaning of small, medium, large, high, steady and low. How do you

define them? How do you explain these terms to computers?
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Linguistic Rules:
Rule 1: If distance is small Then speed is low
Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high
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Figure 9: Fuzzification Process.

More specific question: When the distance from the front car is 3.5 m or so, what speed should | keep? My
Answer: The speed should be not very “low”, more toward “steady” but definitely not “high”.
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@ A fuzzy inference system (FIS) is also known as fuzzy-rule-based system, fuzzy expert
system, fuzzy logic system, fuzzy model, fuzzy associative memory (FAM) and fuzzy logic
controller and fuzzy system.

@ An FIS is a computing framework based on the concepts of fuzzy set theory, fuzzy (If-Then)
rules and fuzzy reasoning.

@ An FIS consists of 4 components: fuzzifier, Knowledge base (rule base or database), fuzzy
inference engine and defuzzifier.

— Knowldedge Base —

Input — — Output
(Crisp)ﬁ» uzzifier efuzzifier ™ (Crisp)
: Fuzzy Fuzzy :

! nput —| Fuzzy Inference Engine —— output |

Figure 10: A diagram of fuzzy inference system.
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@ Fuzzifiers: It maps the crisp (real-valued) input into a fuzzy set defined in the
universe of discourse (the domain of the fuzzy set) X characterised by membership
functions. This process is called fuzzification. Note: The input can also be a fuzzy
set.

@ Knowledge Base: It is a database consisting of linguistic rules in If-Then format.

@ Fuzzy Inference Engine: Using the If-Then rules in Knowledge base, it performs
reasoning by producing a fuzzy output according to the fuzzy input given by the
fuzzifier.

@ Defuzzifiers: It converts the fuzzy output given by the fuzzy inference engine to
produce a crisp (real-valued) output. This process is called defuzzifiaction.
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Rule 1: If distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

(distance)

Rule 3: If distance is /arge Then speed is high

Output:
20 miles/hour

Knowldedge Base

Input:3.5m [ s A A

0.25 of Small Not very Low

Speed should not be very
0.8333 of Medium More Steady Low, more towards Steady
0 of Large Definitely not High but definitely not High
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l— Knowldedge Base —

— Fuzzifier Defuzzifier ——

Input Fuzzy Inference Engine ——' output
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@ The input is turned to fuzzy sets thought membership functions.

@ Afuzzy set is represented by a membership functions (associated with a label
called fuzzy term or linguistic term).

Property of membership functions:

@ A membership function can be discrete or continuous.

@ A membership function denoted by {4 (x) corresponding to fuzzy set A (A is the
fuzzy term or linguistic term) is characterised by a linear/nonlinear function of
premise variable x.

o E.g., “If xis Positive Then y is Fast”; “If distance is small Then speed is low”

@ ltisinthe range of 0 < 4 (x) < L.

@ Considering a particular reading, say, x', 0 < s (x') < 1 is called the membership
degree/grade or degree/grade of membership.
@ E.g, ta(x') =0.5when x' = 2; g, (distance) = 0.8333 when distance = 3.5
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@ Notation for discrete fuzzy set: A = {%lxl) + %;2) + - } = {ineX % } University of London

@ The horizontal bar is not a quotient but rather a delimiter.

@ The summation symbol is not for algebraic summation, but denotes the collection or aggregation of each
element. The “+” signs are not the algebraic “add” but are an aggregation or collection operator.

© Bxample: A = {5+ 5+ 20 + L+ G+ G+ T H RIS+ GE 0P + 5+ 0
@ 1u4(0.2) =041
1
balx)
08 08 | 08
= 06
ES :
0.41 0.41
04 :
02 04 | 014
o0 093 | efeo2 | 0 o
—2-15-1-050 05 1 1.5 2 25 3 35 4

x
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@ Notation for continuous fuzzy set: A = {fx “*‘T(x)}
@ The horizontal bar is not a quotient but rather a delimiter.

@ The integral sign is not an algebraic integral but a continuous function-theoretic
aggregation operator for continuous variables.

B (x)
0.8 1

[ pa(v)=0.5662

041

021
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More properties of membership functions:

@ Core: The core of a membership function for a fuzzy set A is the region of the
universe of which 14 (x) = 1.

@ Support: ltis defined as the region of the universe of which 14 (x) > 0.

@ Boundaries: It is defined as the region of the universe of which 0 < 4 (x) < 1.

J(x) Core
]
1
0 | X
Support
Boundary Boundary

Figure 11: Core, support and boundaries of a fuzzy set.
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More properties of membership functions:

@ Normal/subnormal fuzzy set: A fuzzy set is said to be normal if its membership
function has at least one element of x whose membership grade is 1, i.e., s = 1,
otherwise, a subnormal fuzzy set.

@ height of a fuzzy set hgt(A): A = max{, } which is the maximum membership
degree of a membership function. So, hgt(A) = 1 = normal membership function;
hgt(A) < 1 = subnormal membership function.

w(x) (x)
1 A 1
/é\
0 X 0 T
(@) (b)

Figure 12: (a) Normal and (b) subnormal fuzzy sets.
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More properties of membership functions:

@ Convex/non-convex fuzzy set: A fuzzy set is said to be convex if membership
function are strictly monotonically increasing/decreasing or strictly monotonically
increasing and then decreasing, otherwise, a non-convex fuzzy set.

H(x) A p(x)

1 1

>

|
[
[
T | -
0 Xy z X 0 Xy

(a) (b)

Figure 13: (a) convex and (b) non-convex fuzzy sets.
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@ Fuzzification is the process turning the crisp input to a fuzzy value (membership
grade).

Linguistic Rules:
Rule 1: If distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high

small medium large _

08~

061~

11 (distance)

041~

021~

distance (im)

Figure 14: Fuzzification Process.
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Common Membership Functions

@ Ssingleton membership function: L4 (x)

@ Triangular membership function: L4 (%)=

p(x)

Figure 15: Singleton membership function.
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0, x<aorx>d

X <x<b
. . . h—ar 4SXS
@ Trapezoidal membership function: 14 (x) = wherea<bhb<c<d
- 1, b<x<c
i, c<x<d
(r—m)z

@ Gaussian membership function: piy(x) =e 202

-a
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04t
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Figure 17: Trapezoidal membership function. Figure 18: Gaussian membership function.
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0, x>d
@ Z-shaped membership function: iy (x) = { 9=%, ¢<x<d wherec<d
1, x<c
0, x<a
@ S-shaped membership function: Ly (x) = ¢ £=4, a<x<b wherea<b
1, x>b
= =
EY EY

Figure 19: Z-shaped membership function. Figure 20: S-shaped membership function.
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— Knowldedge Base —

Input | — —— . Output
(Crisp) : uzzifier efuzzifier ™ (Crisp)
: Fuzzy Fuzzy :

! input —| Fuzzy Inference Engine —— output |

Recall the example - Linguistic Rules:

Rule 1: If distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

Rule 3: If distance is large Then speed is high
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@ The knowledge base is the rule base representing the expertise knowledge dealing with a specific problem.

@ Linguistic rule: IF premise (antecedent) THEN conclusion (consequent).
@ The knowledge base can have more than one rule.

General rule format:

Rule i: IF x| is A;; and/or xp is Ajp and/or --- THEN yisB; ,i=1,2,...,r

antecedent consequent

@ x1,xp, - are the fuzzy/linguistic variables.
@ yis the output of the fuzzy inference system.
@ “and’ and “or” are fuzzy operators.

th antecedent pairs.

@ A1, Apn, - are the fuzzy sets (associated with a linguistic variable) representing the i
o Bi is the fuzzy set (associated with a linguistic variable) representing the i consequent.

@ ris number of rules.
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— Knowldedge Base ey

. Output
(Crisp)

(Cri )—r»Fuzzifier Defuzzifier ——

Input | Fuzzy Inference Engine ——' output

|
1 ‘
: Fuzzy Fuzzy :
| |
| |
| |

Rule 1: I distance is small Then speed is low

Rule 2: If distance is medium Then speed is steady

Rule 3: I distance is large Then speed is high
—

/ Y Output:
) Y 20 miles/hour

| Knowldedge Base i\
i \
H - | Output
er [petuzztr}-- 2
i ey Fuzzy

| g

B e /

0.25 of Small Not very Low

) Speed should not be very
0.8333 of Medium More Steady Low, more towards Steady
0of Large Definitely not High but definitely not High
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@ Fuzzy inference engine is to produce the fuzzy output according to the crisp inputs
based on the knowledge (knowledge base) represented by IF-THEN rule. This is the
process of reasoning. It generally involves two processes, i.e., rule evaluation and
rule aggregation

o Rule evaluation (implication) is to apply the fuzzy set operators (AND, OR,
NOT) to the antecedents to determine the firing strength of each rule.

o Rule aggregation is to combine the output (consequents) fuzzy sets using the
firing strengths obtained in the process of rule evaluation.
@ There are three standard fuzzy set operations
e Fuzzy union operation (OR), also known as t-norm or conjunction operator.

o Fuzzy intersection operation (AND), also known as t-conorm, s-norm
operation, disjunction operation.

o Fuzzy complement operation (NOT).
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Example - Linguistic Rules (max for “or” and min for “and”; x = 3.5, y = 2)

Rule 1: If x is small and y is negative Then z is low
(Rule evaluation: min(tgmai (), Unegarive (¥)) = min(0.8333,0.0561) = 0.0561)

Rule 2: If x is medium or y is zero Then z is middle
(Rule evaluation: max ( Umedium (*), tzero (¥)) = max(0.25,0.8007) = 0.8007)

Rule 3: If x is large or y is not positive Then z is high
(Rule evaluation: max (Uarge (X), Hnor posirive(¥)) = max (0,1 —0.2780) = 0.7220)

small medium large negative zero positive

¢ tomcaian() = 0,833 ! Heen(y) =08

3 0.6 3 0.6

3 3 H
04 ¢ fonan(x) = 0.25 04 HpfsiuX(y) = 0.2780
0.2 0.2

\ Huegarive (¥) = 0.0561
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Fuzzy OR operator (fuzzy union operator)
o Maximum: 1 p(x,y) = f1a (x) V 1 (y) = max(pta (x). 1y ()
o Algebraic sum: paup(x,y) = Ha(x) + Hp(y) — ia(x) X Hp(y)
Fuzzy AND operator (fuzzy intersection operator)
o Minimurm: Jins(x,) = 1y (¥) A tg(y) = min(11a (x), 15 ()
e Product: Hang(x,y) = Ha(x) X Up(y)
Fuzzy NOT operator (fuzzy complement operator)

o Complement: iz(x) =1 — 4 (x)
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Example (rule evaluation - discrete fuzzy sets): Consider the fuzzy sets

= 94—9—1-1—1—9 and tive = 9_1_%4_14_%_’_9 and
A= ITT2T3T, MEAVE=AT T T3 Ty T [
the following fuzzy rule:
Rule 1: If x is small and y is negative Then z is low.

Find the firing strength of Rule 1 when x = 3 and y = 2 where fuzzy “AND”
operation is the minimum operator.

Solution:

Firing strength (Rule evaluation):
.usmallﬂnegative(37 2) - min(.usmall(3)7.unegative(z)) - mln(l,OS) =05
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Rule Aggregation: Consider two simple rules:
Rule 1: IF x1 is A1 (Small) and x, is Aj2(Large) THEN y is B (Negative)
Rule 2: IF x; is A1 (Large) and x; is A2 (Small) THEN y is B, (Positive)
Fuzzy AND operator: min; Inference method: max-min
Rule evaluation Rule Aggregation
aix) n(x) u)
1 An 1 A 1 B
2 us #0)
03: 04 04 04 1
02 02 min 02 08
i) Hlx2) HO) max-min (::
1 Ay 1 An 1 By 0 y
Z . " mn o,

Figure 21: Mamdani (max-min) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Figure 21: Mamdani (max-min) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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Figure 22: Mamdani (max-product) inference method with crisp inputs. Grey regions: inferred fuzzy sets.
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@ Defuzzification is a process to convert the fuzzy output (an inferred

membership function) to a crisp value.

@ There are a number of methods available for defuzzification, e.g.,

max membership principle,
centroid method,

weighted average method,
mean max membership,
center of sums,

center of largest area,

first (or last) of maxima.
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1. Max Membership Principle
@ Also known as the height method.
@ ltis limited to peaked output functions.
o uc(z") > uc(z)Vz € Z where z* is the defuzzified value.

Mk
1k

nY

Z*
Figure 23: Max membership defuzzification method.
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2. Centroid Method

@ Also known as the center of area (COA) or center of gravity (COG).

dz . .
@ Continuous form: 7* = JHcle)adz where [ denotes an algebraic integration.

= Juc(z)dz
Y be(z)z
o Discrete form: 7* = & where Y denotes an algebraic sum.
Y uc(z)
Zi€Z o A

1_

Z* Z
Figure 24: Centroid defuzzification method.
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3. Weighted Average Method

@ It is computational efficient, however, symmetrical output membership

functions are required.

e 7F= ):ch((zz))z where Y denotes an algebraic sum and Z is the centroid of each
symmetric inferred membership function.

oy
. _ 0.5xa+0.9xb
Example: * = 0.510.9
1 | -
09
0.5 /—
0 a b z

Figure 25: Weighted average defuzzification method.
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4. Mean Max Membership
@ Also known as middle-of-maxima.

@ |t is computational efficient.

° z*:#. 2N
1 —
[
[
[
[
[
[
[ I
[
[
[ -
0 a z¢+ b z

Figure 26: Mean max membership defuzzification method.

Dr H.K. Lam (KCL) Advanced Topics of Nature-Inspired Learning Algorithi NILAs 2020-21 95/110



ING'S

Defuzzification College
LONDON

University of London

5. Center of Sums
@ Faster than many methods. Not restricted to symmetric membership functions.

@ This method finds the centroid of the individual output membership functions. The intersecting areas are
included twice (drawback).

/ Hc, (2)Zrdz
@ Continuous form: z* = where [ denotes an algebraic integration, 7 is the centroid

/MCA
M

distance of the k" inferred output membership functions.

i Y ue (z)z

k=1z€Z
n

Z Z Mg, (@)

k=1z;€Z
where " denotes an algebraic sum.

@ Discrete form: 7* =

(4+8)x0.5 4x1
4x +8x 5=
P s o B ML R
Example: 2 = )05 a1 =36
2

z Figure 27: Center of sums defuzzification
method.
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6. Center of Largest Area
@ ltis the center of gravity method but the centroid is computed for the largest convex sub-region.

/ tg, (2)zdz
=

@ Continuous form: where [ denotes an algebraic integration, C,,, is the largest convex

Hg, (2)dz
sub-region of the inferred output membership functions.
Y ue, @)z
@ Discrete form: 7" = G2 where Y denotes an algebraic sum.
) ue,, (z)
zi€Z
Iy
1.0 -
0.5
| | | L L -
0 2 V4 6 8 0z
Z*

Figure 28: Center of largest area defuzzification method.
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7. First (or last) of Maxima
@ The first of the maxima: z* = ing{z € Z|uc(z) = hat(uc)}-
zZe - -

@ The last of maxima: z* = sup{z € Z|uc(z) = hgt(uc)}
z€Z - -
where inf and sup stand for infimum and supremum, respectively.

¥
1.0~
0.5 - \
I I I I I -
0 2 4 6 2; 10 z
Z*

Figure 29: First (or last) of maxima defuzzification method.
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@ Three common fuzzy inference systems:
o Mamdani fuzzy inference systems

@ Sugeno fuzzy inference systems (also known as Sugeno fuzzy models, TSK
(Takagi, Sugeno, and Kang) fuzzy models)

o Tsukamoto fuzzy inference systems (also known as Tsukamoto fuzzy models)
@ The main difference is in the consequents of the IF-THEN rules

e Mamdani FIS: Consequent membership function is a general membership
function

@ Sugeno FIS: Consequent membership function is a mathematical function

e Tsukamoto FIS: Consequent membership function is a monotonic membership
function (a shoulder function)
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1. Mamdani fuzzy inference systems

General rule format:

( 1
Rule 1: IF x1 is Aj; and/or x, is A2 and/or --- THEN y is By
Rule 2: IF x| is Ap; and/or x; is A and/or --- THEN y is B,
Rule r: IF x; is A, and/or x; is A,» and/or --- THEN y is B,

_ J

@ Each consequent is a membership function.

@ Rule evaluation and defuzzification are done using any of the introduced

methods.
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2. Sugeno fuzzy inference systems

General rule format:

University of London

( 1
Rule 1: IF x; is A1 and/or x; is A1 and/or --- THEN yis f (x,x2, )
Rule 2: IF x; is Ap; and/or x; is Az and/or --- THEN yis fo(x1,x2,- )
Rule r: IF x1 is A1 and/or x; is A, and/or --- THEN y is f;-(x1, X2, )

|\ _J
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2. Sugeno fuzzy inference systems
@ Each consequent is a function, f;(x1,x2, - - - ) s0, each rule has a crisp output.

@ When f;(x1,x2,- -+ ) is a constant, the Sugeno fuzzy inference system is reduced to
Mamdani fuzzy inference system with output membership functions as singletons.

@ Rule evaluation is done using any of the introduced methods.

@ Defuzzification is obtained by weighted average of all functions (Weighted average
defuzzification), i.e.,

wi(xg, X2, )1 (X1, %2, ) Fwa(xg, X, Jfa(Xp, %, ) -+ wp(xg, X2, )fr (X1, %2, )

’e wi (X1, X2, ) Fwa (g, %2, )+ wp(xg, 02,00 )
_ X wilen,xg, )fi(xn, X, 0)
Yiogwilxr,x2,--+)
where w;(x1,X2,- ) = Ha, rapn-- (X1,%2,7+),i=1,2, ..., 7.
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2. Sugeno fuzzy inference systems
Consider a two-rule Sugeno fuzzy model:
Rule 1: IF xis A; and y is B; THEN zis fi (x,y)

Rule 2: IF xis A, and y is B, THEN zis f>(x, )

Min or
product
[ A s B,
\ wi UEPIXTqQy
X Y
1 A, I B,
wa =P YTy T
\
X Y Weighted average
x y
w1z + wazp
ST witwy

Figure 30: Weighted average defuzzification method for Sugeno fuzzy model.
Wi(x7y) = nu'é,'ﬁﬁi(x7y)’ i= 1,2.
min: w;(x,y) = min(py, (x), up; (y)); product: w;(x,y) = pa, (x) x up;(y)
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2. Sugeno fuzzy inference systems

Example: An example of 2-input single-output Sugeno fuzzy model with 4 rules:
Rule 1: IF x is Small and y is Small THEN zis —x+y+1

Rule 2: IF x is Small and y is Large THEN zis —y+3

Rule 3: IF x is Large and y is Small THEN zis —x+3

Rule 4: IF x is Large and y is Large THEN zis x +y+2

wi(=x+y+1)+wr(=y+3)+w3(—x+3)+wy(x+y+2)
Wi +wp + w3 +wy

7=

Solatl T e T

%
o
&
S
S
SIISRKIN
Py
OSSN
o

oS
% OSSN,

(RS
B

(b)
Figure 31: 2-input, single-output Sugeno fuzzy model with 4 rules. (a) Antecedent and consequent membership
functions. (b) Overall output surface.
min: wy (x,y) = min(fag,, . (%) Byg, g () w2 (6,y) = min(phg, o () Hyp gyge () w3 (,3) = minhy 4,0 () Hyg oy (0)):
wa (6,¥) = min(fey o0 (X): By e (V)
product: W (%) = Hgy gy (X) X gy (0); W2 (5,3) = Bogyqry (%) X My o (V) W3 (63) = B g (6) X Hyg i (0);
W4 (%) = g gpge (%) X My e (V)

Advanced Topics of Nature-Inspired Learning Algorithi NILAs 2 105/110



ING'S
Three Fuzzy Inference Systems College
LONDON

University of London

3. Tsukamoto fuzzy inference systems

General rule format:

( 1
Rule 1: IF xj is A11 and/or x5 is Aj» and/or --- THEN y is C
Rule 2: IF x; is A1 and/or x; is Ao and/or --- THEN y is C»
Rule r: IF xy is A, and/or x, is A2 and/or --- THEN y is C,

_ J
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3. Tsukamoto fuzzy inference systems

Consider a two-rule Tsukamoto fuzzy model:
Rule 1: IFxis Aj and yis B THEN zis C

Rule 2: IF x is A, and y is B THEN zis C,

Min or
product
Ay s " C

B,
A S
. 3

"

X Y 2 z

Iz A, w B, " ¢
\ w2 N,
X Y 2 z

X y Weighted average

W21 +WaZp
wip+wy

z=

Figure 32: Weighted average defuzzification method for Tsukamoto fuzzy model.
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3. Tsukamoto fuzzy inference systems

Example: An example of single-input single-output Tsukamoto fuzzy model with 3 rules:
Rule 1: IF X is Small THEN Y is C;

Rule 2: IF X is Medium THEN Y is C» Smalll  Medium 'Large
Rule 3: IF X is Large THEN Y is C3 5! TN o £ T 1
5 0.8 4 & 08 \
= & \ ;
) 2 061 4 2 06 & .
Inferred Output: 204k 1 2ot/ N S
s 02 4 202 Vo4
y — Hsman(X)Cy (X)+intedium (X) Ca (X)+Hiarge (X) €3 (X) 0 0 LN\
Hsmall (X)+Hmedium (X) +Hiarge (X) 10 -5 0 5 10 0 5 10
X Y
(a) Antecedent MFs (b) Consequent MFs

(¢) Each rule’s output (d) Overall input-output curve

Figure 33: Single-input, single-output Tsukamoto fuzzy model with 3 rules.
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@ Understand the problem and formulate the problem as an optimisation
problem that help define the cost/fitness/objective function

© Define the FIS, e.g., number of inputs and outputs, number of rules, AND/OR
operations, input/output membership functions

© Define the decisions variables, e.g., the parameters of the membership
functions, the coefficients of the functions in the consequents, to be learnt so
that to optimise the cost/fithess/objective function

© Choose a suitable learning algorithm (numerical optimisation, nature-inspired
learning algorithms) for learning
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