
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–22

Michal Tereszkowski-Kaminski*, Sergio Pastrana, Jorge Blasco, and Guillermo Suarez-Tangil

Towards Improving Code Stylometry Analysis in
Underground Forums
Abstract: Code Stylometry has emerged as a powerful
mechanism to identify programmers. While there have
been significant advances in the field, existing mecha-
nisms underperform in challenging domains. One such
domain is studying the provenance of code shared in un-
derground forums, where code posts tend to have small
or incomplete source code fragments. This paper pro-
poses a method designed to deal with the idiosyncrasies
of code snippets shared in these forums. Our system
fuses a forum-specific learning pipeline with Conformal
Prediction to generate predictions with precise confi-
dence levels as a novelty. We see that identifying un-
reliable code snippets is paramount to generate high-
accuracy predictions, and this is a task where traditional
learning settings fail. Overall, our method performs as
twice as well as the state-of-the-art in a constrained set-
ting with a large number of authors (i.e., 100). When
dealing with a smaller number of authors (i.e., 20), it
performs at high accuracy (89%). We also evaluate our
work on an open-world assumption and see that our
method is more effective at retaining samples.

Keywords: Authorship Attribution, Underground Fo-
rums, Language Selection, Code Clone Detection

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

1 Introduction
Underground forums allow users interested in illicit ac-
tivities to interact with and learn from their peers [32,
35, 40]. In recent years these forums have also become
improvised marketplaces, where users trade and share il-
licit products and services [11]. These include both phys-

*Corresponding Author: Michal Tereszkowski-
Kaminski: King’s College London, E-mail:
michael.tereszkowski-kaminski@kcl.ac.uk
Sergio Pastrana: Universidad Carlos III de Madrid
Jorge Blasco: Royal Holloway, University of London
Guillermo Suarez-Tangil: IMDEA Networks Institute and
King’s College London

ical (e.g., drugs or weapons) and virtual (e.g., malware
or exploits) items. As a result, these forums lower the
entry barrier into cybercriminal activities and have be-
come a key area of investigation for industry, academia,
and law enforcement [33]. A popular type of product
found in these forums is software, e.g., tools to run cyber
attacks, malware, or video-game hacks and cheats [46].
Users of underground forums often provide the source
code of such tools [40]. In some cases, this is a result of
them willing to share their knowledge to increase their
reputation [36]. In others, this is due to users asking for
advice, similar to other question-and-answer sites.

The illegal and illicit nature of the activities car-
ried on in these underground forums motivates users
to use pseudonyms. This allows them to preserve their
privacy and also to hide their true identity, e.g., to hin-
der the investigation by law enforcement and security
practitioners [31]. Accordingly, stylometry analysis has
emerged as an increasing area of research aimed at the
actual identification of these users, both from their lan-
guage [4] and from the type of content posted [52].

Code stylometry is the practice of extracting stylis-
tic meta-information from source code. It might al-
low for example to find whether different accounts be-
long to the same person or to identify different users
from the same group or gang. So far, existing so-
lutions [16, 21, 45, 51] are typically tested on cu-
rated datasets such as the Google Code Jam (GCJ)
dataset [23], or code from open-source repositories such
as GitHub. While these datasets contain enough repre-
sentative data (authors and samples) to perform classi-
fication experiments, they do not represent the kind of
data that can be obtained in the wild from underground
forums or other online communities, as this data is usu-
ally unbalanced, unstructured and noisy. Accordingly, a
potential, yet largely-unexplored area is the analysis of
the stylometry of the source code shared in these dy-
namic and unpredictable real-world settings. Caliskan
et al. [21] made inroads into this question by studying
publicly available code repositories on GitHub. They
achieved 50%-60% accuracy, showing that the state-of-
the-art methods are unable to achieve 95+% accuracy
in the real-world setting of collaborative GitHub repos-
itories. GitHub is a popular platform, and it normally

Towards Improving Code Stylometry Analysis in Underground Forums 2

includes well-formatted. However, it is unclear to what
extent these observations apply to underground forums.

In this work, we study the applicability of state-of-
the-art authorship attribution techniques in data gath-
ered from various underground forums and show that
they suffer several limitations which renders them use-
less in this environment. Accordingly, we propose a
methodology specifically designed to deal with the id-
iosyncrasies of code shared in these settings. Specifically,
in this work we present the following contributions:

1. We identify particular challenges of code stylometry
applied on snippets shared in underground forums
(§2), and show that state-of-the-art code stylometry
techniques, while working well for curated datasets,
are not appropriate in these settings (§3). We iden-
tify possible reasons why accuracy drops.

2. We design and implement a methodology to perform
attribution by means of code stylometry in under-
ground forums. As a key novelty, it incorporates a
statistical mechanism to evaluate the classification
quality and discard unreliable samples, increasing
the accuracy and confidence of the attribution (§4).

3. We provide empirical results under closed-world and
open-world assumptions. We show the benefits (i.e.,
doubling accuracy) of applying our methodology to
incomplete and unstructured data, while still ob-
taining high effectiveness on curated datasets (§5).
We also present two case studies that show how our
methodology can assist in the identification of users
posting across different forums (§6).

We discuss our findings and the limitations of our
methodology in §7. We present a detailed break-
down of related work in §8. We release our tool
and provide further instructions on how to reproduce
our experiments: https://github.com/MichaelTK/code-
stylometry-UF. We address the ethical issues that arise
as a result of our work in Appendix D.

2 Problem Statement
In recent years, online underground forums have turned
into improvised online markets for various illicit prod-
ucts and services [5, 40, 48]. They are also used by new-
comers to learn and initiate in deviant topics [24, 36].
Consequently, understanding and measuring their un-
derlying economy has attracted considerable attention

in academia [8, 43, 46]. The cybercriminal underground
markets have also become an interesting source of in-
formation for law enforcement [33] and security re-
searchers [31]. One domain where code stylometry can
contribute is in the attribution of software produced
for malicious purposes, like malware [40] or exploits [5].
Malware development has evolved over time, and cur-
rent deployments are similar to complex projects [17].
Thus, writing malware requires effort and expertise,
which can be found in underground communities [35].

Code stylometry consists of extracting stylistic in-
formation from program source code and using it
to identify the programmer [15, 22]. It has poten-
tial privacy implications since it might be used to
de-anonymize programmers by analyzing their source
code [16]. It can be also used by law enforcement and
security investigators in the attribution of cyberattacks.

Analyzing code gathered from underground forums
brings particular challenges. First, a given code sample
might be written by multiple authors, all contributing
their unique style to it. This can be addressed by focus-
ing on function units [21], assuming that each function
will have only been written by one author. Second, the
ground truth is unreliable: the same developer might op-
erate different accounts, and the same account might be
operated by different users. Third, code is often incom-
plete and might contain syntax or grammar errors. This
means that analysts will sometimes deal with code that
does not compile, thus affecting the parsing and extrac-
tion of features often used for attribution [16, 21, 49].
Finally, the nature of the code is unknown: whereas code
collected from programming contests such as GCJ [23]
aims at solving a well-defined problem, code samples
gathered from underground forums encapsulate a wide
range of purposes, including licit (e.g., defensive tools or
programming contests) or illicit (e.g., malware or game
cheats) activities. Changes in the nature of the code can
affect the accuracy of the attribution [13].

To better understand these challenges, the next sec-
tion presents an empirical study of the effectiveness of
code stylometry on different settings.

3 Challenges in Code Stylometry
In this section, we offer a baseline experimentation
using state-of-the-art code stylometry techniques over
three different datasets. Our experimentation shows
how these techniques are under-equipped to deal with
code snippets posted in underground forums.

Towards Improving Code Stylometry Analysis in Underground Forums 3

3.1 Datasets

Many of the previous works performing program author-
ship attribution with source code [6, 16, 45, 51] lever-
age curated datasets such as the programming contest
Google Code Jam (GCJ) [23] or GitHub (GH) reposito-
ries. We use these two datasets as a baseline to test the
effectiveness of existing tools. The GCJ dataset contains
code from an international competition of algorithmic
problems. We also scrape 100 malware-oriented reposi-
tories from GitHub following the methodology from [6].
We take into account only repositories with a single con-
tributing user account. However, this does not guarantee
that this contributor is a single author, since the reposi-
tory could include external libraries or multiple authors
commit code using the same account.

In our experiments, we also use data from the
CrimeBB dataset, which contains data scraped from
various underground forums [36]. The data is provided
by the Cambridge Cybercrime Centre1 and is available
to academic researchers under a legal agreement de-
signed to ensure ethical use. We dub the dataset of code
snippets extracted from these forums as UF (Under-
ground Forums).

Overall, the UF dataset is composed of 90,085 sam-
ples of over 19,845 authors from 7 underground forums,
with 99.5% of the code snippets belonging to 2 of these
forums. As concerns the GCJ dataset, we focus our
study on code related to the submissions made in one
year, totaling 31,008 code samples over 5,830 authors.
The GH dataset consists of 5,639 code samples over 100
repositories (i.e., 100 authors).

3.2 Motivation Example

We start by reproducing the results of previous work [16]
and establish a baseline for the effectiveness of the state
of the art on curated data. We select this as our starting
point because its dataset has been widely used by the
community as a benchmark [6, 16, 45, 51] and because
they were the first ones to introduce the Code Stylome-
try Feature Set (CSFS) [16, 21]. We first apply the CSFS
to the GCJ dataset. In particular, we sort the authors
based on the number of samples provided and get the
top 100. From these, the minimum number of samples
is 8 and the maximum is 18 (with a standard devia-
tion of 1.7). We produce feature vectors for each sample

1 www.cambridgecybercrime.uk

20 30 40 50 60 70 80 90 100
Number of authors

0

20

40

60

80

100

Po
rti

on
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 sa
m

pl
es

 (%
)

Baseline GCJ accuracy
Baseline GitHub repositories accuracy
Baseline underground forums accuracy

Fig. 1. Attribution accuracies in pre-methodology GCJ, under-
ground forums and GitHub code.

using CSFS, and use a Random Forest classifier and 5-
fold cross-validation. The use of all features produces
upward of 95% accuracy in a closed-world attribution
task of 100 authors. In this setting, samples are infor-
mative enough and the classifier is able to learn stylistic
information, independently of the number of authors
(see GCJ baseline results in Figure 1).

We proceed in a similar fashion and apply the CSFS
to the GH dataset, by sorting based on the number of
samples provided. Figure 1 shows that the accuracy of
the classifier decreases as more authors are considered,
but remains above 60% in all settings. Finally, we apply
the same learning setting to the UF dataset.2 In this
case, the per-sample out-of-the-box classification accu-
racy is considerably lower than both GCJ and GH (see
UF baseline results in Figure 1). For this attribution
task, we select 100 of the user accounts with the largest
number of C/C++ code snippets posted. We randomly
select 15 samples per author and perform a 5-fold cross-
validation authorship attribution task. The accuracy of
the attribution in UF ranges from 65.6% (using 20 au-
thors) to 33.4% (using 100 authors), which is signifi-
cantly worse than our baselines (ranging from 30% to
60% for GCJ, and close to 20% for GH in most settings).

3.3 Factors Affecting Attribution

Our initial results show that, while current stylome-
try techniques work well with curated datasets, there is
a degradation when dealing with less curated datasets
reaching a point of very poor performance when dealing
with unstructured data gathered from underground fo-
rums. We perform a comprehensive analysis of the prop-
erties of the GCJ dataset and contextualize it with the

2 We provide details on how data is preprocessed in §4.2.

www.cambridgecybercrime.uk

Towards Improving Code Stylometry Analysis in Underground Forums 4

4 6 8 10 12
Number of samples per author limit

0

20

40

60

80

100

Po
rti

on
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 sa
m

pl
es

 (%
)

GCJ accuracy
UF accuracy

Fig. 2. Attribution accuracy vs samples per author in learning.

characteristics of the data we find in other settings like
GitHub and underground forums.

Due to space constraints, we report the character-
ization and comparison of the three datasets in Ap-
pendix A. Our analysis reveals the following issues that
might affect the performance of a system trained to per-
form authorship attribution (for a full evaluation of the
effects of these factors consult Appendix B.):

1. Number of samples per author. The median of sam-
ples per author in GCJ is 6, and the standard devi-
ation is 1.4. In contrast, the median of samples per
author in UF is 2 but the standard deviation is 16.5.
For GH, the median number of samples is 16 with
a much higher standard deviation (119.1). In the
GCJ dataset, most authors submit the same num-
ber of solutions (samples). For GH, a single mal-
ware sample will be composed of several source code
files. Using the GCJ dataset, where other conditions
are kept optimal, the number of samples per author
does not have a significant effect on attribution ac-
curacy past 5 samples per author. This is likely due
to the wealth of information gathered from each
sample, their median length being 68 LoC, which
is relatively long compared to UF. In UF, authors
possess greatly varied amounts of code, and thus the
dataset is highly imbalanced. The effects of these
discrepancies on attribution is shown in Figure 2.

2. Type of programs. In GCJ, most authors solve the
same problems,3 and thus the code is developed for
the same type of programs. In GH, all programs are
malware, though the functionality is not restricted
to a specific type. By contrast, code from under-
ground forums may be related to a completely un-
related problem or task.

3 The number of problems is limited from the beginning to 9.

3. Sample size. In GCJ, the solutions proposed have
a similar complexity (in terms of LoC). In UF and
GH, there is a much greater variation in snippet
length (standard deviation of 105.1 and 4,047 re-
spectively). In addition to this, code samples for
GCJ and GH are generally longer with medians of
68 LoC for GCJ, 158 LoC for GH and 3 for UF.

4. Quality of the ground truth. Different from the GCJ
dataset, labels in the UF dataset are unreliable. In
the case of GH, we know the repositories have been
contributed by a single user, but the ground truth is
dubious since these repositories might include code
from third-parties. While precautions can be taken
by removing code clones, it is uncertain how much
noise remains present in the ground truth of the
samples.

5. Completeness of the code. Code from GCJ must
compile and execute (a condition of the contest).
Also, for GH we assume that code will at least com-
pile. Code shared in online communities does not
necessarily need to compile and may contain syn-
tax errors as the main purpose for sharing the code
might not be its direct execution. Since code stylom-
etry relies on both syntactic and semantic features,
this clearly affects the attribution accuracy.

3.4 Deconstructing the GCJ Dataset

We next explore how the different factors in §3.3 af-
fect the performance of existing stylometry techniques
by “poisoning” the GCJ dataset. We limit this analysis
to GCJ as it is the one with most distinctive character-
istics when comparing it with UF. Also, as mentioned
before, the GCJ dataset offers the best scenario for code
stylometry analysis, and data from underground forums
differ from such ideal scenarios. In particular, we run the
learning setting used in our motivation example (§3.2)
while we deconstruct the GCJ dataset to an extent sim-
ilar to the one we observe in UF.

We refer the reader to Appendix B for more details
on how this is done. We next summarize our findings,
which are then used to inform our thresholds when deal-
ing with UF in §5.2:
Number of samples per author. To analyze the ef-
fects of dataset imbalance, we modify the GCJ dataset
by selecting the top 20 authors (with most samples)
and limiting the number of samples per author used for
training. Our results show a stabilization in performance
when at least 5 samples are available for training and
testing, using 5-fold cross-validation. It is worth men-

Towards Improving Code Stylometry Analysis in Underground Forums 5

tioning however that performance improves past this
number of samples when using a degraded dataset (sam-
ples gathered from underground forums).
Sample size. We modify the GCJ dataset by reducing
the number of LoC per sample. We observe that attribu-
tion accuracy follows a linear positive relationship with
sample length until around 90 LoC, where accuracy lev-
els off at its peak of 98%.
Quality of the ground truth. Finally, we modify the
dataset by randomly mislabeling samples. Under these
conditions, changes in the ground truth noise have an
expected negative linear relationship (Figure 3) with the
accuracy of authorship attribution of samples from 98%
to 2% for 80% of the ground truth poisoned.

0 20 40 60 80 100
Portion of samples with wrong ground truth (%)

0

20

40

60

80

100

Po
rti

on
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 sa
m

pl
es

 (%
)

CSFS accuracy

Fig. 3. Attribution accuracy variable with the percentage of mis-
labeled samples in GCJ.

3.5 Lessons learned

The analyzed differences might have an important ef-
fect on the performance of a system trained to perform
authorship attribution. For instance, when looking at
the type of programs we argue that the low variance in
the GCJ dataset (it is limited to 9 different problems)
removes variance in context from the samples, helping
the classification system to focus on the stylistic differ-
ences between authors. We are unable to engineer the
GCJ dataset to vary the context of the samples within.
The GCJ contest offers a very limited number of prob-
lems for the code to solve, and in such circumstances, we
argue that the classifier will easily capture artifacts de-
pendent on the programmer’s style. It could be argued
that this will negatively impact attribution in domains
with less constrained programming contexts, however,
this is not clear to be the case, as varied context can
also mean less subtle code-wise variation between the
samples of different programmers. The CSFS was de-
signed with programming style in mind so it may not

be severely affected as several authors perform the same
task. However, it may not be able to yield accurate attri-
bution when dealing with authors that perform a wide
range of different tasks. Our paper seeks to understand
how all these differences produce a number of nuanced
trade-offs when performing authorship classification.

Our experimentation with poisoned versions of the
GCJ dataset indicates that current approaches have lim-
itations with datasets where the ground truth is unreli-
able.For instance, out-of-the-box experiments with GH,
while producing better results than out-of-the-box UF
experiments (around 20% better accuracy), do not ap-
proach the accuracy of experiments on GCJ (around
20% to 50% worse). GH has a much greater wealth of
data for each author label, but the ground truth can not
be guaranteed to the same level as in GCJ. As in UF,
users in GH can use the platform to share code that
belongs to someone else.

This is a recurring issue for any supervised classifi-
cation task, and learning in the presence of a “polluted
ground truth” [3] is an active area of research [3, 18, 19,
26, 30]. In the UF domain, the code snippets posted by
a given author could have been (partially) implemented
by another author. While several efforts have been made
to detect multiple accounts in social media data, such
as posts from underground forums [4, 34, 38, 52], having
reliable ground truth (i.e., accurate labels for all posts
that belong to an author) remains an open challenge.

In order to deal with the factors we identify that af-
fect the attribution, we introduce a novel classification
framework that fuses our learning pipeline with Con-
formal Prediction [47]. This generates predictions with
precise levels of confidence. To the best of our knowl-
edge, we are the first to show that Conformal Prediction
theory can be used to improve code stylometry in set-
tings where obtaining a clean and curated dataset is
challenging.

4 Methodology
This section presents the methodology we use to per-
form authorship attribution in underground forums.

The purpose of our methodology is twofold. First,
we devise a method to perform source code authorship
attribution that can also apply in constrained environ-
ments. As a byproduct, we develop a pipeline to as-
sess how state-of-the-art tools perform in data gath-
ered from real-world forums which serve as places to

Towards Improving Code Stylometry Analysis in Underground Forums 6

exchange code. We design our methodology as a gen-
eral pipeline that is evaluated (§5) in two operational
settings: one where we assume a closed-world problem
and another where we test an open-world problem.

4.1 Overview

Our methodology is illustrated in Figure 4. We adapt
the standard phases of a machine learning pipeline to
overcome the issues of analyzing underground forums.
The phases, along with the main changes we implement
are as follows:

1. Pre-processing. First, we extract all code snip-
pets and identify their programming language. We
select those samples written in the languages we are
concerned with and discard the others. At the core
of our method, we perform code clone detection to
identify sources of plagiarism and use it to curate
the ground truth.

2. Feature Representation. The next set of steps re-
late to the extraction of features and the identifica-
tion of style. To increase the granularity of the sam-
ples and ease the removal of meaningless code, we
split the snippets into their constituent functions.
We then compute a feature vector for every data
sample (function) extracted from the code. This is
based on the Abstract Syntax Tree (AST) of the
function.

3. Learning. Finally, we classify each individual sam-
ple to perform authorship attribution, perform
thresholding of samples based on Conformal Pre-
dictor confidence, and propose an ensemble method
to provide a unified label for every code snippet (set
of functions).

We next explain each of these phases and provide details
of their implementation.

4.2 Pre-processing

The goal of the pre-processing phase is to extract code
snippets from the posted content in the forums, select
those using C/C++ language, to extract the functions
from these snippets, and filter out code that decreases
the quality of the resulting dataset (e.g. code clones or
short samples). The goal is to produce a dataset in line
with the attributes of a curated dataset such as GCJ.

Post Extraction. We use the CrimeBB database (de-
scribed in §3.1) to perform the initial data collection. In
particular, we scrape all posts in 7 forums and extract
snippets that are enclosed in-between specific <CODE>
tags. However, we observe that these tags are often used
for purposes other than posting code, such as enumer-
ating steps to perform when creating a hack or sharing
lists of emails. To confirm this, we randomly sample 100
posts to study the type of content posted within code
tags. In general, we see that authors abuse code tags
to format other types of content in their posts, which
we dub un-parseable code. However, we see that overall
about half of the snippets posted are actual source code.
Thus, the next step is the identification of actual code,
by looking for the specific programming language.

Language Selection. We combine a data-driven ap-
proach to guess the programming language, together
with a set of heuristics tailored to distinguish natural
language from code. We first leverage Guesslang [50], a
machine learning model trained with 1M unique source
files in 30 different languages. We run a prediction
task per snippet to identify those samples that contain
C/C++ code. We then run a second step that filters
out posts that resemble a program in C/C++ but does
not actually contain parseable code, like for example raw
chat logs, item lists (e.g. URLs, MD5 hashes, or emails),
configuration files or another sort of metadata.

To filter out samples with un-parseable code, we use
three heuristics looking at natural language, URLs and
size of code as we explain next. These heuristics use
thresholds, which are set by conducting manual experi-
mentation over a random subset. While such heuristics
are tailored to the UF dataset, they can be adapted to
the particularities of other datasets.
Natural language. All the forums studied are in English,
so natural language words should contain characters
from the Latin alphabet. However, we observe that this
is not necessarily the case, e.g. due to the use of emojis
or specific jargon. Thus, we account for the number of
words from each sample that contain non-Latin charac-
ters and filter the sample out if such a number is below
50% of the total words in a sample.
Lists of URLs. This heuristic filters content where the
<CODE> tag is used to post lists of URLs. First, we
use a regular expression to identify URLs, identifying
“http://”, “https://”, “www” prefixes. Second, since we
observe cases where URLs are embedded in parseable
code, we set a conservative threshold: if more than 70%
of the lines in a sample contain matching strings, we

Towards Improving Code Stylometry Analysis in Underground Forums 7

(3)
Sample
pruning

Language
Selection

Duplicate
Sample
Removal

Post
Extraction

Pre-processing

(1) Granularity
Selection

AST
Generation

Feature
extraction

Feature
Representation

(2) Code
Clone
Removal

Classification(5) Function
majority voting

Authorship
Attribution

Learning

(4)
Confidence
thresholding

Training

Fig. 4. Methodology outline.

remove the sample, assuming it is a list of URL rather
than a code snippet. Experimentally this proved to pro-
duce the most acceptable compromise between allowing
noisy URL lists and removing legitimate C/C++ code
which contains multiple URLs.
Code size. The last heuristic removes short samples that
are not informative. Concretely, we remove samples that
are shorter than 20 characters. Samples of this size are
either un-parseable code, or if parseable, these are too
short to extract meaningful features.

Duplicate sample removal. We detect and remove
duplicate samples, leveraging the Hamming distance.
Concretely, if less than 1% of the characters in two
samples are different, including white-spaces, tabs, and
other such structural indicators, both samples are re-
moved from the corpus since they have a high propor-
tion (i.e. 99% or more) of common code. As such we
remove samples for which the UF ground truth is con-
tradictory.

Granularity Selection. One of the contributions of
our methodology is to parse code and split it into func-
tions to conduct the stylometry analysis. Using func-
tions rather than code snippets improves the attribution
accuracy as we see later in §5.2).

In order to split into functions, we parse the samples
with Joern [27], a C/C++ parser that allows identify-
ing function definitions in a source code file. We then
extract them into their own source code files. Joern
constructs code property graphs from these files, from
which we get the indexes of function identifiers. We then
use these line indexes to parse from them to the end of
the function definition, using a stack of curly braces to

identify the start and end of the function definition con-
struct.

Function clone removal. Similar to code clones, we
remove function clones using the Hamming distance. If
less than 1% of the characters in two functions are dif-
ferent, these are flagged as clones and removed from the
corpus. In this way, we remove functions that might have
been copied entirely, and for which ground truth is du-
bious. However, such a low threshold keeps functions
which, even if originally copied from another source,
have been somehow modified, introducing the new au-
thor’s stylistic information.

Sample Pruning. This stage aims at filtering out sam-
ples that are not informative enough. In particular, we
set a minimum number of LoC that every sample must
contain. Although the higher the LoC the better, the
nature of underground forums, offering relatively few
samples per author for all but the few most active ones,
means that there might not be enough source code sam-
ples to conduct the analyses. Additionally, the fact that
each author’s submitted code snippets are further split
into functions, means that there are very few code sam-
ples which are long enough. On the one side, focusing on
authors who share larger samples, and more often, helps
to analyze well-established members of the forums, and
also allows to increase the accuracy and confidence of
the attribution task. On the other side, low-interaction
users are harder to de-anonymize and are generally users
with lower impact on the community [35]. Thus, we dis-
card those authors for which do not have a sufficient
number of samples and maximize the LoC per sample.
This is a common practice done by other related works

Towards Improving Code Stylometry Analysis in Underground Forums 8

in authorship attribution [4, 15, 44]. We analyze the op-
erational settings that can be applied in the UF dataset
in §5.1.

4.3 Feature Representation

Abstract Syntax Tree generation. We obtain a rep-
resentation of each sample based on syntactic structures
of the code. For this, we generate the Abstract Syn-
tax Trees (AST) of every sample. Our implementation
leverages Joern, which supports fuzzy parsing. As such,
AST can usually be generated from code samples which
would not normally compile during a standard build, a
necessary feature when dealing with code from unpre-
dictable sources like posts from underground forums.

Feature Extraction. We evaluate a wide range of fea-
tures from the CSFS [16]. Concretely, we obtain Lexical
and Layout features from raw code fragments and Syn-
tactical features from the AST. Lexical features include
the number of parameters passed to functions or the
unique word unigram term frequency (i.e., terms such
as ‘if’, ‘{’ or ‘=’). Syntactical features stem from the
interpretation of the code and they capture properties
of the program. These language-dependent features are
able to represent the code at a level of syntactical ab-
straction. Layout features deal with the structure of the
code such as the author’s tendency to use tabs instead of
newline characters etc. All features are then transformed
into feature vector representations of each sample.

4.4 Stylometry-based Learning

Training & Classification. We perform 5-fold cross-
validation using a random forest classifier. We use 5-fold
cross-validation due to the scarcity of samples we have
in our possession, allowing training and testing on the
same samples. The minimum number of samples per au-
thor label we use is 5, as this was experimentally found
to be the minimum which still produces optimal accu-
racy (Figure 2) in a curated dataset like GCJ, and re-
sults in a sufficient number of authors for a 100-author
attribution task. We chose a random forest algorithm
since it has been successfully used in prior works us-
ing the same feature set for the purposes of authorship
attribution [16, 21].

Confidence thresholding. In this step, prediction
confidence is used to reject samples which the classi-
fication pipeline is unable to classify with a satisfac-

tory degree of certainty. This step prevents the pipeline
output presented to the analyst from including predic-
tions which are the classifier’s “guess” rather than in-
formed prediction. As discussed in §2, this is a necessary
step when dealing with data from underground forums,
where the ground truth is unreliable. Thus, only sam-
ples for which the classifier is more confident pass to the
following step of the pipeline.

The methodology proposed admits any kind of sta-
tistical method for calculating prediction confidence,
such as the calibration curves based on probabilities
used in previous work [21]. As a novelty, we use a Con-
formal Predictor (CP) [47] for this purpose. This tech-
nique uses a predictive distribution function to assess
how well a sample fits into a class, and it is capable
of producing exact values of confidence in new predic-
tions. Based on the confidence values produced, we re-
ject samples which fall below a confidence threshold θ,
as these samples have a high probability of belonging
to another author. This usually happens when the sus-
pect set does not have enough differentiating features to
separate them apart. Experimentally, past this thresh-
old we obtain severely diminishing returns on accuracy
improvement while rejecting most of the samples in our
dataset.

This method is more robust than those used in re-
lated work [21] because it converts probabilities based
on geometric distances to p-values, offering a guaran-
teed confidence [47]. Instead, when the probabilities of
a classifier are used alone and the classifier derives its
probabilities using any form of scaling (e.g., Platt’s scal-
ing used in SVM), the thresholding is more sensitive to
outliers.

Function majority voting. Our classification uses
functions as the minimum amount of classifiable infor-
mation. As described in §4.2, these functions are ex-
tracted from their parent samples, i.e. larger code sam-
ples that authors embed within their posts. It is natural
then that most of the functions obtained from the same
parent are attributed to the same user. Accordingly, we
apply a majority voting algorithm over all the functions
that have been extracted from the same parent sample.
Once all the classification votes have been counted, the
author with most votes is selected as the author of the
parent code sample.

This results in greater robustness of the classifica-
tion, as individual errors do not impact the final clas-
sification accuracy, provided that other functions in
the same snippet are correctly attributed to the au-

Towards Improving Code Stylometry Analysis in Underground Forums 9

thor. This approach improves attribution accuracy, as
we later see in §5.2.

Authorship Attribution. Our methodology at-
tributes code snippets to accounts based on the
function-based majority voting algorithm from the pre-
vious step. This approach, by contrast, would not be
possible if classification is done based on the entire par-
ent samples (i.e., the snippets). We use as a ground truth
label the user account posting the code (either functions
or parent samples). This does not necessarily mean that
the code is actually written by the person behind this
account. In this work, we refer to this account attribu-
tion as authorship attribution, as we consider the posting
account to be the author for the purposes of an analyst
working with these forums.

5 Results
In this section, we first describe our experimental setting
and a set of measures on the GCJ dataset carried out to
inform optimal operational settings on the UF dataset.
We then present the results of using our methodology,
assuming both a closed-world and an open-world.

5.1 Experimental Settings

In this section, we justify some of the experimental set-
tings selected for our evaluation. In particular, we focus
on the feature set used for classification, the number of
authors included in the experiments, and the minimum
size (in LoC) for the samples.
Feature Set. Figure 5 shows the performance reached
by a code attribution system against GCJ after apply-
ing our methodology. The figure shows the breakdown

Fig. 5. Relative importance of types of features in attribution
tasks varying the number of authors, GCJ.

of the classification per type of feature. Syntactical fea-
tures contribute the most to the performance of the clas-
sification, producing results indistinguishable from the
entire feature set. This is as a result of the AST node
bigrams, which is the feature type which contributes
the most to classification. The second most significant
feature type is lexical. A similar phenomenon as with
the bigrams is also at work here: word unigrams are the
second most discriminating feature after AST node bi-
grams, and produce almost the same accuracy as the
rest of the lexical features altogether. Interestingly, as
illustrated by Figure 6, with higher numbers of authors
lexical word unigrams contribute more to the attribu-
tion than the syntactical AST node bigrams. This can
be due to the code in the UF dataset having a wide
enough range of purposes and contexts such that the
classifier relies less on stylistic information and more on
the specific content of samples with a higher degree of
granularity.

Inspecting the most important features we note dif-
ferences in the type of features that perform best in the
GCJ and UF settings. While 6 of the 10 most impor-
tant features to the classifier in GCJ settings are AST
bigrams, 2 are other syntactical features and one is a
lexical feature. When classifying UF code, 4 of the top
10 are lexical and 3 are syntactical, including 1 AST
bigram, and 3 features are layout features. For refer-
ence, in our experiments, the total number of features
in the feature vectors exceeds 400, and there are 6 layout
features in the feature set in total, meaning that they
are vastly over-represented when classifying UF sam-
ples. This can be due to more dissimilar code in UF,
making it more easily classifiable by pervasive structural
differences rather than subtle stylistic ones.
Number of Authors. In both GCJ and UF, we
mostly consider an attribution problem with 100 au-
thors. We chose this number since related works on

Fig. 6. Relative importance of types of features in attribution
tasks varying the number of authors, UF.

Towards Improving Code Stylometry Analysis in Underground Forums 10

code stylometry are also evaluated on samples of 100 au-
thors [1, 14, 16]. We also find some other works looking
at 50 authors [4, 34] and 20 authors [2] and we thus also
report numbers in these settings. This way, we provide
a convenient point of comparison for our experiments.
The same results also serve as benchmark numbers to
potential underground forums analysts who need to un-
derstand what kind of attribution accuracy they can
expect under different settings when studying specific
smaller subsets of authors (e.g., botnet developers).

Regardless of the number of authors, related works
argue that the authorship attribution requires a ‘suf-
ficiently large’ set of samples from the same author
to perform well in difficult conditions [21]. However,
it still remains unclear what constitutes a sufficiently
large dataset. Moreover, depending on the investigation
that needs to be carried out on underground forums, the
amount and quality of data available might differ. Thus,
we continue our experimentation by analyzing which are
the optimal operational settings, and how different set-
tings affect the accuracy of the attribution.
Number of LoC per sample and author. We no-
tice substantial differences between the two datasets
(UF and GCJ). We analyze the influence that those dif-
ferences have in the performance of a classifier in Ap-
pendix B. We see that the ideal conditions observed in
GCJ, in terms of data available, are not met in the UF
dataset. In particular, we study the optimal operational
settings that influence the performance of classification
with respect to: the number of lines of code (LoC) in
the samples, and the number of samples per author. In a
nutshell, we see that authorship attribution yields better
performance when there is a substantial number of LoC
per sample and enough samples per author. However,
this improvement plateaus — in GCJ, at LoC ≈ 100
and with 5 samples per author. We then use this find-
ing to inform our thresholds when dealing with UF in
the next section (§5.2). A full breakdown of the exper-
iments around the optimal operational setting can be
found in Appendix B.

5.2 Evaluation: Closed-world

We see in §3.2 that the classification performance fol-
lows a gradual decline as more authors are considered
(recall the decay in Figure 1). In this section, we evalu-
ate our methodology in different settings under a closed-
world scenario.

Table 1 shows the effect of each step of our method-
ology on the accuracy of classification (each row in-

cludes the number of the corresponding methodology
step shown in Figure 4). As we show next, we evalu-
ate the classification performance in our three datasets:
GCJ, GH and UF.

GCJ. Almost every submission in the GCJ dataset con-
sists of only one function. Thus, in practice, the classi-
fier learns on each sample as if we did not have step
(1) of our methodology, except those lines outside of a
function definition are not included. We see the clone
removal procedure (2) on the GCJ dataset removes 157
samples, totaling 0.5% of the sample set. It is possi-
ble that the removed functions are copied from internet
sources, or they are simply small helper functions which
multiple programmers independently write in the same
manner. When looking at the per-sample accuracy after
using our methodology (see ‘Combined steps’ in Table 1)
in a setting with varying authors (from 20 to 100), we
observe similar results than our pre-methodology exper-
iment (see ‘Out-of-the-box’ row in the same table) albeit
there is a slight improvement of 1%.

GH. The accuracies achieved with the GH dataset, al-
though improved by the method, do not approach the
accuracies produced in GCJ. There are two major dif-
ferences between the datasets that might provoke this:
firstly, we gather 100 repositories with one contributing
author each under the assumption that the code in these
repositories has been written by one person. However,
given the size and complexity of the repositories, it is
likely that at least some of them contain code written by
multiple programmers, upsetting the ground truth given
to the classifier. Secondly, there is a wider range of code
contexts in the repository set than in the constrained
set of programming problems in the GCJ contest.

Before function extraction, there are 5,639 samples
across 100 authors. Clone removal discards 391 (7%) of
the samples. After function extraction, there are 98,028
function samples across the 100 authors. Clone removal
discards 33,704 (34%) of these. Again, much of the code
re-use appears on the function-level as opposed to entire
source files being copied. Even when removing over a
third of the dataset however, in GH the accuracy does
not significantly improve.

Underground Forums. Our methodology has a sig-
nificant positive effect on authorship attribution accu-
racy in UF. In fact, we see that each step results in
an improvement. When performing attribution on 100
authors we double the accuracy, with the difference in
attribution accuracy with and without following our
methodology being 44%. With fewer numbers of au-

Towards Improving Code Stylometry Analysis in Underground Forums 11

Per-sample accuracy
Step of methodology applied UF 20 GCJ 20 GH 20 UF 50 GCJ 50 GH 50 UF 100 GCJ 100 GH 100
Out-of-the-box 66% 99% 81% 48% 99% 63% 33% 98% 55%
(2) Clones removed 66% 99% 81% 50% 99% 65% 34% 98% 55%
(3) Sample pruning 68% 100% 85% 53% 98% 64% 44% 99% 60%*
(4) Confidence thresholding 78% 100% 81% 69% 100% 65% 47% 100% 68%
(5) Split into functions: majority voting 84% 97% 94% 79% 97% 71% 60% 97% 71%
Combined steps (1, 2, 3, 4, 5) 89% 100% 94% 82% 100% 75% 77% 99% 71%*

Table 1. Effect on attribution accuracy of steps in the methodology on Google Code Jam and Underground Forums code in an author
closed-world attribution task, varying the number of authors. *These experiments are done with 86 authors due to sample pruning.

thors, the improvement is slightly less pronounced, al-
though the overall performance is better: when perform-
ing attribution on 20 authors our method improves the
accuracy by 23% (from 66% to 89%).

There are 18,853 clones among complete snippets,
totaling 20.9% of the total dataset. Splitting the code
samples into constituent functions (1) produces 39,661
function samples of which 18.6% are removed after em-
ploying the clone removal method at the function level
(2). This shows, first, that a significant number of code
snippets posted by users do not contain any identifi-
able function definitions at all, as 39,661 functions are
extracted from 71,232 parent samples. Second, it shows
that code re-use often happens on a function level where
a user posts a code snippet which can be said to be their
own but re-uses other users’ functions. This can be for
a number of reasons, e.g. each user offering their own
solution to a problem presented in a thread, leading to
code commonalities alongside distinct code.

While splitting the code into functions results in sig-
nificant accuracy improvements, the lack of orphan lines
as a result of this could have a deleterious effect due to
further limiting the size of the samples the classifier is
able to learn on. In our experimentation with 100 au-
thors this did not affect accuracy. However, it resulted
in a 7% drop with 50 authors and a 5% drop with 20
authors. Code re-use in this domain is rampant, and al-
though a significant amount of code clones is removed,
this step has a minor effect on the accuracy of attribu-
tion. Only a minority of low-interaction users post code
clones (see Appendix C), thus the classifier is able to
overcome the noise introduced by these samples on a
per-author basis.

Maximizing the number of LoC per sample (3)
grants a considerable boost to accuracy, at 100 authors
from 33% to 44%. This is when discarding samples un-
der 25 LoC, which is the minimum required to consider
a 100-author dataset with at least 5 samples per author
(analysis details are in Appendix B). This combined

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
IW authors retained

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 (%

)
Performance (%) RF Performance (%) CP

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Confidence threshold RF Confidence threshold CP

Fig. 7. Thresholding samples based on confidence, per-sample
accuracy and percentage of authors retained. Confidence is calcu-
lated by Random Forest classifier probability (RF) or Conformal
Predictor confidence (CP). Open-world task with 20 in-world and
80 out-of-the-world authors.

with the finding that optimal accuracy in a curated
dataset is only achieved at 100 LoC suggests that the
scarcity of stylistic data in samples due to their brevity
is a significant limiting factor to successfully apply code
stylometry in underground forums. This effect increases
in strength with the number of authors used for classi-
fication, and is less pronounced in the 20 author task.

Finally, thresholding samples based on Conformal
Predictor confidence (4) allows us to discard samples
which have a high probability of being wrong due to low
classifier certainty. Our approach is in this way ambiva-
lent to the open-world assumption (see §5.3), as out-of-
world samples tend to be predicted with low confidence.
For our purposes, we use a threshold of 50% confidence.
Under this condition, one-third of the predictions are re-
jected, and increasing this threshold in our UF domain
leads to diminishing returns. We manually validate 10%
of classifications to the best of our ability and verify the
veracity of our ground truth labels.

5.3 Evaluation: Open-world

The closest work to ours [21] addresses the open-world
question by setting a threshold of classifier confidence

Towards Improving Code Stylometry Analysis in Underground Forums 12

under which they reject the classification. The assump-
tion is that low confidence implies that a sample might
not have been written by an author in the known sus-
pect set (i.e. it is from an out-of-world author). There is
an important side effect when rejecting samples based
on a confidence threshold: in-world samples may be re-
jected to a point where an author can be left out.

We compare our methodology by judging the per-
formance with respect to the number of in-world au-
thors that are discarded at different confidence thresh-
olds. Thus, we construct a set of calibration curves and
use a probability-based rejection method as in [21]. We
then assess how CP performs at rejecting authors —
recall that CP rejects based on p-values.

Figure 7 shows this comparison where the RF set-
ting represents the results of calculating confidence us-
ing probabilities in the UF dataset. We retain 20 au-
thors as in-world and 80 as out-of-world, meaning ap-
proximately 80% of samples in these experiments are
out-of-world. In the out-of-the-box setting (i.e., without
applying our methodology’s steps), and without reject-
ing any samples, we achieve an accuracy of 45% (see
the rightmost side of the graph), dropping the accu-
racy from 66% in the closed-world task (see Table 1
in §5.2). This accuracy recovers when we use 20% clas-
sifier probability confidence as our sample acceptance
threshold, and improves to 97% when rejecting samples
below 40% confidence. In our domain, this method re-
sults in a significant trade-off having to be made. Even
at the second-lowest acceptance threshold of 20% confi-
dence, while we discard 48% of out-of-world samples, we
also discard over 22% of in-world samples. At the point
where almost every out-of-world sample is filtered out
(confidence of 40% — 94% of out-of-world samples dis-
carded), the majority (62%) of in-world samples are also
discarded. Thus, this method is not appropriate for de-
lineating between in-world and out-of-world data points,
however, the calibration curves can aid the security an-
alysts and law enforcement officers to set expectations
of how certain they can be in the predictions provided
by the classifier in this domain [21].

Our own approach using a Conformal Predictor
(CP), instead of Random Forest classifier (RF) prob-
abilities, achieves similar performance overall at a much
lower cost in terms of in-world samples rejected. In par-
ticular, we see that CP yields higher confidence at all
points in the X-axis while retaining a considerably larger
number of in-world samples than RF probabilities. For
instance, at a RF probability threshold of 40%, 94% of
out-of-world samples are rejected but only 6 in-world
authors are retained. Using confidence provided by the

CP process, at a threshold of 90%, 93% of out-of-world
samples are rejected while it retains 15 (out of 20) in-
world authors. This altogether makes the use of the CP
method for calculating confidence more tolerant than
using RF probabilities — using RF classifier probability
consistently retains fewer authors than using CP confi-
dence. As a result, under most conditions using the CP
confidence provides a favorable trade-off. We also see
with CP interesting nuanced trade-offs, for instance, we
can increase the confidence threshold from 0.6 to 0.9
without rejecting any additional in-world authors and
boosting the accuracy from 80% to 99%.

6 Case Study: multi-accounts
We use our methodology to attempt to identify accounts
belonging to the same user in different forums (inter
analysis) as well as on the same forum (intra analysis).

6.1 Inter-forum analysis

We use the largest forum to build a model (it includes
21,359 function samples). We use this model to make
predictions on the second largest, yielding a set of 9,736
function samples over 2,515 user accounts. As we do not
have a ground truth of multi-accounts (namely doppel-
gänger) across forums, we assess the potential applica-
tion of code stylometry to link together accounts that
belong to the same programmer through a case study. In
particular, we next report two pairs of accounts which
have their samples consistently classified as their coun-
terpart. We are confident that these two accounts be-
long to the same author because the usernames used in
both forums are identical, but also in light of the man-
ual analysis we perform. Most of the samples classified
in the following case studies are classified with a confi-
dence of 85%+ as provided by the Conformal Predictor.

Case Study I. This user has 46 function samples in
the training forum and 7 samples in the target forum.
We successfully classify 6 of these functions as theirs.
We manually verified this samples as snippets of hacks
for a specific video game (i.e., Minecraft).

This is a particularly interesting case. In one of the
forums, the user released various hacks and cheats re-
lated to two popular video games, i.e., Call of Duty and
Minecraft. Meanwhile, in the other forum, the user was
active in generic discussions about video games and also

Towards Improving Code Stylometry Analysis in Underground Forums 13

other miscellaneous topics (i.e., graphics, music or video
editing). At a certain date, the activity in the gaming
forum stopped, and at the same time the actor changed
its username in the other forum. In this case, due to
historical view of the CrimeBB dataset [36], we were
able to observe that previous posts were made with the
former username, which enabled us to link these two
accounts. Still, in absence of such a historical view, our
methodology can successfully identify the accounts as
being from the same user.
Case Study II. This user has 346 function samples in
the training forum, but only 10 function samples in the
target forum. Also, their test samples are very short,
usually 1-3 LOC, making attribution exceptionally dif-
ficult. Still, our method classifies 2 of these functions
as theirs. We observe that this user used one of the
forums (more hacking-oriented) for questions and trou-
bleshooting related to C/C++ programming, while the
other forum (more game-cheating oriented) was used
for the trading of bots and cheats related to one popu-
lar video-game. Interestingly, the first activity in both
forums was related to the request for advice on how to
code exploits and tutorials on hacking topics, and the
trading of virtual game items respectively. After vari-
ous years on the two forums, the actor released hacking
material (e.g., spamming tools, SMS bomber or social
media hacking). This analysis confirms previous obser-
vations that indicated a common path followed by these
actors, from gaming-related topics, to cybercrime activ-
ities [24, 33]. It also shows the evolution of the expertise
acquired on these forums [35].
Consistent classifications on other usernames.
We use the two previous case studies to inform our con-
fidence thresholds for finding potential multi-accounts
across forums. The confidence score provided by the
Conformal Predictor tends to be high for these samples
(i.e., 85% to 95%) with some exceptions which have low
confidence (30%). Using 85% confidence as a threshold,
we observe that there are 16 pairs of accounts, including
the two mentioned above in this subsection, with two or
more snippets classified. Each pair consists of a training
partner from one forum (A) which provided samples S
from a username u (Su) to train the model, and a test-
ing partner v from another forum (B, where B 6= A)
whose samples (Sv) were classified as belonging to the
training partner (predict(Su) = v). While we perform a
manual validation of the 16 pairs as we discuss next, we
note that drawing conclusions without a ground truth
or clear signals such as the ones found in the two case
studies above is a matter of epistemic uncertainty.

While we see in all of the 16 pairs predictions with
strong confidence, we also see a significant number of
contradictions (i.e., some of testing partner’s samples
not being predicted as belonging to the training part-
ner while others are). This makes the multi-account hy-
pothesis weaker for most of the pairs. However, there
is a pair where the testing partner has most of their
samples (31 out of 32) classified to its training partner,
with 2 of them passing the 85% confidence threshold.
Moreover, the training partner has only 10 samples, the-
oretically covering a small stylistic range. However, this
same training partner is also present in predictions from
5 of the 16 pairs, which could suggest several things: 1)
that their style lends itself well to being misclassified, 2)
that a number of authors re-posted others’ samples, or
3) that the very same actor has more than one account
in the testing forum.

We also see other contradictions that might stem
from the way the dataset is split. Note that the train-
ing and the testing set in an inter-forum setting can
be conspicuously imbalanced as some forums are sig-
nificantly more popular than others. For instance, one
training account appears in 6 of the 16 pairs, having
contributed 175 samples to the training set. In another
pair, the testing partner only has two samples, both of
which are classified as the same training partner with
over 85% confidence, the training partner having con-
tributed only with 10 samples to classifier training.

There are 815 user accounts in the testing set which
carry at least 3 function samples. Of these, around 300
(37%) have at least 70% of their samples classified con-
sistently as a specific user account from the training set.
While this gives the analyst a starting point for trying
to detect accounts across the two forums belonging to
the same author, it is clear to see that consistent clas-
sification alone is not a reliable metric for this purpose.

6.2 Intra-forum analysis

We study the existence of within-forum multi-accounts
in the top 100 accounts used for our other experiments
explained in §5. We look at pairs of accounts where most
of the samples in one of the accounts are confidently
classified as belonging to the other account (according
to a Conformal Predictor confidence of 85% and over).
We identify 5 such pairs, however upon manual inves-
tigation (i.e., the analysis of the code snippets and the
text posted by these users) we can not conclusively as-
certain whether the accounts indeed belong to the same

Towards Improving Code Stylometry Analysis in Underground Forums 14

actor, highlighting the difficulty of this task when per-
formed by a human analyst.

7 Discussion
We present a methodology that improves existing state-
of-the-art techniques for code stylometry analysis in
constrained environments, such as underground forums.
In this section, we first discuss the limitations of the
methodology and then our main take-aways.

7.1 Limitations

While our methodology outperforms current the state
of the art techniques, our results are still significantly
worse than those obtained in laboratory conditions (i.e.,
on datasets such as GCJ). This is due to various factors.

First, the presence of code-reuse. While we remove
code clones from the dataset, these do not account for
cases where, for example, one author copies from an-
other’s code and partially modifies it, without adding
substantial stylistic changes that tell these two apart.

This limitation could be overcome using more ex-
haustive code plagiarism detection techniques. In our
own experiments, we explored different metrics of code
similarity in order to find code clones as well as a
range of thresholds for flagging a sample as a clone.
The threshold we settled at was found to produce the
best results, although we leave using token-based and
sequence-based techniques to future work.

Second, during our experimentation, we have de-
constructed the GCJ dataset to analyze which are the
optimal operational settings for doing attribution. Thus,
in some steps we have discarded samples that are more
likely to be misattributed (e.g., due to lack of enough
LoCs). Depending on the specific scenarios, this might
not be an option for the analyst. However, our main
goal is to flag existing limitations in the state of the art,
showing which factors affect attribution accuracy. Our
methodology can help analysts to contextualize and in-
terpret better attribution results.

Third, the lack of enough sampling data. We have
observed that, besides the authenticity of the data, the
amount of such data is paramount for proper attribu-
tion. In GCJ, the ideal number of LoC per sample for
attribution is 100. However, this refers to a setting where
such an amount of data might be available. In the case of
underground forums dataset, if we set a minimum num-

ber of 100 authors to analyze, the analyst is left with
samples over 25 LoC. Still, using this threshold results
in a considerable accuracy improvement (from 33% to
44%) with respect to the out-of-the-box application of
the state of the art on underground forum samples (see
Table 1). When considering the top 10 authors, in the
same way, we are able to gather only samples of at least
45 LoC. Only a small minority of code snippets have
100 LoC (after function splitting). This implies that, if
the dataset had enough samples per author for every
author to possess 100-line samples, the accuracy might
be in line with the attribution accuracy achieved with
ideal datasets (GCJ).

Fourth, while the domain is by nature adversarial,
we assume that authors do not take steps to obfuscate
their programming style. Indeed, there are attempts to
hinder authorship attribution on natural language to
enhance author privacy [41]. We leave the evaluation of
the effects of such techniques on our method and their
applicability to source code to future work.

Finally, our work inherits limitations from previous
works addressing authorship attribution in underground
forums. Doppelgänger finder is a stylometry analysis
tool [4] which suffers to deal with 50 authors (for per-
formance issues), and requires documents of at least
10K words (for optimal accuracy) [34]. Again, these con-
straints might limit the use of these tools, but can still
be useful to assist analysts.

7.2 Take-aways

To the best of our knowledge, we are the first to address
the code stylometry problem using real data from un-
derground forums. Code authorship attribution in these
scenarios poses additional challenges and existing out-
of-the-box solutions do not work well (see §3).
Effect of plagiarism. We observe that removing exact
code clones has a negligible effect on attribution accu-
racy compared to the other steps (see Table 1). To con-
firm this, we test the method on an additional dataset
of source code extracted from post attachments in a
subset of the CrimeBB dataset,4 and obtained similar
conclusions. There were 36k samples yielded by these
attachments, of which 49% were identified as identical
code clones and removed. Before clone removal, attribu-
tion accuracy was 16%, whereas afterward, it increased

4 This happens when users share more substantial amounts of
code, such as entire projects.

Towards Improving Code Stylometry Analysis in Underground Forums 15

to 28%. Code clones then appear to have a lesser effect
on accuracy than one would expect: even when remov-
ing half of the samples which are all clones, accuracy
improved only by 12%. Likewise in the UF samples, re-
moving 20.9% of them increased accuracy by 1%, and in
GH removing 34.4% of function samples only increases
accuracy in the 50 author setting and only by 2%.
The importance of the context. Additionally, while
the code in the Google Code Jam contest solves a well-
defined set of different programming problems, the pur-
poses of code snippets posted on underground forums
are unknown (e.g., video-game hacks, malware, or other
offensive tools). This contributes to a negative effect on
the performance of the attribution task, as a classifier
can adapt to the type of problem being solved rather
than the coding style.
Function-level granularity. Overall, our results show
that our proposed methodology aids in the development
of a machine learning pipeline that has constraints that
stem from the data collection. We show that the granu-
larity of the feature extraction process is paramount in
difficult situations. When programmers reuse code, they
generally adapt it to their context, introducing their
own programming style and mixing it with the stylis-
tic features already present, to varying degrees. In this
regard, splitting snippets into functions is beneficial be-
cause the attribution is done over well-defined structures
(even at the cost of removing orphan lines). Thus, we
introduce a voting system to classify each code snippet
based on the different functions it contains.
Applications. Our methodology makes a step-forward
on the code stylometry analysis in underground forums.
While it further exposes a potential threat to the privacy
of the actors, who typically act in these forums with
a sense of anonymity, it might be of potential interest
for law enforcement agencies or security practitioners to
assist during online investigations. It helps to attribute
samples to accounts, regardless of whether the account
has multiple authors behind it. In §6 we showcase ex-
amples of different accounts belonging to the same user
being detected by means of their programming style.
We also show how stylometry survives over the years
and across different coding activities like game hacking,
spamming or social media hacking, and discuss impli-
cations of our work to understand the different path-
ways to crime. We believe that our methodology com-
plements other existing efforts for online account at-
tribution [4, 38, 52]. The use of these in combination
is left for future work. Also, our experimental data is
useful to analysts to understand the accuracy they can
expect when applying the methodology to more broad

settings such as 100 authors, as well as smaller sets of au-
thors when wanting to de-anonymize a narrower subset
of users (e.g., botnet developers on a particular forum).
Classifier confidence. Performing confidence thresh-
olding is a powerful technique which prevents the an-
alyst from having to sift through predictions that are
little better than guesses, as well as improves accuracy
in the predicted samples. In tasks using the open-world
assumption, this method helps to filter out samples with
authorship outside the suspect set. However, it does not
provide a complete solution to delineating between in-
world and out-of-world samples. This is still an open
problem [21], although our system performs rejection
more selectively and accurately than related work. In
the closed-world setting it is one of the methods used
to counter-act the uncertainty of ground truth inher-
ent in data gathered from underground forums. Using
it in conjunction with other methods aimed at dealing
with noisy labeling in machine learning [12, 39, 53] is
precisely the scope of our future work.
Programming language. We note that our method-
ology is agnostic of the programming language and that
the expressiveness may not be noticeable across lan-
guages as our method uses Abstract Syntax Trees that
decouple our system from traits unique to the language.
We select C/C++ since it is the most representative
programming language in our dataset, and indeed, it is
the defacto programming language for hacks (e.g., ex-
ploits or malware) and video game cheats. Thus, devel-
oping stylometry for C/C++ is of particular relevance in
the context of underground activities. However we dis-
card 84.5% of samples due to filtering for C and C++
(see Appendix A). Programmers may unconsciously tai-
lor their style to the programming language they use
and this leaves open the question of how the results will
vary, if at all, when applied to other programming lan-
guages. Our method can be applied to any language as
long as an Abstract Syntax Tree is able to be gener-
ated. Thus, we posit that our method should be able
to capture style changes across programming languages
for the same developer if we have sufficient number of
samples. However, evaluating this is the scope of our
future work.
Classification algorithms. In our methodology, we
have applied Random Forests due to its simplicity and
probed accuracy to deal with the code stylometry prob-
lem [16]. A potential area of research is to apply ad-
vanced techniques from Deep Learning to address this
problem [7]. Indeed, recent advances for image classi-
fication using Convolutional Neural Networks (CNNs)
successfully deal with noisy labels [26]. Also, CNNs can

Towards Improving Code Stylometry Analysis in Underground Forums 16

be improved to deal with out-of-distribution detection in
production time [19]. While these improvements are tai-
lored to the problem of image classification, similar tech-
niques could be adopted for the source code attribution
problem with noisy or unreliable labels, as in the case of
underground forums. A potential challenge to address,
however, is the need to train DL models with datasets
with low number of samples per author. Also, this is an
active area of research, and it is known that criminals
adapt their techniques to cheat the system [25]. Thus,
we believe that future research efforts should focus on
the application of robust techniques like DL, as well as
their application in adversarial settings [37].

8 Related work
Our work is underpinned by different disciplines.
Underground forum analysis.

While related work performs authorship attribu-
tion in underground forums using different signals, such
as the writing style [4, 38, 44] or the media content
posted [52], to the best of our knowledge, this is the
first work dealing with source code directly.
Code Stylometry. Caliskan-Islam et al. [16] intro-
duced the usage of random forest to perform author-
ship attribution from source code samples, to which end
they introduced the Code Stylometry Feature Set. Au-
thors in [21] used the CSFS to perform authorship at-
tribution in software repositories. They were not able
to match results from [16] obtaining between 50% and
60% accuracy. Other related works such as [6, 45, 51]
have proposed alternative machine learning algorithms,
but again test their methods on either the GCJ dataset
or in the case of [6], scraped GitHub code not subject
to many of the constraints of our domain.

There exist alternative algorithms which have been
used with natural language which are promising direc-
tions for research in code stylometry [9, 42], the explo-
ration of which is out of scope for this work.
Out of the lab. While a few previous works on author-
ship attribution achieve competitive results in difficult
conditions [6, 21], these methods require a sufficiently
large set of samples belonging to the same author. This
is not generally the case in underground forums as code
posts tend to have incomplete code fragments and not
all users are equally prolific at sharing source code.
Learning with confidence. Dauber et al. [21] con-
struct calibration curves in order to provide to the an-
alyst information with which to set thresholds to reject

low classification confidence samples. While useful, they
use the classifier’s output probabilities as the classifier’s
confidence in its predictions. In our work, we employ
a more advanced statistical tool, a Conformal Predic-
tor method [47], in order to obtain more reliable confi-
dence scores for samples. Conformal evaluation has been
used to aid in solving the malware classification prob-
lem [10, 20, 28, 29]. To the best of our knowledge, we are
the first to show that Conformal Prediction theory can
be used to improve code stylometry in settings where
obtaining a clean and curated dataset is challenging.

9 Conclusions
In this work, we study the key factors influencing the
performance of existing code stylometry techniques, as
well as a set of strategies to mitigate issues in diffi-
cult conditions. We propose a methodology that in-
creases the accuracy of state-of-the-art techniques by
44% when performing attribution in underground fo-
rums while performing at the same level when dealing
with curated datasets already used in previous works.
For a scenario with 100 authors, our methodology more
than doubles the performance of the classification task,
while achieving 89% accuracy with a less demanding
configuration of 20 possible authors. Our work raises
important open questions about these factors, mainly
around the prominence of code re-use and its implica-
tions in authorship attribution. Our methodology pro-
vides additional insights to assist in the identification
of users posting across different forums, even when the
classifier has been trained with a single one. This is pos-
sible thanks to the usage of CP to discard those matches
with very low confidence. We also provide insights into
the type and qualities of code one can find in under-
ground forums and how these impact an analyst’s effort
to perform authorship attribution. Our work carries im-
plications of how to avoid detection as a user of these
forums: keep snippets of code as short as possible, copy
others’ code (even if dead code), where possible avoid
submitting code that can be easily parsed, and if want-
ing to post multiple functions, split these up into multi-
ple posts so as to counteract the functions voting for the
right author for classification. As future work, we plan
to further study how motivated adversaries can avoid
detection.

Towards Improving Code Stylometry Analysis in Underground Forums 17

References
[1] Abbasi, A. and Chen, H. (2006). Visualizing authorship for

identification. In International Conference on Intelligence and
Security Informatics, pages 60–71. Springer.

[2] Abuhamad, M., AbuHmed, T., Mohaisen, A., and Nyang,
D. (2018). Large-scale and language-oblivious code author-
ship identification. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages
101–114.

[3] Afroz, S. (2020). How to build realistic machine learning
systems for security? San Francisco, CA. USENIX Association.

[4] Afroz, S., Islam, A. C., Stolerman, A., Greenstadt, R., and
McCoy, D. (2014). Doppelgänger finder: Taking stylometry to
the underground. In 2014 IEEE Symposium on Security and
Privacy, pages 212–226. IEEE.

[5] Allodi, L. (2017). Economic factors of vulnerability trade
and exploitation. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pages
1483–1499.

[6] Alsulami, B., Dauber, E., Harang, R., Mancoridis, S., and
Greenstadt, R. (2017a). Source code authorship attribution
using long short-term memory based networks. In European
Symposium on Research in Computer Security, pages 65–82.
Springer.

[7] Alsulami, B., Dauber, E., Harang, R., Mancoridis, S., and
Greenstadt, R. (2017b). Source code authorship attribution
using long short-term memory based networks. In European
Symposium on Research in Computer Security, pages 65–82.
Springer.

[8] Anderson, R., Barton, C., Bölme, R., Clayton, R., Ganán,
C., Grasso, T., Levi, M., Moore, T., and Vasek, M. (2019).
Measuring the changing cost of cybercrime.

[9] Bagnall, D. (2016). Authorship clustering using multi-headed
recurrent neural networks. arXiv preprint arXiv:1608.04485.

[10] Barbero, F., Pendlebury, F., Pierazzi, F., and Cavallaro,
L. (2020). Transcending transcend: Revisiting malware
classification with conformal evaluation. arXiv preprint
arXiv:2010.03856.

[11] Bhalerao, R., Aliapoulios, M., Shumailov, I., Afroz, S., and
McCoy, D. (2019). Mapping the underground: Supervised
discovery of cybercrime supply chains. In 2019 APWG Sym-
posium on Electronic Crime Research (eCrime), pages 1–16.
IEEE.

[12] Biggio, B., Nelson, B., and Laskov, P. (2011). Support vec-
tor machines under adversarial label noise. In Asian conference
on machine learning, pages 97–112. PMLR.

[13] Bogomolov, E., Kovalenko, V., Bacchelli, A., and Bryksin,
T. (2020). Authorship attribution of source code: A language-
agnostic approach and applicability in software engineering.
arXiv preprint arXiv:2001.11593.

[14] Burrows, S. and Tahaghoghi, S. M. (2007). Source code
authorship attribution using n-grams. In Proceedings of the
Twelth Australasian Document Computing Symposium, Mel-
bourne, Australia, RMIT University, pages 32–39. Citeseer.

[15] Caliskan, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck,
K., Greenstadt, R., and Narayanan, A. (2015). When coding
style survives compilation: De-anonymizing programmers from
executable binaries. arXiv preprint arXiv:1512.08546.

[16] Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss,
C., Yamaguchi, F., and Greenstadt, R. (2015). De-anonymizing
programmers via code stylometry. In 24th USENIX Security
Symposium (USENIX Security), Washington, DC.

[17] Calleja, A., Tapiador, J., and Caballero, J. (2016). A look
into 30 years of malware development from a software met-
rics perspective. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 325–345. Springer.

[18] Ceschin, F., Gomes, H. M., Botacin, M., Bifet, A.,
Pfahringer, B., Oliveira, L. S., and Grégio, A. (2020). Machine
learning (in) security: A stream of problems. arXiv preprint
arXiv:2010.16045.

[19] Chen, J., Li, Y., Wu, X., Liang, Y., and Jha, S. (2020).
Robust out-of-distribution detection for neural networks. arXiv
preprint arXiv:2003.09711.

[20] Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi,
M., Kinder, J., and Cavallaro, L. (2016). Droidscribe: Classify-
ing android malware based on runtime behavior. In 2016 IEEE
Security and Privacy Workshops (SPW), pages 252–261. IEEE.

[21] Dauber, E., Caliskan, A., Harang, R., Shearer, G., Weisman,
M., Nelson, F., and Greenstadt, R. (2019). Git blame who?:
Stylistic authorship attribution of small, incomplete source
code fragments. Proceedings on Privacy Enhancing Technolo-
gies, 2019(3):389–408.

[22] Dong, W., Feng, Z., Wei, H., and Luo, H. (2020). A novel
code stylometry-based code clone detection strategy. In 2020
International Wireless Communications and Mobile Computing
(IWCMC), pages 1516–1521. IEEE.

[23] Google (2008). Google code jam. https://web.archive.org/
web/20080830055526/https://code.google.com/codejam.

[24] Hughes, J., Collier, B., and Hutchings, A. (2019). From
playing games to committing crimes: A multi-technique ap-
proach to predicting key actors on an online gaming forum.
In 2019 APWG Symposium on Electronic Crime Research
(eCrime), pages 1–12. IEEE.

[25] Hutchings, A., Pastrana, S., and Clayton, R. (2019). Dis-
placing big data: How criminals cheat the system. Cybercrime:
The human factor. Oxon, UK: Routledge.

[26] Jiang, L., Huang, D., Liu, M., and Yang, W. (2020). Beyond
synthetic noise: Deep learning on controlled noisy labels. In
International Conference on Machine Learning, pages 4804–
4815. PMLR.

[27] Joern (2019). Joern. https://joern.io/.
[28] Jordaney, R., Sharad, K., Dash, S. K., Wang, Z., Papini,

D., Nouretdinov, I., and Cavallaro, L. (2017). Transcend:
Detecting concept drift in malware classification models. In
26th USENIX Security Symposium (USENIX Security 17),
pages 625–642.

[29] Jordaney, R., Wang, Z., Papini, D., Nouretdinov, I., and
Cavallaro, L. (2016). Misleading metrics: On evaluating ma-
chine learning for malware with confidence. Tech. Rep.

[30] Kantchelian, A., Tschantz, M. C., Afroz, S., Miller, B.,
Shankar, V., Bachwani, R., Joseph, A. D., and Tygar, J. D.
(2015). Better malware ground truth: Techniques for weight-
ing anti-virus vendor labels. In Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security, pages 45–56.

[31] Krebs, B. (2017). Who is Marcus Hutchins?
[32] Motoyama, M., McCoy, D., Levchenko, K., Savage, S., and

Voelker, G. M. (2011). An analysis of underground forums.
In Proceedings of the 2011 ACM SIGCOMM conference on

https://web.archive.org/web/20080830055526/https://code.google.com/codejam
https://web.archive.org/web/20080830055526/https://code.google.com/codejam
https://joern.io/

Towards Improving Code Stylometry Analysis in Underground Forums 18

Internet measurement conference, pages 71–80.
[33] National Crime Agency (2017). Pathways into cyber crime.
[34] Overdorf, R. and Greenstadt, R. (2016). Blogs, twitter

feeds, and reddit comments: Cross-domain authorship at-
tribution. Proceedings on Privacy Enhancing Technologies,
2016(3):155–171.

[35] Pastrana, S., Hutchings, A., Caines, A., and Buttery, P.
(2018a). Characterizing eve: Analysing cybercrime actors in
a large underground forum. In International symposium on
research in attacks, intrusions, and defenses, pages 207–227.
Springer.

[36] Pastrana, S., Thomas, D. R., Hutchings, A., and Clayton,
R. (2018b). Crimebb: Enabling cybercrime research on un-
derground forums at scale. In Proceedings of the 2018 World
Wide Web Conference, pages 1845–1854.

[37] Quiring, E., Maier, A., and Rieck, K. (2019). Misleading au-
thorship attribution of source code using adversarial learning.
In 28th {USENIX} Security Symposium ({USENIX} Security
19), pages 479–496.

[38] Rocha, A., Scheirer, W. J., Forstall, C. W., Cavalcante, T.,
Theophilo, A., Shen, B., Carvalho, A. R., and Stamatatos, E.
(2016). Authorship attribution for social media forensics. IEEE
Transactions on Information Forensics and Security, 12(1):5–
33.

[39] Sabzevari, M., Martínez-Muñoz, G., and Suárez, A. (2018).
A two-stage ensemble method for the detection of class-label
noise. Neurocomputing, 275:2374–2383.

[40] Samtani, S., Chinn, R., and Chen, H. (2015). Exploring
hacker assets in underground forums. In 2015 IEEE interna-
tional conference on intelligence and security informatics (ISI),
pages 31–36. IEEE.

[41] Shetty, R., Schiele, B., and Fritz, M. (2018). A4nt: au-
thor attribute anonymity by adversarial training of neural ma-
chine translation. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1633–1650.

[42] Shrestha, P., Sierra, S., González, F. A., Montes, M., Rosso,
P., and Solorio, T. (2017). Convolutional neural networks for
authorship attribution of short texts. In Proceedings of the
15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, pages
669–674.

[43] Soska, K. and Christin, N. (2015). Measuring the longitudi-
nal evolution of the online anonymous marketplace ecosystem.
In USENIX Security Symposium, pages 33–48.

[44] Spitters, M., Klaver, F., Koot, G., and van Staalduinen, M.
(2015). Authorship analysis on dark marketplace forums. In
2015 European Intelligence and Security Informatics Confer-
ence, pages 1–8. IEEE.

[45] Ullah, F., Wang, J., Jabbar, S., Al-Turjman, F., and Alazab,
M. (2019). Source code authorship attribution using hybrid
approach of program dependence graph and deep learning
model. IEEE Access, 7:141987–141999.

[46] Van Wegberg, R., Tajalizadehkhoob, S., Soska, K., Akyazi,
U., Ganan, C. H., Klievink, B., Christin, N., and Van Eeten,
M. (2018). Plug and prey? measuring the commoditization of
cybercrime via online anonymous markets. In 27th USENIX
security symposium (USENIX security 18), pages 1009–1026.

[47] Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorith-
mic learning in a random world. Springer Science & Business
Media.

[48] Vu, A. V., Hughes, J., Pete, I., Collier, B., Chua, Y. T.,
Shumailov, I., and Hutchings, A. (2020). Turning up the dial:
the evolution of a cybercrime market through set-up, stable,
and covid-19 eras. In Proceedings of the ACM Internet Mea-
surement Conference, pages 551–566.

[49] Wang, N., Ji, S., and Wang, T. (2018). Integration of static
and dynamic code stylometry analysis for programmer de-
anonymization. In Proceedings of the 11th ACM Workshop on
Artificial Intelligence and Security, pages 74–84.

[50] yoeo (2020). Guesslang. https://github.com/yoeo/
guesslang.

[51] Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., and
Liu, X. (2019a). A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering (ICSE), pages
783–794. IEEE.

[52] Zhang, Y., Fan, Y., Song, W., Hou, S., Ye, Y., Li, X., Zhao,
L., Shi, C., Wang, J., and Xiong, Q. (2019b). Your style your
identity: Leveraging writing and photography styles for drug
trafficker identification in darknet markets over attributed het-
erogeneous information network. In The World Wide Web
Conference, pages 3448–3454. ACM.

[53] Zhou, X., Ding, P. L. K., and Li, B. (2019). Improv-
ing robustness of random forest under label noise. In 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 950–958. IEEE.

Appendix

A Characterization & Comparison
We have seen that existing stylometry techniques per-
form worse with UF than with GCJ. In this section,
we characterize and compare these datasets, and offer
statistics on the GH dataset.

A.1 Types of Posts

The UF dataset consists of 580,432 scraped posts from
53,820 user accounts in 7 different underground forums.
We focus our analysis on posts that have code snippets,
and in particular, we retain C/C++ code fragments.
Thus, we study 90,085 code snippets posted from 19,845
accounts. Out of all 7 forums, 2 make up to 99.5% of
the code samples. One is a popular beginner-friendly
forum that has large sections dedicated to teaching both
hacking techniques and coding in general. The other
forum is specialized in video game hacks and cheats,
with dedicated sections for coding and programming of
these.

https://github.com/yoeo/guesslang
https://github.com/yoeo/guesslang

Towards Improving Code Stylometry Analysis in Underground Forums 19

A.2 Length and Number of Samples

Table 2 compares the lengths of code snippets for the
three datasets. Overall, we observe that GH samples
are larger than those from GCJ and UF. This is a result
of the repositories containing full software projects as
opposed to entries to a coding contest or forum posts.
Regarding the others, we observe that samples in GCJ
are larger than those from UF. In particular, the av-
erage number of lines in UF is 20.9, whereas in GCJ
is 74.3. Authors in GCJ tend to have a slightly larger
number of samples, although the standard deviation is
higher in UF. This means that GCJ is more balanced
in terms of the amount of information provided by each
class (author). The amount of code written per author
is considerably higher in GCJ with 493.4 lines per au-
thor and only 92.2 lines in UF. The nature of the tasks
achieved by the code in GCJ requires their authors to
write more lines. In fact, when looking at the median,
GCJ is close to the average with 451 lines per author but
UF has only 9 lines per author as median. This means
that UF contains many more samples that are consid-
erably shorter than GCJ. The shorter samples in UF
are aligned with the kind of usage that users make of
these forums, i.e. as a way to exchange knowledge and to
increase their reputation within the community [33, 36].

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

C
D

F

overlapping samples

overlapping functions

posted code clones

sample lengths UF

sample lengths GCJ

Fig. 8. CDFs of number of snippets functions and samples over-
lapping with another account (from both UF and GCJ). The
graph also shows the number of posts for a given clone (# posted
code clones). The Y-axis represents the frequency and the X-axis
represents the index of the most frequent snippets/functions. The
X-axis is truncated to 2000 samples as the remaining have all a
frequency of 2.

A.3 Code Re-use in Underground Forums

We look at code re-use from two different angles: en-
tire snippets and functions. We consider two samples
as clones whenever their Hamming distance is less than
1%. Figure 8 summarizes the code reuse for these two
units of information in UF.
Snippets. When treating each entire code snippet
posted as one sample, we detect clones from 41.2% of
the accounts. Figure 8 shows the maximum number of
mutual samples any one account has with any other
account (see # overlapping samples). We see that the
variation is high, from 2 to over 100 mutual samples on
both ends of the CDF.

Altogether, we observe 18,853 exact code clones, out
of which 13,162 (69.8%) are only duplicated once. The
distribution can be seen by looking at # posted code
clones in the same figure. In total, 32% of code clones
appear more than twice, with a large proportion of sam-
ples being cloned frequently (the highest incidence rate
reaching 109 times).
Functions. Functions are only successfully extracted
from 26.8% of accounts that have posted C/C++ code
snippets. This suggests that most accounts do not post
snippets containing function definitions, but only or-
phan lines;5 this is corroborated by Figure 8 which
shows that in fact, the majority of samples are of length
below 10 lines. Oftentimes an account will post a snip-
pet of code which is intended as a correction for code
already present in the thread, which means the code
posted will be incomplete and not concern itself with
properly encapsulating code blocks in functions. Over-
all, we extract 39,661 functions, with 7,403 (18.7%) be-
ing code clones. Function clones are slightly less popular
than snippet clones (incidence of 20.9%).

The function-wise distribution in Figure 8 corre-
sponds closely with the distribution of account overlap
of parent samples.6 All non-unique functions extracted
from authors’ samples originate from a subset of 1,585
accounts.

It is worth mentioning that functions were only suc-
cessfully extracted for 5,332 accounts, and thus the pro-
portion of these authors with non-unique functions is
29.7%. This shows that the majority of accounts post

5 An orphan line is a line of code from a snippet which is not
part of a function.
6 In this work, we call a parent sample of a function to the
original snippet posted from which the function is extracted.

Towards Improving Code Stylometry Analysis in Underground Forums 20

Samples/author LoC/author LoC/sample
Measure GCJ UF GH GCJ UF GH GCJ UF GH
Mean 6.6 4.5 56.4 493.4 92.2 30,415.6 74.3 20.9 539.4
Median 6 2 16 451 9 4421 68 3 158
Std 1.2 16.5 119.1 266.4 543.0 68,837.1 46.2 105.1 4,047.0

Table 2. Mean, median and standard deviation of samples and LoC per author and LoC per sample in the UF, GCJ and GH datasets.

unique functions, and code re-use on the function level
is concentrated in 8.0% of all accounts only.

Interestingly, the standard deviation of non-clone
function lengths is 43.79 while the standard deviation
of duplicate function lengths is 20, implying that non-
unique functions are more consistent in their lengths,
where non-clones are distributed with more variance.
Clones are also slightly shorter, with a mean of 14.6
lines long versus unique functions’ 17.2.

By manual analysis, we observe that the most com-
mon functions tend to be written for highly context-
dependent purposes as opposed to generic functions
written to, for example, return the hexadecimal value
of a decimal number (see Appendix 6 for a case study).

B Optimal Operational Setting
In Appendix A we report substantial differences be-
tween the two UF and GCJ datasets. Here, we analyze
how such differences affect the accuracy of the classifier.
As mentioned earlier, ground truth in the GCJ dataset
is reliable. Thus we assess on this dataset the optimal
operational settings that influence the performance of
classification with respect to two main differences: the
number of lines of code (LoC) in the samples, and the
number of samples per author.

Number of LoC per sample. We first analyze the
effect of the total number of LoC on the accuracy when
using the GCJ for a 100-author attribution task. We
truncate the samples to certain lengths. In particular,
we consider samples of variable length by extracting n
consecutive lines beginning at a random point. If the
end of the file is reached before n, the starting point is
decremented towards the beginning of the file until all
lines can be extracted. If n is greater than the total size
of the file, the entire file is used. Results are shown in
Figure 9. We see that the optimal attribution accuracy
is achieved at a sample length upper bound of 100 LoC.
Until this point, the relationship between the LoC up-
per bound and the attribution accuracy is linear. In a

0 25 50 75 100 125 150 175
Upper bound for sample length (LoC)

0

20

40

60

80

100

Po
rti

on
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 sa
m

pl
es

 (%
)

Fig. 9. Performance in the detection of code attribution in GCJ
according to the number of LoC per sample.

curated dataset such as GCJ then, the inclusion of sam-
ples of length above 100 LoC does not result in improved
accuracy.

Second, we evaluate the size in terms of LoC when
we work at the function-level (i.e., samples are functions
as opposed to the entire files or snippet). While in GCJ
almost all files are structured in functions, this is not the
standard practice in UF. Due to the sparsity of the UF
dataset and especially the lengths of the samples after
splitting the code into functions, sample lengths are gen-
erally not long enough to truncate them like in the first
experiment. Thus, we run an experiment using the UF
dataset. We take the top 100 authors (those with most
number of samples) and get the minimum threshold on
the LoC per sample that results in at least 5 remaining
samples per author. This threshold is 25 LoC, meaning
each sample is at least 25 LoC long. Accordingly, we
repeat the experiment increasing this threshold. This
way, as the minimum LoC increments, we include pro-
gressively fewer of the authors to show the attribution
accuracy with a lesser number of authors. Results are
shown in Figure 10. We see that a learning task in the
UF dataset also achieves its best performance between
90 and 100 LoC.

While the differing methods for the two experiments
mean that they can not be compared exactly in a like-
for-like manner, both achieve optimal accuracy at the
threshold of 100 LoC being used: the first, when sam-
ples are at most 100 LoC, the second, when samples

Towards Improving Code Stylometry Analysis in Underground Forums 21

40 60 80 100 120
Lower bound for sample length (LoC)

70

75

80

85

90

95

100

Po
rti

on
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 sa
m

pl
es

 (%
)

0

20

40

60

80

100

Nu
m

be
r o

f c
la

ss
 la

be
ls

Fig. 10. Effect of discarding low length samples on attribution
accuracy on UF function samples.

are at least 100 LoC. The LoC per sample as a heuris-
tic for the amount of stylistic information in a given
source code sample provides an indication of when opti-
mal accuracy is achieved. This shows that the number of
available data (i.e., LoC per author and per sample) is a
relevant difference that affects the accuracy of the clas-
sification. We note that the curve in Figure 10 achieves
100% accuracy in a simplified setting where there are
only 5 class labels (authors), since only 29 samples have
100 or more LoC. That said, results show that after
applying our method, we are able to classify samples
of over 100 LoC from these 5 user accounts with 100%
accuracy.
Number of samples per author. The intuition is
that different samples belonging to the same author will
carry stylistic similarities along with differences in func-
tionality and the problem being addressed. As such one
might say that the more samples per author, the better a
classifier would learn authors’ style. Figure 2 shows that
this is not necessarily the case. Using the GCJ dataset,
where other conditions are kept optimal, the number
of samples per author does not have a significant ef-
fect on attribution accuracy past 5 samples per author.
This is likely due to the wealth of information gathered
from each sample, their median length being 68 LoC.
The optimal operational setting would have more than
12 samples in UF as evidenced by the continual slight
upward trend in Figure 2, however the UF dataset is
scarce enough (median of 2 samples per author) that
for our purposes we need to draw a threshold at 5 sam-
ples and not any higher so that we have enough data
for 100 authors.
Number of mislabeled samples. Finally, we modify
the dataset by randomly mislabeling a portion of the
samples. Under these conditions, changes in the ground
truth noise has an expected negative linear relationship
with the accuracy of authorship attribution of samples

from 98% to 2% for 80% of the ground truth poisoned
as shown in Figure 3. This is a powerful effect on overall
accuracy, and in our domain we are unable to guarantee
ground truth nor measure what portion of our dataset
is wrongly labelled in terms of true code authorship.
Take-aways. As discussed in §A, samples in the GCJ
dataset have a mean of 74.3 LoC — the largest being
1,184 lines. Meanwhile, in the UF dataset the mean of
LoC per sample is 20.9 — the largest being 3,868 lines.
The mean number of samples per author is also different
(4.5 in UF versus 6.6 in GCJ). As such, after discarding
samples in UF below 100 LoC, we see 1,520 authors.
However, further removing all authors with less than 5
samples (for which 5-fold cross validation is not possi-
ble) we have 52 authors. In contrast, discarding samples
below 100 LoC in GCJ we are left with 1,665 authors,
and removing all authors with fewer than 5 samples we
then retrain 284 authors, over five times the number in
UF. This shows that the ideal conditions observed in
GCJ in terms of data available are not met in the UF
dataset. All in all, we see that it is significantly more
challenging to to perform authorship attribution in UF
when the number of authors is high. In contrast, when
the number of authors is bounded, it is possible to im-
prove accuracy the classifier, with high accuracy when
only considering a small number of authors (i.e., less
than 20 as shown in Figure 6). This setting may be use-
ful in some investigations where the alleged developer
(of a code fragment under scrutiny) has been previously
reduced to a small group (e.g., filtering based on geo-
graphical location or by the type of activities the users
are involved in), by using this in combination with other
stylometry approaches, or by focusing on a single forum
where few users share code.

Towards Improving Code Stylometry Analysis in Underground Forums 22

C Supplementary figures
Figure 11 and Figure 12 refer to UF and show the to-
tal number of an author’s posts plotted against the
percentage of these posts that were found to be code
clones. Evidently there is no clear pattern, though we
note that authors with outlier high numbers of posts
tend to have a low percentage of clones. This may be
because these users are heavily invested in the commu-
nity and are more influential actors, often contributing
their own code.

D Ethical issues
In this work, we have used data publicly available for
cybercrime-related research by means of an agreement
with the Cambridge Cybercrime Centre. We have fol-
lowed due precautions during the storage and manage-
ment of the data. Regarding the analyses carried out,
our main objective is to analyze the accuracy of exist-
ing tools for code stylometry analysis and to provide
improvements. Thus we neither aim at the actual iden-
tification of the person behind each of these accounts,
nor to judge which are the activities carried out on these
forums. As mentioned before, our methodology can be
viewed as a tool to audit the privacy of online forum
users when posting source code, or to help in the iden-
tification of these if needed (e.g. during online prose-
cutions). In this regard, as academics we should remain
agnostic of the use made of authorship attribution tools.

E Acknowledgements
We would like to thank the anonymous reviewers for
their input in improving this work. We would also like to
thank the following funding bodies that have made this
research possible: the Spanish grants ODIO (PID2019-
111429RB-C21 and PID2019-111429RB) and the Re-
gion of Madrid grant CYNAMON-CM (P2018/TCS-
4566), co-financed by European Structural Funds ESF
and FEDER, the Excellence Program EPUC3M17, and
the “Ramon y Cajal” Fellowship RYC-2020-029401.

Fig. 11. Posts by users that are clones (%), top 100 users in UF.

Fig. 12. Posts by users which are clones (%), top 20 users in UF.

	Towards Improving Code Stylometry Analysis in Underground Forums
	1 Introduction
	2 Problem Statement
	3 Challenges in Code Stylometry
	3.1 Datasets
	3.2 Motivation Example
	3.3 Factors Affecting Attribution
	3.4 Deconstructing the GCJ Dataset
	3.5 Lessons learned

	4 Methodology
	4.1 Overview
	4.2 Pre-processing
	4.3 Feature Representation
	4.4 Stylometry-based Learning

	5 Results
	5.1 Experimental Settings
	5.2 Evaluation: Closed-world
	5.3 Evaluation: Open-world

	6 Case Study: multi-accounts
	6.1 Inter-forum analysis
	6.2 Intra-forum analysis

	7 Discussion
	7.1 Limitations
	7.2 Take-aways

	8 Related work
	9 Conclusions
	A Characterization & Comparison
	A.1 Types of Posts
	A.2 Length and Number of Samples
	A.3 Code Re-use in Underground Forums

	B Optimal Operational Setting
	C Supplementary figures
	D Ethical issues
	E Acknowledgements

