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Abstract
Smartwatches and wearable technology have proliferated

in the recent years featured by a seamless integration with
a paired smartphone. Many mobile applications now come
with a companion app that the mobile OS deploys on the
wearable. These execution environments expand the context
of mobile applications across more than one device, introduc-
ing new security and privacy issues. One such issue is that
current information flow analysis techniques can not capture
communication between devices. This can lead to undetected
privacy leaks when developers use these channels. In this
paper, we present WearFlow, a framework that uses static
analysis to detect sensitive data flows across mobile and wear-
able companion apps in Android. WearFlow augments taint
analysis capabilities to enable inter-device analysis of apps.
WearFlow models proprietary libraries embedded in Google
Play Services and instruments the mobile and wearable app
to allow for a precise information flow analysis between them.
We evaluate WearFlow on a test suite purposely designed to
cover different scenarios for the communication Mobile-Wear,
which we release as Wear-Bench. We also run WearFlow on
3K+ real-world apps and discover privacy violations in popu-
lar apps (10M+ downloads).

1 Introduction

Wearable devices are becoming increasingly popular and can
now run apps on appliances with large computing, storage,
and networking capabilities. According to Gartner, users will
spend $52 billion in wearable in 2020 [14], smartwatches
being the most popular gadget. The key feature of these de-
vices is that they are all interconnected, and provide a usable
interface to interact with smartphones and cloud-based apps.
In Android, wearable devices interact with the smart phone
via Wear OS (previously, Android Wear). Wear OS is similar
to Android in terms of architecture and frameworks but it is
optimized for a wrist experience. Apps in Wear OS can run
as standalone programs or companion apps.

Wearable devices provide an additional interface with the
digital world, but they are also a potential source of vulnerabil-
ities that increases the attack surface. For instance, a mobile
app could access sensitive information and share it with its
companion app in another device. Then, the companion app
could exfiltrate that information to the Internet. This land-
scape expands the context of mobile applications across more
than one device. Therefore, we cannot assess the security of
a mobile app by just looking at the mobile ecosystem in a
vacuum. Instead, we need to consider also the wearable app
as part of the same execution context.

Previous studies have exposed vulnerabilities on smart-
watches and their ecosystem [10, 12, 16, 30]. However, these
works have mostly focused on the analysis of wearable apps in
isolation [12], their Bluetooth connectivity [16] or the usage
of third-party trackers [8]. To systematically study how apps
use sensitive data, the security community leverages infor-
mation flow analysis [3, 9, 15, 18, 21, 32]. Recent works such
as COVERT [4], DidFail [18], and DialDroid [6] augment
the scope of the data tracking to include inter-app data flows
which use inter-component communication (ICC) methods.
These works expand the execution context from one mobile
app to a set of mobile apps.

In contrast to previous problems, information flow analy-
sis in the wearable ecosystem needs to track sensitive data
across apps in different devices, i.e.: the handheld and the
wearable. In other words, it needs to consider that data flows
can propagate from the mobile app to its companion app (and
back) through the wireless connection. In Android, this com-
munication is manged by Google Play Services, a proprietary
application which handles aspects like serialization, synchro-
nization, and transmission (among other aspects within the
Android ecosystem).

In this work, we present WearFlow, a framework to enable
information flow analysis for wearable-enabled applications.
To achieve this, we create a model of Google Play Service by
leveraging the Wear OS Application Program Interface (API).
This enables WearFlow to capture inter-device flows. Thus,
we run taint analysis on each app and reason about flows in an



extended context that comprises mobile and companion apps.
Our results show that WearFlow can detect Mobile-to-Wear
and Wear-to-Mobile data leaks with high precision and finds
evidences of misuse in the wild.1

In summary, we make the following contributions:

1. We propose WearFlow, an open-source tool that uses
a set of program analysis techniques to track sensi-
tive data flows across mobile and wearable companion
apps. WearFlow includes library modeling, obfuscation-
resilient APIs identification, string value analysis, and
inter-device data tracking.

2. We develop WearBench, a novel benchmark to analyze
Mobile-Wear communications. This test suite contains
examples of mobile and wearable apps sharing and ex-
filtrating sensitive data using wearable APIs as the com-
munication channel.

3. We conduct a large scale analysis of real-world apps.
Our analysis reveals that real-world apps use wearable
APIs to send sensitive information across devices. Our
findings show that developers are not using data sharing
APIs following the guidelines given by Google.

The rest of the paper is structured as follows. Section 2 pro-
vides an overview of wearable companion apps and Google
Play Services. Section 3 presents the security threats of the
Mobile-Wear ecosystem. We describe how we model Google
Play Services in Section 4. We present WearFlow in Sec-
tion 5. We evaluate our solution and present the results of our
large scale analysis in Section 6. We discuss the limitations
of WearFlow and other related works in Sections 7 and 8.
Finally, we present our conclusions in Section 9.

2 Background

This section describes the Android-Wear ecosystem, including
how Wear applications communicate with their mobile or
handheld counter part via Google Play Services. We also
provide a motivation example to show the challenges behind
tracking data usage in this ecosystem.

2.1 Wearable apps
Wear OS is a stripped version of Android optimized to run
wearable apps on Android smartwatches. The capabilities of
these smartwatches range depending on the hardware of the
manufacturer. Apart from main components such as screen
and CPU, these devices incorporate an array of sensors in-
cluding accelerometers, heart-rate and GPS among others.
The Wear OS provides an abstraction for apps to access those
sensors.

1For simplicity, we refer to term Mobile-Wear when we use Mobile-to-
Wear and Wear-to-Mobile interchangeably.

Wear OS adopts the same security model used to protect
its mobile counterpart. In Android, applications are sand-
boxed and installed with minimum permissions by default.
From Android 6.0, dangerous permissions are not granted at
installation-time, but during run-time. Permissions still need
to be declared on the app Manifest. The same permission
model applies to Wear apps, however the authorization pro-
cess is independent. This is, permissions are not inherited
from the mobile app. The wearable app must request permis-
sion to access protected resources. These resources can be
either in the smartwatch or in the smartphone (the smartwatch
can also access resources in the smartphone and vice-versa
provided users grant the appropriate permissions).

Wear devices are also equipped with network connectivity
like Bluetooth, NFC, WiFi, or even access to cellular networks.
Most watches require a phone pairing process via Bluetooth
or WiFi. The pairing process establishes a low-level channel
that can be used by mobile apps to communicate with a com-
panion app in the smartwatch. Note, however, that wearable
apps can run standalone apps (i.e., no mobile app needed)
from Wear OS 2.0. Figure 1 illustrates the interplay between
a mobile phone, a smartwatch and the network. We next de-
scribe how Wear OS enable apps to communicate with each
other (including to how they communicate with the mobile
companion app).

Figure 1: Communication between a mobile app, its compan-
ion, Google Play Services (GPS) and the network.

2.2 Google Play Services
While Android is an open-source OS, most “stock” Android
devices run proprietary software from manufacturers (OEMs)
and third-parties [13]. To access the Google Play Store,
Google requires phone manufacturers to include other core
modules such as Google Mobile Services (GMS). These ser-
vices include Google apps (Maps, Youtube, etc.) and back-
ground services, also known as Google Play Services.

The Android ecosystem suffered a fragmentation problem
as OEMs were unable to keep up with Google updates [33].
In response to the security issues underlying the fragmenta-
tion problem, Google moved the most critical components
of Android to the Google Play Services bundle. This library
receives automated updates from the Play Store without in-
volving OEMs or users. Google Play Services has two core



components: i) a proprietary app that embeds the logic of the
different services offered by Google, and ii) a client library
that provides an interface to those services. Developers must
include the client library in their apps when accessing Google-
dependent services, including those regarding Wear. Figure 2
shows how the Google Play Services app interacts with the
client library using standard inter-process communication
(IPC) channels.

Figure 2: Google Play Services (GPS) architecture and update
process.

As of March of 2020, Google provides 19 different pack-
ages2 that allow developers to interface with all the Google
Play Services like Google Analytics, Cloud Messaging, Mo-
bile Ads, or Wear OS among others. In particular, the package
com.google.android.gms.wearable gathers all the interfaces
exposed for wearable apps, including the APIs that enable
the communication between mobile and wearables apps. This
package is commonly referred as the Data Layer API.

2.3 Data Layer

The Data Layer API provides IPC capabilities to apps. This
API consists of a set of data objects, methods, and listeners
that apps can rely on to send data using four types of abstrac-
tion:

1. DataItem is a key-value style structure that provides au-
tomatic synchronisation between devices for payloads
up to 100KB. The keys are strings values, and the pay-
load could be integers, strings or other 16 data types.
The DataClient APIs offers support to send DataItems

which are uniquely identified by a path (string value) in
the system.

2. Assets are objects that support large binaries of data like
images or audio. Assets are encapsulated into DataItems

2https://developers.google.com/android/guides/setup

before being sent. The Data Layer takes care of transfer-
ring the data, bandwidth administration, and caching the
binaries.

3. Message are short bytes of text message that can be used
for controlling media players, starting intents on the
wearable from the mobile, or request/response communi-
cation. The MessageClient object provides the APIs to
send this type of asynchronous messages. Each message
is also identified by a path in the same way as DataItems.

4. A ChannelClient offers an alternative set of API meth-
ods to send large files for media formats like music and
video (in streaming as well) which save disk space over
Assets. ChannelClient are also identified by a unique
path.

The Wearable API also provides the callbacks to listen for
events receiving one of these four data types. Table 1 shows a
summary of these objects and their corresponding callbacks.
We omit the list of API methods due to space constrains. The
16 data types supported by DataItems can be found in the API
documentation.3

2.4 Mobile-Wear Communication
Once two devices are paired, a mobile and its companion
apps can talk to each other through the Data Layer as long as
they are signed with the same certificate. This is a restriction
introduced for security reasons.

Apps can use the Data Layer to open synchronous and
asynchronous channels over the wireless channel. Table 1
shows the channel type corresponding to each abstraction of
the Data Layer.

The MessageClient (asynchronous API) exposes the meth-
ods to put a message into a queue without checking if the
message ever reaches its destination. This abstraction encap-
sulates the context of messages into a single API invocation,
for instance, destination and payload. In contrast, synchronous
channels (DataClient, ChannelClient) provide transparent
item synchronization across all devices connected to the net-
work. Moreover, synchronous channels rely on many APIs
to provide context to one transmission. From now on, we
will use synchronous channels to explain the operation of the
Data Layer as these are more complex than asynchronous.

The context of one transmission consists of: node identifier,
channel type (table 1), channel path (string identifier), and
the data that will be transferred. Node identifier correspond
to string that represents a node in the Wear OS network. A
channel path represent a unique address which identifies each
open channel within a node. Finally the data is the payload of
the transmission.

An app can create many channels of the same type to send
different payloads to the companion app. Developers often

3https://tinyurl.com/y4dwopqk

https://developers.google.com/android/guides/setup
https://tinyurl.com/y4dwopqk


Table 1: Map between the different data types and the available channels in the Data Layer API.

Data Type - Channel Channel Type Information Listeners
Messages - MessageClient Asynchronous/not-reliable Bytes OnMessageReceived
DataItems - DataClient Synchronous/reliable 16 types OnDataChanged
Assets - DataClient Synchronous/reliable Binaries OnDataChanged
Channel - ChannelClient Synchronous/reliable Files OnChannelOpened

use path patterns to create a hierarchy that matches the project
structure to identify different channels. For instance, the path
example.message.normal can be used to request a normal
update, while the path example.message.urgent could indicate
an urgent request.

To initiate a Mobile-Wear communication, the sender app
needs to create the context of the channel through a sequence
of APIs calls. Then, the Google Play Services app in the
phone performs the transmission, handling the encapsulation,
serialization, and retransmission (if needed). In the smart-
watch, Google Play Services receives the communication and
processes the data before handing it over to the wearable app.
The receiver app implements a listener that captures events
from Google Play Services. The listener could be defined in
a background service or an activity where the data is finally
processed.

2.5 Motivation Example

In this section, we describe an example of a data leak using
the DataItem channel. Here, a wearable app sends sensitive
information to the Internet after a mobile app transfers sen-
sitive information through this channel. Listing 1 shows the
mobile app sending the geolocation and a constant string to
the companion wearable app.

First, the channel is created (line 4) with its corresponding
path. Then the geolocation and a string “hello” are added
to the channel in line 5, and 6 respectively. Finally, the
app synchronizes all the aggregated data in one API call
(synchronizeData) in line 7.

Listing 1: Simplified example of mobile app exfiltrating data
to the companion app.

1 nodeID = getSmartwatchId()
2 location = getGeolocation()
3 text = "Hello"
4 channel = WearAPI.createChannel("path_x")
5 WearAPI.put(channel , "sensitive", location)
6 WearAPI.put(channel , "greetings", text)
7 WearAPI.synchronizeData(nodeID , channel)

Listing 2 shows how the wearable app receives this trans-
mission with the location data.

Listing 2: Example of companion app exfiltrating sensitive
data.

1 event = WearAPI.getSynchronizationEvent()
2 if (event.path == "path_x"){
3 data = parseEvent(event)
4 location = data["secret"]
5 hello = data["greetings"]
6 exposeToInternet(location)
7 exposeToInternet(hello)
8 }else if (event.path == "path_y"){
9 do_something_else

10 }

First, the app fetches the event from the channel using the
Data Layer API (line 1). The developer uses a conditional
statement to execute actions depending on the event’s path.
Paths are the only way to characterize events that trigger
different data processing strategies when exchanging data
through a channel. Here, path_x (lines 3 to 7) corresponds
to the branch that handles the data sent by listing 1, which
includes the geolocation. In this case, the geolocation is sent
via a sink in the companion app to the Internet. The branch
path_y is used to process a different event.

On the receiver side, it also possible to specify the channel
path in the Manifest using an intent-filter. In this case, the
service only receives events which path is equal to the path
specified in the Manifest. However, it also possible to specify
a path prefix and then trigger different branches in the code.
For listener in activities, developers rely on indirect references
to the path on the code, like the example.

3 Security Threats in Wearable Ecosystem

The exchange of sensitive data between mobile and wearable
applications introduces risks in relation on how that data may
be handled by both the mobile and/or the wearable app. In
our case, we assume that the smartphone and smartwatch
will contain sensitive information like Personal Identifiable
Information (PII), contacts information, and biomedical data
that could be exfiltrated either from the smartphone or from
the smartwatch.



3.1 Threat Model

We identify the following security risks that arise from the
transmission of PII in the mobile-wear ecosystem:

1. Re-delegation: The permission model in Android re-
quires developers to declare the permissions of their
mobile and wearable apps separately. This enables mo-
bile and wearable apps to engage in colluding behav-
iors [27]. For instance, a mobile app that requests the
READ_CONTACTS permission, can use the Data Layer APIs
to send the contact information to a wearable application
that does not have this permission. Similarly, a wearable
application could share sensor data such as heart rate or
other sensors with its corresponding mobile app without
requiring access to the Google Fit permissions.

2. Wearable data leaks: Wear OS includes APIs to perform
HTTP and other network requests to Internet facing ser-
vices. This means that wearable apps have exactly the
same capabilities to exfiltrate data as regular mobile apps.
However, as already mentioned in Section 1, information
flow tools available today only account for data leaks that
happen directly via the mobile app (or via other apps in
the case of collusion). As of today, there are no methods
to detect data leaks through wearable interfaces.

3. Mobile data leaks: In a similar way, the mobile app could
exfiltrate sensitive data leaked from the wearable app
environment. An example of sensitive data unique to
the wearable is the heart rate. A mobile application can
pull this data and sent it over the network. Note that
while this threat can be materialized through a permis-
sion re-delegation attack, it is not strictly bound to this
attack. Instead, both apps can request permission to ac-
cess specific sensitive data, but the taint is lost when data
is transmitted from the companion to the mobile app.

4. Layout obfuscation: Developers are increasingly using
obfuscation techniques to prevent reverse engineering
and to shrink the size of their apps [17]. Obfuscation
presents a challenge to information flows analysis when
it modifies the signature of relevant classes and methods.
In our case, the APIs from the Data Layer might be
obfuscated, and we cannot merely look at the signatures
of the API methods.

To the best of our knowledge, this is the first framework
that models Mobile-Wear communication. As a consequence,
current frameworks fail to detect the situations above. This
happens either when developers are not following good cod-
ing practices or when miscreants intentionally try to evade
detection mechanism that rely on data-flow analysis.

For simplicity, we do not discuss how permissions are as-
signed. However, we note that the Motivation Example in

section 2.5 relates to a re-delegation attack when the compan-
ion app does not require the geolocation permission. While
taint tracking tools are able to identify sensitive data flows
in the mobile app, they can not propagate the tracking to the
companion app. The simplest way to solve this is to consider
the execution context of the mobile (sender) and companion
(receiver) app as a single context. Thus, enabling us to rea-
son about existing Mobile-Wear communication and to track
non-sensitive message individually.

Note that a Mobile-Wear taint tracking needs to consider
that data flows are combined in a single point when the sender
transmits the DataItem, and it separates again when the re-
ceiver app parses the event. This is shown in Listing 1, where
the Data Layer aggregates data (i.e., the geolocation and a
constant value) into a single channel. Finally, we note that an
attacker may use any other channel described in Section 2.3
to leak sensitive data, although the technical procedure will
defer.

Next, we show how we address this problem for all chan-
nels.

4 Modeling Google Play Services

WearFlow expands the context of taint-tracking analysis from
a single application to a richer execution environment that
includes the wearable ecosystem (i.e., the Wear OS).

Mobile-Wear taint tracking presents a different set of con-
strains and characteristics than Inter-Application and Inter-
Component communication analysis. In Wear OS, the commu-
nication between the smartphone and the wearable involves
the mobile app, Google Play Services, and the wearable app.
As Google Play Services library acts as a bridge between
the two, we need to model its behavior to track information
between the two apps.

As seen in the examples shown in Listings 1 and 2, wear-
able APIs are designed to send and receive data in batches.
This means that developers first insert the different items they
want to transmit between apps and then execute a synchroniza-
tion API call. From a data analysis perspective, this means
that multiple data flows join into a single point when an app
invokes the synchronization API to send data. One possi-
ble solution would be to taint all the information exchanged.
However, this overestimation would result in a high number
of false positives. There is another challenge behind tracking
individual data flows in Wear OS, i.e.: Google Play Services
is not open source and it is implemented in native code, which
makes the data tracking more difficult [28].

In order to track these flows, we have created a model of
the Data Layer to generate a custom implementation of the
wearable client library. To create the model, we manually
inspected the wearable-APIs from the Data Layer, and built a
sequence of possible invocations and the effect of these APIs
on the context of the communication. This model allows us
to extract the context of each communication, such as the



path and the data added into a channel. Then, we can use this
information to replace the invocations to the original APIs
with invocation to our instrumented APIs.

Note that we do not know the details of how Google Play
Services implements the communication, but we do know the
result of the communication, and we can reason about the
context of communication by looking at relevant points where
the apps invoke wearable APIs.

The result of our model is a mapping between the original
methods from the Data Layer client library to a modified im-
plementation template that facilitates the matching of individ-
ual data flows between apps. This modified implementation
is generated as follows:

1. We identify all relevant classes from the gms-wearable
library and generate custom signatures for each method.

2. For each app, we identify all invocations of synchronous
and asynchronous APIs from the Data Layer. For each
invocation we run a taint analysis to extract the context
of the transmission. This involves:

(a) Identifying the channel creation.

(b) Searching the items that have been added into the
channel variable (data sent across the channel).

(c) Evaluating strings from the context (path and keys).

(d) Generating custom API calls using the extracted
context and corresponding method template.

(e) Replacing original method invocation with a cus-
tom API invocation.

By doing this, we can simulate the propagation of
data flows across apps on different devices while keep-
ing the semantics of the different data flows intact. As
an example, whenever we find a call to <DataClient: put-
DataItem(PutDataRequest request)>, the model will tell us
that this is a synchronous communication which in sending a
DataItem (encapsulated in the PutDataRequest). In this case,
the model also specified that the PutDataRequest object re-
quired a previous API call that creates a channel, and other
APIs that add data to the DataItem. We use this information
to do a backward and forward inter-procedural analysis to ex-
tract such information. Finally, the model provides the rules
to match entry and exit points once we have the results of the
data flow analysis.

5 WearFlow

We design a pipeline of five phases that result in the detec-
tion of Mobile-Wear data leaks. Figure 3 shows a high-level
overview of our system. Phase 1 converts the app to a conve-
nient representation and extract relevant information. Phase 2
deobfuscates (if necessary) the Google Play Services client

library and relevant app components. Phase 3 performs a con-
text extraction and instrumentation for every invocation to a
wearable API. Phase 4, runs the information flow analysis
and export the results. Finally, we match data flows accord-
ing to the model of the Data Layer in phase 5 to obtain all
Mobile-Wear flows.

Phase 1: Pre-Processing
Android packs together the wearable and the mobile app into
a single package file (namely, APK). WearFlow first splits
both apps and then uses Soot to pre-process each executable
separately. In particular, we convert the Dalvik bytecode into
the Jimple Intermediate Representation (IR), and parse the
relevant configuration files (e.g., the wearable and mobile app
Manifests). Jimple simplifies the different program analysis
techniques we use in the following phases.

WearFlow then searches for Wear OS components (services
and callbacks as in Table 1), subject to an optional deobfusca-
tion phase (Phase 2). We leverage the Manifests to understand
the relationship between paths and services by looking at the
intent filters declared as WearableService. We then inspect the
Jimple to obtain all variables of the data types listed in Table 1,
including those that appear in callbacks. These data types are
used to open Mobile-Wear channels. We will instrument all
these components as described in Phase 3.

Phase 2: Deobfuscation
We use a simple heuristic to detect if the app is obfuscated.
First, we assume that all Mobile-Wear applications would use
any of the methods from the classes of the Data Layer API
shown in Table 1. Thus, we search for these methods in the
client libraries of the APK. If no method is found, we consider
the app may be obfuscated and perform a type signature brute-
force search. This signature models the type of inputs and
outputs of a function.

In addition to the type signature, we further look at lo-
cal variables declared using system types in the method and
compute their frequency per method (when the method is
not a stub). The rationale behind including context from the
method itself is to reduce the number of false positives when
performing the signature search. The signature model uses
only system types and abstract types from the Data Layer

to generate the obfuscation-resilient signatures. We refer the
reader to Section 7 for a discussion on our choices and how
this may impact our results.

We extract signatures for all relevant methods that model
Mobile-Wear IPC (see Section 2.3). Overall we extract
63 signatures capturing methods that exchange Messages,
DataItems, Assets and Channels. We then search for meth-
ods in app’s components that match against these signatures.
When we find a match, we identify the corresponding wear-
able API of our interest. As we show in Section 6.4, we can



Figure 3: Overview of WearFlow.

identify all the methods used by the model with the above
features.

Phase 3: Instrumentation
This phase aims at instrumenting the apps under analysis
and it has three steps: context extraction, string analysis, and
code generation. It takes as input a model of Google Play
Services library. Our attempt to model this library is described
in Section 4.

For the context extraction, we search invocations to wear-
able APIs that send or receive data in each of the compo-
nents seen in the pre-processing step. Once that one API is
identified, WearFlow performs an inter-procedural backward
analysis to find the creation of the corresponding channel,
and then a forward analysis to find invocations to APIs which
add data into the channel. We then evaluate strings of rele-
vant API methods; for instance, the method <PutDataMapRe-
quest.create(String path)> for DataItems. For this we perform
an inter-procedural and context-sensitive string analysis. For
asynchronous APIs (MessageClient), the context extraction
is limited to evaluate the variable which contains the channel
path.

The next step is to instrument the app. On the one hand,
we add our custom methods to the client library. In particular,
we add the declaration of method that we use as entry/exit
points in their corresponding classes. On the other hand, for
each invocation to APIs methods acting as entry/exit points,
we generate the corresponding invocation to our custom APIs.
We use the output of the context extraction, string analysis,
and the model of the Data Layer to generate such invocations.
The resulting code will replace the invocations to the original
methods in the wearable library.

The Listing 3 shows the instrumented code corresponding
to the motivation example in Listing 1. This code replaces
the lines [4 - 7] from the example. Note that the code below
illustrates a notion of the instrumentation which is done in
the Jimple IR.

Listing 3: Simplified instrumented code.

1 nodeID = g e t S m a r t w a t c h I d ( )
2 t e x t = " h e l l o "
3 l o c a t i o n = g e t G e o l o c a t i o n ( )
4 c h a n n e l = WearAPI . c r e a t e C h a n n e l ( " p a t h_x " )
5 WearAPI . s y n c S t r i n g ( nodeID , channe l ,

" g r e e t i n g s " , t e x t )
6 WearAPI . s y n c S t r i n g ( nodeID , channe l ,

" s e n s i t i v e " , l o c a t i o n )

Phase 4: Data Flow Analysis

This phase performs data flow analysis of the Mobile-Wear
ecosystem as a whole. First, we add callbacks from the Wear
OS libraries as given by our model to enable data flow analysis
across devices (see Section 2.3) . Note that we add sources and
sinks that are not detected by state-of-the-art well-maintained
projects in Android [2, 3]. More importantly, we add data
wrappers that can capture how data flows propagate through
objects of the Data Layer. One limitation of existing data
flow frameworks like FlowDroid [3] is that they use simpli-
fied wrapper models that only abstract the semantics of the
Android framework for well-known cases.

The next step is to compute the call graph of both apps
and perform a taint tracking analysis as a single context. We
do this by first running the taint analysis separately on each
app and then matching the results using the instrumented
APIs as connectors between data flows. We add the APIs
that send data as sinks (wearable-sinks) and the APIs that
receive data as source (wearable-sources). Then, we also add
the wearable-sources and the wearable-sinks in the list of
sources and sinks.

Finally, WearFlow reports the results of the taint track-
ing. At this point, we are only interested in data flows with
wearable-sources or wearable-sinks. It is worth noting that
taint analysis still detects data flows that end in a non-wearable



sink, but they are irrelevant to the matching step. Our approach
is agnostic to the underlying method used to compute data
flows. We refer to Section 6.1 for implementation details.

Phase 5: Matching Analysis

The final step consists of matching exit points with entry
points; that is to say, wearable-sinks with wearable-sources.
We consider three values to match data flows: channel path,
API method, and key. If the value of the path or key could
not be calculated during the context extraction, then we use
a wildcard value that matches any value. To match the API
methods, we built a semantic table that provides information
to match wearable-sinks with its corresponding wearable-
sources. We present a summary in the Table 2 due to space
limitation. The table contains thirty-four entries in total and it
can be found in the project repository.

6 Evaluation and Results

We evaluate WearFlow against other Android information
flow analysis tools currently available and perform a large-
scale analysis of 3.1K Android APKs with wearable compo-
nents looking for sensitive data leaks. Our evaluation uses
a specifically crafted set of apps that presents different data
exfiltration cases using the Data Layer API. We conduct our
experiments on a machine with 24 cores Intel Xeon CPU
E5-2697 v3 @ 2.60GHz and 32 GB of memory.

6.1 Implementation

WearFlow relies on the Soot framework [29] to perform
the de-obfuscation, context extraction and app instrumen-
tation (Phases 2, 3.1 and 3.3). Our implementation lever-
ages FlowDroid [3] with a timeout of 8 minutes per app
for the information flow analysis (Phase 4) and Violist [19]
for the string analysis (Phase 3.2). We use FlowDroid and
Soot because previous works report that they provide a good
balance between accuracy and performance on real-world
apps [6, 24, 25]. We customize FlowDroid to run on wear-
able apps by adding callbacks from the Wear OS libraries
and by extending the SuSi [2] sources and sinks as discussed
in Section 5. We also perform several optimizations to Vi-
olist to reduce the execution time while keeping the accu-
racy for the APIs we were interested in. For instance, we
reuse the control flow graph generated by Soot, and we limit
the evaluation of the strings to relevant methods. With this,
WearFlow adds, overall, around 6000 LoC to these frame-
works. We make the implementation of WearFlow open
source in https://gitlab.com/s3lab-rhul/wearflow/.

6.2 Evaluation results
As community lacks on a test suite that include Mobile-Wear
information flows for Android, we create WearBench4. Wear-
Bench has 15 Android apps with 23 information flows be-
tween the mobile app and the wearable companion (18 of
them sensitive). Our test suite covers examples of all APIs
from the Data Layer. It also contains challenges for the instru-
mentation like field sensitivity, object sensitivity, and branch
sensitivity for listeners.

Our suite is inspired by Droid-Bench5 and ICC-Bench6,
which are standard benchmarks to evaluate data flow tools.
Note that these benchmarks evaluate the effectiveness of the
taint analysis, and some Inter-App communication cases us-
ing ICC methods. Instead, we are evaluating Inter-App com-
munication between mobile and wearable apps (using the
Data Layer API). Therefore, we cannot use these benchmarks
alone to evaluate WearFlow. In our evaluation, we compare
our results against FlowDroid. For this, we add the Data Layer
APIs as sources and sinks, execute FlowDroid on both the
mobile and wearable companion and look for matches. We
run FlowDroid with a context sensitive algorithm twice: first
with high precision, we set the access path length to 3. Then
we reduce the precision by setting the access path to 1. With
this, FlowDroid truncates taints at level 1. This configuration
increases the number of false positives but catches situations
where FlowDroid fails to propagate taint abstraction correctly.

Table 3a shows the result of our evaluation against the test
suite. WearFlow detects all the 18 exfiltration attempts with
two false positives. These two false positives stem from a
branching sensitivity issue present in FlowDroid, which re-
sult in false positives during the data flow analysis (Phase
4). Conversely, FlowDroid with high precision detects 6 out
of 18 exfiltrations — these are only matches communicat-
ing with the MessageClient API. This is because FlowDroid
fails to propagate taints on complex objects from the Data

Layer. When reducing the precision, FlowDroid identifies
matches with MessageClient and DataClient but still fails
to identify sensitive flows with the ChannelClient API. In
this case, FlowDroid produces 12 false positives. This results
from an overestimation of taints that uses DataItem.

Our results show that WearFlow performs better than Flow-
Droid by a clear margin. This exemplifies how the modeling,
instrumentation and matching analysis can improve infor-
mation flow analysis in wearable applications.

6.3 Analysis of Real-World Apps
We use WearFlow to search the presence of potential data
leaks on around 3.1K real-world APKs available in the Google

4https://gitlab.com/s3lab-rhul/wearbench/
5https://github.com/secure-software-engineering/DroidBench
6https://github.com/fgwei/ICC-Bench

https://gitlab.com/s3lab-rhul/wearflow/
https://gitlab.com/s3lab-rhul/wearbench/


Table 2: Selection of Sink-Source matches in Data Layer API. A full list can be found in WearFlow repository.

Library Wearable sink signature Wearable source signature
DataClient DataClient: void putString(String,String) DataMap: String getString(String)
MessageClient MessageClient: Task sendMessage(String,String,byte[]) MessageEvent: byte[] getData()
DataClient DataClient: void putAsset(String,Asset) DataMap: Asset getAsset(String)
ChannelClient ChannelClient sendFile(Channel,Uri) Task receiveFile(Channel,Uri,Boolean,String)

Table 3: Summary of our results.

(a) Results for our test-suite between WearFlow and FlowDroid. HP = high precision, LP = low precision.

Existing Data Flows Found Data Flows
Library Apps Total Sensitive WearFlow Flowdroid-HP Flowdroid-LP
DataItem 9 16 13 14 (1 FP, 1 FN) 0 (13 FN) 22 (6 FP)
Message 5 6 4 5 (1 FP) 6 10 (6 FP)
Channel 1 1 1 1 0 (1 FN) 0 (1 FN)

(b) Results for real-world apps (* sensitive data
flows).

Apps APKs
Number of apps 220 3,111

With flows 47 293
With sensitive * 6 50

Play Store (downloaded from AndroZoo [1]). From an initial
set of 8K APKs, around 5K refer to standalone (only wear)
APKs, and 3.1K include mobile and wearable components.
We execute WearFlow against this set which corresponds to
220 different package names. Table 3b shows a summary of
the results. Note that the dataset contains multiple versions
of the same app. Thus, we refer to apps as APKs with unique
package name.

Figure 4 shows a summary of the different APIs used as
exit/entry points of sensitive data flows. Although we found
the occurrence of the ChannelClient API in the dataset, we
did not find any case where this API was used to send sensitive
information. WearFlow identifies sensitive information flows
that include the transmission of device contacts (via Cursor
objects), location, activities, and HTTP traffic. We also found
that in several occasions sensitive data ended up in the device
logs (17% of overall sinks) or SharedPreference files (20%).
A more detailed analysis of these flows for a selection of apps
is provided in Section 6.5.

WearFlow is capable of finding 4,896 relevant data flows in
all the analyzed APKs. Out of those, 388 relate to Mobile-
Wear sensitive information flows in 6 apps (or 50 APKs,
when considering all versions and platforms). The results
indicate that 70% of the flows are from the mobile to the
wear platform, while 30% are wear to mobile.

6.4 Applicability
We next see how we perform when dealing with obfuscation
and what is the runtime overhead.

Obfuscation. WearFlow detects 282 obfuscated APKs in
the dataset. The deobfuscation phase successfully unmangles
all these APKs. On the one hand, we find 71 data flows using

[W]PackageManager.queryIntentActivities(): 25 (6.4%)

DataClient: 189 (48.7%)

Service.startService()[M]: 6 (1.5%)
SharedPreferences()[M]: 19 (4.9%)

[M]Cursor.getString(): 140 (36.1%)

Service.startService()[W]: 1 (0.3%)

SharedPreferences()[W]: 59 (15.2%)

DataClient()[W]: 36 (9.3%)

MessageClient: 199 (51.3%)

Service.sendBroadcast()[W]: 29 (7.5%)

Log()[W]: 67 (17.3%)

[W]Location.getLatitue/Longitude(): 67 (17.3%)

OutputStream.write()[M]: 13 (3.4%)

String.replace()[M]: 24 (6.2%)

HttpURLConnection.getInputStream()[M]: 23 (5.9%)

URL.openConnection()[M]: 7 (1.8%)

[M]DataMap.getInt(): 12 (3.1%)

DataClient.putInt()[W]: 8 (2.1%)

[W]DataMap.getString(): 3 (0.8%)
Log()[M]: 3 (0.8%)

[M]DataMap.getString(): 33 (8.5%)

SharedPreferences()[W]: 7 (1.8%)

DataClient.putString()[W]: 26 (6.7%)

[M]MessageEvent.getDataSource: 36 (9.3%)

[M]HttpResponse.getEntity: 72 (18.6%)
Service.sendBroadcast()[W]: 60 (15.5%)

Connector Library SinksSources

Figure 4: Sensitive information flows found. [M] refers to
Android and [W] refers to Wear OS.

the Data Layer within these APKs. WearFlow did not find rel-
evant APIs in 651 APKs. This can either because these APIs
are not used at all or because developers use more complex
obfuscation techniques. We discuss this in Section 7.

On the other hand, we find around 2K non-obfuscated
APKs in our dataset. WearFlow instruments 4.8 components
on average per APK (excluding library classes). From all the
wearable APIs, around 48% are DataClient APIs, 51% |Mes-
sageClient| APIs, and less than 1% ChannelClient APIs. This
number shows that developers are aggregating multiple data
into DataClient before synchronizing DataItems and shows
the benefits of instrumenting the APKs to track individual
data flows.



Running time. Running our tool on the real-world dataset
took 115 hours. WearFlow analyzes over 95% of the APKs
before the 8 minutes timeout lapses. The average time per
APK is 3.1 minutes. Note that wearable apps are considerably
smaller in size than mobile apps, and WearFlow evaluates
most wearable apps in less than 1 minute. The time distribu-
tion per phase analysis is the following: pre-processing 13%,
string analysis 9%, deobfuscation and instrumentation 2%,
and data flow analysis 76%.

WearFlow failed to complete the analysis for a small num-
ber of APKs. In most cases, this is due to unexpected bytecode
that Soot fails to handle, errors while parsing APK resources,
or because the analysis reached an extended timeout.

Overall, WearFlow extracts data flows for an additional of
282 Mobile-Wear APKs. Without the deobfuscation phase,
these flows would not otherwise be extracted. The deobfus-
cation phase only takes 2% of the running time.

6.5 Case Studies

This section describes issues found by WearFlow in specific
apps in relation to the threat model presented in Section 3.

Companion Leak. We first study the case of Wego
(com.wego.android), a travel app to book flights and hotels
with more than 10 million downloads. We find a sensitive
flow that starts in the watch with source getLatitude() from
the Location API, and it is sent to the mobile app with the
MessageClient API using the path “request-network-flights”.
Then, the mobile app sends out this data through URL using
the HttpURLConnection object, and write it to a file system
using the java.io.OutputStream class. In this case, both the
wearable and the mobile declare the location permission in the
Manifest. However, this alone is not enough to comply with
the guidelines.7 In this case, the wear app must send the user
to the phone to accept the permission. This case shows that it
is possible to bypass the permission system using Data Layer

APIs.

Permission re-delegation. Venom (fr.thema.wear.watch.-
venom) is a Watch Face customized for a watch user
interface. The mobile version of this app uses the an-
droid.database.Cursor class to store sensitive information
such as the call history or unread messages in a database. The
app aggregates all information in a DataItem object and syn-
chronizes it with the wearable app. However, the wearable
app does not declare the relevant permissions. Interestingly,
the string analysis has been key to uncover the type of infor-
mation the app is retrieving from the database and trace it

7https://developer.android.com/training/articles/
wear-permissions

back to API sources that relate to the sensitive information
discussed (e.g., missed calls and text messages).

Sensitive Data Exposed Finally, we observe evidence of
apps exposing sensitive data through a wide range of sinks,
including Android Broadcast system and Shared Preferences.
For instance, Talent (il.talent.parking) — which is used for
car parking — reads data related to the last parking place
and its duration from a database and synchronizes it with
the watch using a DataItem. Then the wearable app writes
the data to Shared Preferences. Another example is the app
com.mobispector.bustimes, which shows bus and tram timeta-
bles, and has more than 4 million downloads. The app reads
data from an HTTP response, then send it to the wearable
through the MessageClient API, and finally executes a system
Broadcast exposing the content of the HTTP response.

All these cases show how developers leverage the Data

Layer API to send sensitive information. While it is unclear
whether or not these cases intentionally use Google Play
services to hinder the detection of data leakages, we see that
WearFlow is effective at exposing bad practices that can
pose a threat to security and privacy.

7 Limitations

This section outlines the limitations of our work. These may
arise from WearFlow’s implementation or the dataset we used.

Data Transfer Mechanisms. WearFlow inherits the limi-
tations of static analysis, i.e.: it is subject to constrains of the
underlying flow and string analysis techniques. This means
that it fails to match data flows with native code, advanced
reflection, or dynamic code loading. Still, WearFlow can be
used together with other frameworks [22,31] that handle these
issues to improve the accuracy of the analysis.

WearFlow considers obfuscation while performing the anal-
ysis of apps. There are four trivial techniques and seven non-
trivial techniques commonly used in the wild, according to a
large scale study of obfuscation in Android [17]. WearFlow
type-signature deobfuscator is resilient to all trivial techniques
and five non-trivial, but it fails to deobfuscate APKs with
class or package renamed and reflection. As mentioned be-
fore, WearFlow did not found relevant APIs in 20% (651) of
the APKs, many of which correspond to APKs with these
obfuscation techniques.

A more robust deobfuscation technique should rely on other
invariant transformations such as the hierarchical structure of
the classes and packages. Many methods of the Data Layer
library are stubs, therefore using features of the method body
will not improve the accuracy drastically. Additionally, one
could obfuscate those features (e.g., using reflection together
with string encryption) introducing false negatives.

https://developer.android.com/training/articles/wear-permissions
https://developer.android.com/training/articles/wear-permissions


In our case, we have successfully leveraged system types
to disambiguate methods with the same signature. We chose
to only use system types as they are less prone to obfuscation
than other data types and have helped reducing the number of
false positives. One could take into account the threat model,
and chose to use a more coarse type of signatures when certain
traits (e.g., reflection) appear in the app.

Branching. Another potential source of false negative data
flows stems from the backward analysis, in the context ex-
traction. WearFlow stops the backtracking when encounters a
definition of a channel, but this definition could be part of the
branch of a conditional statement. Depending on the scope of
the variable, the channel could be defined in another method
or even another component. Finally, if the string analysis is
unable to calculate the value of a key or path (e.g., when there
are multiples values due to branching) we use a wildcard
value, i.e.: we match any string. This means that the matching
step will overestimate the potential flows between the entry
and the exit point.

Dataset. Our dataset is limited to 3,111 APKs and 220 pack-
age names after considering different APK versions. There
are more than 220 apps available for Wear OS, however, iden-
tifying them is a challenging task. Google Play does not offer
an exhaustive list of apps with Wear OS components, nor it is
always featured in the description of the app. This restriction
limits our ability to query Wear OS apps in Google Play. Fur-
thermore, datasets like Androzoo do not provide information
about whether a app has wearable components or not. Thus,
we need to download apps as the rate limit allows. Given the
low density of these kind of apps in the overall set of Android
apps, the amount of apps that can be obtained this way is very
limited.

Model Accuracy. The precision of the analysis also de-
pends on the accuracy of the Data Layer model. The Data

Layer model used by WearFlow replicates the Data Layer

model, as described in Google’s Wear OS documentation. If
the Data Layer APIs were to transfer data trough undocu-
mented components of the OS or even through the cloud (e.g.,
via backups), WearFlow would not detect such flows. Also,
our model is based on Wear OS versions 1 and 2. Wear OS
under active development. Thus, any new APIs introduced in
future versions will need to be modeled.

8 Related Work

Mobile-Wear communication can be seen as a kind of inter-
app communication where one of the apps is being executed
in a wearable device. Several works have focused on app col-
lusion detection [4, 5, 18, 23, 26, 34]. These works model ICC
methods to identify sensitive data flows between applications

running on the same device. WearFlow complements these,
extending the analysis of these apps into the Mobile-Wear
ecosystem, increasing the overall coverage of these solutions
to all current app interactions in the Android-Wear OS ecosys-
tem. One may argue that these tools could be extended to
cover for Wear OS interactions. As an example, works such
as DialDroid [6] uses entry and exit points to match ICC com-
munication between mobile apps. In our case, we consider
wearable APIs as sources and sinks, which could be easily
replicated in DialDroid. However, These APIs aggregate mul-
tiple data into a single API call, and we need to match data
types on the sender and receiver side, which would lead to
inaccuracies in DialDroid and many other tools [11].

ApkCombiner [20] combines two apps into one allowing
to run taint tracking on a single app. This approach does not
allow us to reason about individual items aggregated into a
single API call.

There has been a recent interest of the community in ex-
panding the scope of data tracking to more platforms outside
the Android ecosystem. Zou et al. [35] studied the interac-
tion of mobile apps, IoT devices and clouds on smart homes
using a combination of traffic collection and static analysis.
They discoverd several new vulnerabilities and attacks against
smart home platforms. Berkay et al proposed a taint track-
ing system for IoT devices [7]. WearFlow could have been
implemented following the same approach (analysing WiFi
and Bluetooth communications between Android and Wear
OS). This would have required us to reverse the different
communication protocols and data exchanged in both wire-
less protocols. Our approach is simpler, and doesn’t require
additional hardware to execute.

9 Conclusion

In this work, we have presented WearFlow, a static analysis
tool that systematically detects the exfiltration of sensitive
data across the Mobile-Wear Android ecosystem. WearFlow
augments the capabilities of previous works on taint tracking,
expanding the scope of the security analysis from mobile
apps to smartwatches. We addressed the challenge of enabling
inter-device analysis by modeling Google Play Services, a
proprietary library. Our analysis framework can deal with
trivial obfuscation and most of the non-trivial obfuscation
techniques commonly used in the wild.

We have created WearBench, the first benchmark for ana-
lyzing inter-device data leakage in Wear OS. Our evaluation
shows the effectiveness of WearFlow over other approaches.
We also analyze apps in Google Play. Our results show that
our system scales and can uncover privacy violations on pop-
ular apps, including one with over 10 million downloads. As
a future work, we want to extend our deobfuscation phase to
cover additional forms of obfuscation (e.g., the two — out of
seven — non-trivial obfuscations we discuss), and extend the
scope of our analysis to the entire Google Play app market.
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