
TriFlow: Triaging Android Applications using Speculative
Information Flows

Omid Mirzaei
Universidad Carlos III de

Madrid
omid.mirzaei@uc3m.es

Guillermo Suarez-Tangil
University College London

guillermo.suarez-
tangil@ucl.ac.uk

Juan Tapiador,
Jose M. de Fuentes
Universidad Carlos III de

Madrid
{jestevez,

jfuentes}@inf.uc3m.es

ABSTRACT
Information flows in Android can be effectively used to give an in-
formative summary of an application’s behavior, showing how and
for what purpose apps use specific pieces of information. This has
been shown to be extremely useful to characterize risky behaviors
and, ultimately, to identify unwanted or malicious applications in
Android. However, identifying information flows in an applica-
tion is computationally highly expensive and, with more than one
million apps in the Google Play market, it is critical to prioritize
applications that are likely to pose a risk. In this work, we develop
a triage mechanism to rank applications considering their poten-
tial risk. Our approach, called TRIFLOW, relies on static features
that are quick to obtain. TRIFLOW combines a probabilistic model
to predict the existence of information flows with a metric of how
significant a flow is in benign and malicious apps. Based on this,
TRIFLOW provides a score for each application that can be used to
prioritize analysis. TRIFLOW also provides an explanatory report
of the associated risk. We evaluate our tool with a representative
dataset of benign and malicious Android apps. Our results show
that it can predict the presence of information flows very accurately
and that the overall triage mechanism enables significant resource
saving.

Keywords
Android security; malware analysis; information flow; app triage

1. INTRODUCTION
The amount and complexity of malware in Android platforms

has rapidly grown in the last years. By early 2016, both Syman-
tec and McAfee report more than 300 malware families totalling
over 12 million unique samples [26, 40]. Every malware family
(and, sometimes, every sample within a family) may pose a differ-
ent threat. The sheer number of apps available in current markets,
along with the ratio at which new apps are submitted, makes im-
possible to manually analyze all of them. Automated analyses also
have their limitations and some techniques might require a sub-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3053001

stantial amount of time per app [25]. This has motivated the need
for a multi-staged analysis pipeline in which apps should be ini-
tially triaged to allocate resources intelligently and guarantee that
the analysis effort is devoted to those samples that potentially have
more security interest.

One of the salient features of Android’s security model is its
permission-based access control system. Apps may request access
to security- and privacy-sensitive resources in their manifest file.
These requests are presented to end users through permission di-
alogs at install time or, since Android version 6 (Marshmallow),
at runtime for a reduced subset of permissions. Requesting access
to protected resources is a clear indicator of risk and most triage
systems for Android apps have relied quite heavily on requested
permissions (see, e.g., [11, 17, 20, 29, 34]), since they have proven
effective to identify apps carrying malicious functionality. The ma-
jority of these approaches rely on metrics that combine the preva-
lence (or rarity) of each permission in benign and malicious apps
with the criticality of the resources protected by the permission.

Using permissions alone to assess risk has important limitations
[2]. Permission-based risk metrics might be highly inaccurate for
two reasons. First, apps are often overprivileged and many permis-
sions requested in the manifest might not be actually used during
execution. Second, they assign a risk to a particular permission
(e.g., INTERNET) just because it could be used as a vehicle for a
malicious purpose, such as leaking out a piece of sensitive data,
without considering if sensitive data is actually being sent or not.
Determining risk using Information Flows (IFs), as done by the
approach introduced in this paper, overcomes this limitation and
provides a more accurate assessment of the app’s actual behavior.
However, IF analysis presents a number of challenges. Identifying
flows in an app involves a non-negligible amount of resources both
in time and memory. For instance, according to our experiments,
it can take more than 30 minutes per app to extract IFs from at
least half of the samples in the Drebin dataset [4] using a relatively
powerful computer (40 processors and 200 GB RAM). The situa-
tion may even be worse when analyzing apps with sufficiently large
call graphs. In those scenarios, the IF extraction might not even be
practical [6].

Overview of our system. In this work we describe TRIFLOW, an
IF-based triage mechanism for Android apps that attempts to over-
come the issues discussed above for permission-based systems and
also the limitations of existing IF analysis tools. Since extracting
IFs from an app is an unreliable and computationally expensive
process, TRIFLOW introduces the notion of speculative informa-
tion flows. This means that TRIFLOW extracts some features from
apps and then predicts the existence of a flow based on them. Pre-

http://dx.doi.org/10.1145/3052973.3053001

diction is done on the basis of a model that is previously trained
using ground truth obtained with flow extraction tools. Each pre-
dicted flow is then scored by TRIFLOW in terms of its potential
risk, which depends on the flow’s observed prevalence in goodware
and malware. To do this we rely on the cross-entropy between the
empirical probability distributions of each flow in goodware and
malware. This provides a simple but sound quantification of the in-
tuition that an information flow is risky if it is frequent in malware
and rare in benign apps.

TRIFLOW has been implemented in Python and tested using a
combined dataset of more than 17,000 apps. Our results suggest
that it is possible to predict information flows efficiently, with pre-
diction errors remarkably small for the majority of information
flows. The evaluation of the flow scoring measure reveals that 75%
of information flows have no value at all for risk prediction, and
only 1% of the remaining flows receive high weights. This sug-
gests that malicious behavior (at least in the samples contained in
the datasets used in this work) can be modeled using a relatively
small subset of all possible information flows.

We evaluate TRIFLOW by simulating a triage process in which
apps must be prioritized as they arrive. Our experimental results
demonstrate that TRIFLOW outperforms existing permission-based
risk metrics in all considered scenarios. Additionally, TRIFLOW
provides an explicative report that describes the flows that most
contribute to the overall risk assessment.

Contributions. In summary, in this paper we make three main
contributions:

• We introduce the idea of predicting the existence of a partic-
ular information flow using static features extracted from an
app’s code. We believe this idea might have potential beyond
the scope of this work and, more generally, could be extended
to predict the presence of other program artifacts whose pre-
cise identification requires computationally expensive static
or dynamic analysis procedures.

• We extend to information flows the notion of “rare equals
risky” that has been largely explored and tested in the field
of permission-based risk metrics. Based on this, we design
an information-theoretic risk measure related to the cross en-
tropy between the distribution of information flows in benign
and malicious apps, thus quantifying how informative a flow
is.

• Finally, we make our results and our implementation of TRI-
FLOW publicly available at

https://github.com/OMirzaei/TriFlow

to allow future works in this area to benefit from our research.
TRIFLOW can be easily extended for new API methods and
new information flows appearing in upcoming versions of
Android, and its modular architecture facilitates its integra-
tion in existing risk assessment frameworks.

Organization. The rest of this paper is organized as follows. Sec-
tion 2 describes in detail our approach for fast triage of apps based
on speculative information flows. In Section 3 we present and dis-
cuss the results of our evaluation, including our prototype imple-
mentation and the datasets used (3.1). Additionally, we report: (i)
the accuracy of the flow prediction (3.2) and the flow weighting
(3.3) mechanisms; (ii) the triage results and the reports generated
by TRIFLOW (3.4); and (iii) the efficiency of the tool (3.5). In

Feature	
Extrac+on	

App	Dataset	

Flow	
Iden+fica+on	

Model	
Es+ma+on	

Scoring	
App	

Feature	
Extrac+on	

Predictive model,
Flow risk model

Feature
vectors

Flows,
App label

Feature
vectors

score

Training	

Triage	

Figure 1: Architecture of the proposed system.

Section 4 we discuss a number of issues and limitations of our ap-
proach. Finally, Section 5 discusses related work and Section 6
concludes the paper.

2. APPROACH
This section describes our approach for fast triage of Android

apps. We first provide an overview of our proposal in Section 2.1.
We then describe its two key ideas: a probabilistic estimator for
information flows (Section 2.2) and a weighting scheme based on
the a priori risk contribution of each information flow (Section 2.3).
This is later used to rank apps and prioritize analysis.

2.1 Overview of Our System
A high-level view of TRIFLOW is provided in Fig. 1. The system

is first trained using a dataset of benign and malicious apps. The
goal of this phase is to obtain the two items that will be later used
to score apps:

(i) A predictive model that outputs the probability

θf (φ1, . . . , φn) = P [f | (φ1, . . . , φn)] (1)

of each possible information flow f present in the app given
a feature vector (φ1, . . . , φn) obtained from the app’s code.

(ii) A risk model consisting of a function I(f) that measures how
informative each information flow f is considering its rela-
tive frequency of occurrence in malware and benign apps.

The predictive model is estimated using both the feature vectors
obtained from each app and the ground truth, i.e., the actual infor-
mation flows present in the app, hence the flow identification com-
ponent in our architecture. Note that we also tag each flow with the
app’s label, i.e., whether it is benign or malicious.

Obtaining the score for an app (bottom part of Fig. 1) is done by
simply multiplying each flow’s likelihood by its weight and sum-
ming up for all flows:

score(a) =
∑
f

θfI(f). (2)

Note that this only requires extracting the feature vector from the
app and getting the θf and I(f) values. As described in detail later,
in TRIFLOW both models (prediction and risk) are implemented as
look-up tables, so the overall scoring process is extremely fast.

https://github.com/OMirzaei/TriFlow

2.2 Predicting Information Flows
Let f = (s, k) denote an information flow from source s to

sink k. We aim at coming up with a predictor Pf (a) that outputs
whether f is present in an app a without actually performing an
information flow analysis over the app. Our emphasis is on efficient
predictors, so Pf has to base its decision on features that can be
extracted very efficiently from the app. TRIFLOW uses the presence
of a call to the source s and another to the sink k in the app code
as features. Determining the set of sources and sinks called by an
app is straightforward. It can be done very efficiently by simply
decompiling the app’s DEX file and matching the resulting code
against a list of predefined sources and sinks.

We explored this idea using a probabilistic estimator as follows.
Let S(a) and K(a) be the set of sources and sinks identified in the
code of an app a. The set of all possible information flows in a is
the product set F̂(a) = S(a) × K(a); that is, for each possible
source s ∈ S(a) and sink k ∈ K(a), there is a potential flow
f = (s, k) ∈ F̂(a). We now assume that the occurrence of each
flow f = (s, k) in an app is given by a probability distribution
Θ = (θ1, θ2, . . .) where θf = P [f = (s, k) | s, k]. The estimator
can be obtained using a dataset D of apps (malicious or not) as

θf =

∑
a∈D

indf (F(a))∑
a∈D

indf (F̂(a))
, (3)

where indx(A) = 1 if x ∈ A or 0 otherwise, and F(a) is the set
of actual information flows of the app a extracted using an infor-
mation flow analysis tool. Note that the denominator in Eq. (3) is
always greater than the numerator, since the presence of a flow in
an app requires a call to both the source and the sink, and, therefore,
such a flow will appear in the F̂ set.

Obtaining the θf estimator requires some computational effort
since it involves obtaining the actual information flows for each
app. However, once this task is done offline, the θf values can be
stored in a look-up table and used after extracting the sources and
sinks present in an app. Furthermore, the estimators can be incre-
mentally refined when more apps become available, i.e., it does not
require to go again through the set of potential and real flows for
the already processed apps.

2.3 Informative Information Flows
The second component of our risk metric is a measure that quan-

tifies how important a particular information flow is to distinguish
malicious from benign apps. To do so, we adopt an empirical ap-
proach based on the relative frequencies of occurrence of informa-
tion flows in both classes of apps. A similar idea has been leveraged
by previous permission-based risk metrics such as [14, 29, 34], in
which the risk of a permission depends on how rarely it is requested
by benign apps. In TRIFLOW we implement this as follows. Let
PM (f) and PB(f) be the probability of the information flow f
occurring in malicious and benign apps, respectively. We seek to
associate with f a weight I(f) satisfying two properties:

1. I(f) should be positively correlated to PM (f): the more fre-
quent f is in malware, the higher I(f). If f has never been
observed in malware, i.e., if PM (f) = 0, then I(f) = 0.

2. I(f) should be negatively correlated to PB(f): the more fre-
quent f is in benign apps, the lower I(f). More specifically,
if PB(f) = 1 then I(f) should be 0.

Both properties are satisfied by the following scoring rule:

I(f) = −PM (f) log2 PB(f). (4)

Note that this score is essentially the probability PM (f) weighted
by the − log2 PB(f) factor, which implements the negative cor-
relation with PB(f). This factor can be interpreted in informa-
tion theoretic terms as the self-information (or surprisal) of f when
looked at from the perspective of benign apps (i.e., the PB distribu-
tion). Incidentally, this provides a sound interpretation of I(f) in
terms of the cross entropy between the PM and PB distributions.
Recall that the cross entropy between two probability distributions
P1 and P2 is given by

H(P1, P2) = −
∑
x

P1(x) log2 P2(x) (5)

and measures the average number of bits needed to identify an
event if a coding scheme based on P2 is used rather than one based
on the true distribution P1. Thus, I(f) can be seen as the contribu-
tion of flow f to the cross entropy between the probability distribu-
tions of flows in malware and benign apps.

3. EVALUATION
This section reports and discusses our results. In Section 3.1

we first describe our implementation of TRIFLOW and the used
datasets. The two core components of TRIFLOW are evaluated in
Sections 3.2 (information flow prediction) and 3.3 (flow weight-
ing). The effectiveness and efficiency of the overall triage mecha-
nism are finally addressed in Sections 3.4 and 3.5, respectively.

3.1 Experimental Setting
TRIFLOW has been implemented in Python. Our implementa-

tion decompiles the DEX file using Baksmali and then scans the
code searching sources and sinks in the smali representation. The
list of sources and sinks is provided as an input and, in our current
implementation, taken from the SuSi project [30].

To train and evaluate TRIFLOW, we have used two different data-
sets: (i) a set of real-world Android OS malware samples known
as Drebin [4], and (ii) a set of goodware apps downloaded from
Google Play at different points between 2013 and 2016. The ma-
licious dataset (Drebin) was originally collected by Arp et al. [4]
as an extension of the popular Android MalGenome project. The
Drebin dataset contains 5,560 apps and about 171 malware fam-
ilies. Among other behaviors, the modus operandi of many of
these specimens is largely related to fraudulent activities such as
sending SMS messages to premium rate numbers. The benign
dataset (GooglePlay) was retrieved from the Android official mar-
ketplace. It is comprised of 11,456 popular free samples down-
loaded from different categories, including popular apps such as
Facebook, Google Photos, Skype or MineCraft. Table 1 summa-
rizes both datasets.

The evaluation is based on two distinct and non-overlapping splits
of the datasets, i.e., training and testing. The predictive model is ex-
tracted using the former, while the latter is used to perform triage
over unseen apps. For training we retained 4,000 samples (71%)
from Drebin and an additional set of 4,000 (35%) from Google-
Play. The training set thus contains the same amount of malware
and goodware, i.e., a 1:1 malware-to-goodware ratio. Although the
occurrence of malware in official markets is much lower than the
presence of goodware, undersampling the training set is a common
practice to equally weight both classes when building the model [8,
32]. For testing, we increased the malware-to-goodware ratio to
1:5, which is a common practice in other works in the area [1,6,46].
All these splits were done randomly and using a hold-out validation
approach, i.e., the set of samples used for training differs from those
selected for testing.

Table 1: Overview of the datasets used in this work. The upper part
of the table shows the source of our dataset together with the num-
ber of samples from each source. The bottom part shows the train-
ing/testing splits used during cross-validation and the malware-to-
goodware ratios.

Type Dataset Type Samples
Malware (MW) Drebin [4] Malware 5,560
Goodware (GW) Google Play Goodware 11,456

Total 17,016

Mode Split Ratio Samples

Modeling (Training) 4,000 MW 1:1 8,0004,000 GW

Triage (Testing) 1,560 MW 1:5 9,0167,456 GW

Table 2: Statistics of the training dataset. The size (in MB), number
of sources (src), number of sinks (snk), memory consumed (in GB),
and time (in seconds) are given on average per app. The amount of
memory (in GB) required represents the maximum average.

#Apps Size #Src #Snk #Flow Mem Time
4,000 MW 0.9 150.5 100.6 63.5 14.3 55.0
4,000 GW 6.2 223.1 124.4 255.5 88.3 132.1
8,000 ALL 3.5 186.8 112.5 159.5 51.3 93.6

We then used FLOWDROID [5] to identify data flows in all apps
in our dataset. We ran FLOWDROID1 considering all Android API
sources and sinks proposed in the SuSi project [30]. The extraction
took place on a 2.6 GHz Intel Xeon Ubuntu server with 40 proces-
sors and 200 GB of RAM. We set a timeout of 30 minutes and be-
tween 40 GB and 100 GB of RAM per app in FLOWDROID. Even
with this configuration, FLOWDROID could not finish the flow ex-
traction process entirely for all the apps in our datasets. This lack of
reliability has been reported before [6] and is indicative of the limi-
tations (and computational cost) of techniques that rely on extracted
information flows. For instance, analyzing a popular gaming app
with more than 1 million installations in Google Play took about 90
GB of RAM and almost 2 hours of analysis time. Table 2 summa-
rizes the main statistics of the dataset used to train TRIFLOW. In
total, we identified 7,802 unique flows in the malware dataset and
28,163 unique flows in the goodware dataset. This difference can
be attributed to the fact that apps in the benign apps set are, on av-
erage, much bigger in size and number of data flows than the apps
in the malware dataset.

3.2 Flow Prediction Accuracy
Our first experiment evaluates the accuracy of the flow predictor

introduced in Section 2.2. Our aim is to quantify the error made
by the predictor and also to determine if such an error is somehow
different for malware than for benign apps. Recall that θf provides
the probability of flow f appearing in an app if the flow’s source
and sink are located in the app. We define the prediction error for
f in an app a as

error(f) =

{
1− θf if f ∈ F(a)

θf otherwise,
(6)

where F(a) is the set of actual information flows of a. The error

1Version from mid 2016.

Table 3: Flow prediction error statistics after 5-fold cross-
validation using only malware, only benign apps, and both.

Dataset Mean Std. Dev. Median
Drebin 0.0861 0.1272 0.0278

GooglePlay 0.0361 0.0734 0.0094
All 0.0376 0.0784 0.0089

defined quantifies how far from the true value (i.e., 1 if the flow
appears, and 0 otherwise) the prediction is.

In order to obtain a robust estimation of the prediction error,
we applied 5-fold cross-validation to the two modeling (training)
datasets described in Section 3.1. We used non-stratified cross-
validation, i.e., folds are randomly built. Thus, each dataset is split
into 5 folds of approximately equal number of apps. In each of the
5 iterations we estimated θf using 4 out of the 5 folds and then
obtained the error for all the apps in the remaining fold.

Table 3 provides the mean, standard deviation and median values
for all the prediction errors obtained. In all cases, the results show
that the predictor works remarkably well. Interestingly, it seems
to be slightly easier to predict flows for benign than for malicious
apps. We elaborate on this later on in this section when analyz-
ing prediction errors for individual flows. When combining both
datasets, the average error is similar to the one observed for good-
ware. This could be attributed to the fact that malware specimens
in our dataset are often repackaged [4] (i.e., the malicious app is
built by piggybacking a benign app with a malicious payload), so
many of the flows seen in malicious apps are not malicious as they
do not originate in the piggybacked payload.

As for the provenance of the prediction error, Fig. 2 shows the
error distribution for all flows in our datasets. We can observe that
most flows are actually very easy to predict with low error. For
the malware dataset, 4.31% of the flows (i.e., 337 out of 7802) are
predicted perfectly (i.e., their prediction error is 0); around 83%
of the flows can be predicted with an error lower than 0.1; and
for around 90% of them the error is less than 0.25. The most fre-
quent source API methods observed in these flows come from the
TelephonyManager, Location, and Date packages. Similarly, the
most relevant sink API methods observed come from the Cam-
era.Parameters, and Log packages. For the goodware dataset,
1.04% of the flows (i.e., 293 out of 28163) are also predicted with
no error and the figures are similar to the case of malicious apps
(i.e., more than 90% of the flows can be predicted with an error
lower than 0.25). Here, we observe that the most relevant source
API methods come from Intent, Bundle, File, AudioManager,
and View packages, while the most relevant sink API methods
come from AudioManager, MediaRecorder, Log, Intent, and
Bundle.

On the other hand, we observed a number of flows that are very
hard to predict. In the case of malicious apps, flows from source
methods used to retrieve data from intents (e.g., getIntExtra(java.-
lang.String,int)) to sinks related to media (such as setVideoEn-
codingBitRate(int)) are error prone. For benign apps, we observe
difficult-to-predict flows from sources that are used to retrieve Pen-
dingIntent before starting a new activity to sinks which are com-
monly used to set an intent when interacting with widgets (set-
PendingIntentTemplate(int,android.app.PendingIntent)). We did
not examine further the reasons for such errors in certain flows and
decided to leave this question for future work.

3.3 Flow Weights
We calculated the I(f) values for all the 31,175 unique infor-

Figure 2: Distribution of the prediction errors for all information
flows in the two datasets. Note that the in both plots the y-axis is in
logarithmic scale.

mation flows obtained from the training datasets. Fig. 3 shows
the cumulative probability distribution computed over the obtained
values. Around 75% of the flows receive a value I(f) = 0. This im-
plies that either they have not been observed in malware at all (i.e.,
PM (f) = 0), or they appear in all benign samples (PB(f) = 1).
The remaining 25% of the flows with non-zero weights can be
grouped into two distinct classes: those with 0 < I(f) ≤ 0.5
(around 24%) and those with 0.5 < I(f) < 1 (around 1%). Flows
with I(f) > 1 are very rare and were observed mainly in malware
samples only.

Fig. 4 shows the average and maximum flow weight values seen
when grouping flows according to the Susi categories [30]. The
distribution shows that, on average, flows with the highest weights
are those related to unique identifiers (e.g., device and subscriber
identities) and network information (e.g., hosts, ports and service
providers) that end up being used in networking operations (e.g.,
connecting to specific URLs). The next most relevant weights be-
long to flows providing access to sensitive hardware information,
including the subscriber ID and the SIM serial number, with sinks
being methods send such data either via SMS or MMS. Table 4
contains some of the high-weighted information flows in terms of
their I(f) value. Overall, this provides an informative description
of the behaviors (flows) observed in malware samples that do not
appear in benign apps.

Source API methods from sensitive categories that appear in ma-
licious flows (see Table 5) try to access sensitive unique identifiers,

10
-3

10
-2

10
-1

10
0

10
1

I(f)

75

80

85

90

95

100

N
u
m

b
e
r

o
f
fl
o
w

s
 (

%
)

Figure 3: Cumulative probability distribution of the flow weight
values I(f). Note that the x-asis is given in logarithmic scale.

Table 4: Top ranked flows and their weight.

Source Sink I(f)

TM.getDeviceId() String.startsWith() 0.69
TM.getDeviceId() OutputStream.write() 0.26
TM.getDeviceId() Intent.putExtra() 0.52
TM.getDeviceId() String.substring() 0.28
TM.getDeviceId() URL.openConnection() 0.37

TM.getSubscriberId() String.startsWith() 0.88
TM.getSubscriberId() OutputStream.write() 0.24
TM.getSubscriberId() HttpURLCon.setRequestMethod() 0.25
TM.getSubscriberId() URL.openConnection() 0.42
TM.getSubscriberId() Intent.putExtra() 0.58

TM.getSimCountryIso() Log.i() 0.37
TM.getSimCountryIso() String.substring() 0.25

TM.getSimOperator() Log.v() 0.31

TM.getNetworkOperator() String.startsWith() 0.32
TM.getNetworkOperator() String.substring() 1.18

TM.getLine1Number() URL.openConnection() 0.20
TM.getLine1Number() Log.v() 0.52
TM.getLine1Number() String.startsWith() 0.53

TM.getSimSerialNumber() String.startsWith() 0.98
TM.getSimSerialNumber() String.substring() 1.09

gsm.SM.getDefault() gsm.SM.sendTextMessage() 0.82

SM.getDefault() SM.sendTextMessage() 1.81

NetworkInfo.getExtraInfo() Log.d() 0.68
NetworkInfo.getExtraInfo() String.startsWith() 0.45

WebView.getSettings() WebS.setAllowFileAccess() 0.67
WebView.getSettings() WebS.setGeolocationEnabled() 0.46
WebView.getSettings() WebS.setPluginsEnabled() 0.50

System.getProperties() String.substring() 0.45

PI.getBroadcast() SM.sendTextMessage() 1.28

HashMap.get() SM.sendTextMessage() 1.33

TM: TelephonyManager, SM: SmsManager, PI: PendingIntent,
HttpURLCon: HttpURLConnection, WebS: WebSettings.

including DeviceID, SubscriberID, NetworkOperator and SimSe-
rialNumber. Interestingly, sink API methods appearing in those
flows often check if unique identifiers start with a given prefix

MEAN

LO
G

FIL
E

NE
TW
OR
K

SM
S_
MM

S

AU
DIO

NO
_C
AT
EG
OR
Y

LO
CA
TIO
N_
IN
FO
RM
AT
IO
N

NETWORK_INFORMATION 0,0369 0,0074 0,0111 0,1767 N/A 0,044 N/A
CALENDAR_INFORMATION 0,0104 0,0096 0,0063 N/A N/A 0,0148 N/A
LOCATION_INFORMATION 0,0342 N/A 0,031 0,0054 N/A 0,0173 N/A
DATABASE_INFORMATION 0,0277 0,0157 0,022 0,0655 0,0032 0,0179 N/A
ACCOUNT_INFORMATON 0,0027 N/A N/A N/A N/A 0,032 N/A

UNIQUE_IDENTIFIER 0,0824 0,0079 0,3059 0,0919 N/A 0,0508 N/A
BLUETOOTH_INFORMATION N/A N/A N/A N/A N/A 0,0031 N/A

NO_CATEGORY 0,0284 0,0173 0,0382 0,0799 0,0097 0,0222 0,0088

(a)
MAX

LO
G

FIL
E

NE
TW
OR
K

SM
S_
MM

S

AU
DIO

NO
_C
AT
EG
OR
Y

LO
CA
TIO
N_
IN
FO
RM
AT
IO
N

NETWORK_INFORMATION 0,684 0,0096 0,0257 1,8161 N/A 1,1881 N/A
CALENDAR_INFORMATION 0,0421 0,0128 0,0075 N/A N/A 0,1284 N/A
LOCATION_INFORMATION 0,1403 N/A 0,1175 0,0128 N/A 0,1626 N/A
DATABASE_INFORMATION 0,2092 0,0544 0,0471 0,2336 0,0032 0,2766 N/A
ACCOUNT_INFORMATON 0,0028 N/A N/A N/A N/A 0,1056 N/A

UNIQUE_IDENTIFIER 0,5216 0,0187 0,4279 0,1536 N/A 1,0901 N/A
BLUETOOTH_INFORMATION N/A N/A N/A N/A N/A 0,0032 N/A

NO_CATEGORY 0,6032 0,4618 0,5292 1,3315 0,0376 1,1776 0,016

(b)

Figure 4: (a) Average and (b) maximum values of the flow weight distribution with flows grouped by SuSi categories (sources are placed in
rows and sinks in columns). The group NO_CATEGORY refers to sources and sinks classified as non-sensitive in SuSi.

(String.startsWith()), log them (Log.v()) or try to open a con-
nection to a remote server (URL.openConnection()). Further-
more, source methods requesting the settings of the WebView class
(WebView.getSettings()) which is used to display web pages or
online contents within activities of an application or to design a
new web browser and, also, the properties of the System class
(System.getProperties()) which can be used to load files and li-
braries are popular in high-weighted flows. On the other hand, sink
methods used to leak sensitive information through sending SMS
messages (SM.sendTextMessage()) are also common in such flows.

After some preliminary experimentation, the distribution of flow
weights forced us to slightly adjust the way the score is computed.
The reason for this is that apps that contain a large number of in-
formation flows are penalized in their score since they accumulate
a substantial number of tiny weights. To remove the effect of such
tails, TRIFLOW implements two mutually exclusive strategies. The
first one is simply to normalize the score by dividing the sum given
in equation (2) by the number of flows in the app. This provides
a fairer way of comparing apps of different size. The second ap-
proach consists of removing flows whose weight falls below a fixed
cutoff value. In the remaining of this paper we will report results
using the first strategy (i.e., score normalization), but our results
suggest that both perform equally well.

3.4 App Triage
We next discuss the results obtained after scoring the apps in

our dataset with the combined risk metric described in Section 2.1.

As discussed before, such a risk score can be used to rank apps
and prioritize analysis. In addition to this, TRIFLOW provides an
explanation of the risk score similar to the one offered by Drebin [4]
for the case of malware detection. In TRIFLOW, this consists of a
break down of the score into the flows that contribute the most to
it and a presentation to the user grouped by SuSi categories, which
are generally easier to understand than the specific source-sink pair.

We compared TRIFLOW with other quantitative risk assessment
metrics proposed in the literature. To do this we implemented vari-
ous representative permission-based systems, including DroidRisk
[41], Rarity Based Risk Score (RS) [14], and Rarity Based Risk
Score with Scaling (RSS) [34]. As all these systems presented sim-
ilar performance, in this section we only report results for RSS due
to space limitations.

3.4.1 Scoring and Prioritizing Apps
Ideally, a triage system should maximize the time an analyst

spends analyzing potentially harmful applications. Due to this rea-
son, in this work we are primarily interested in reporting top ranked
apps. Thus, we do not discuss the presence of other suspicious soft-
ware such as grayware [3, 37] or obfuscated malware; we refer the
reader to Section 4 for a more detailed discussion on this.

To quantify the performance of our triage system, we carried
out the following experiment. We assume that the market oper-
ator only has time to manually vet a limited number of apps per
unit of time (e.g., per day). We simulate a vetting process at dif-
ferent operational workloads w, ranging from 10% to 100% of the

Table 5: Most relevant sources and sinks from sensitive categories.

Source Categories Sink Categories
NETWORK_INFORMATION UNIQUE_IDENTIFIER DATABASE_INFORMATION LOG FILE NETWORK SMS_MMS

getSerialNumber() getDeviceId() getConnectionId() v() write() openConnection() sendTextMessage()
getSubscriberId() getSimSerialNumber() query() w() dump() setWifiApEnabled() sendPdu()
getSimCountryIso() getLine1Number() getSyncState() e() bind() selectNetwork() recordSound()
getNetworkCountryIso() getSubscriberId() getColumnNames() d() setFileInput() disableNetwork() sendData()
getNetworkOperator() getNumber() getColumnCount() i() openFileInput() setSerialNumber() sendDataMessage()
getAllMessagesFromSim() getIccSerialNumber() getColumnIndex() openFolder() openFileOutput() setCountryCode() setPremiumSmsPermission()
getWifiState() getPhoneName() startListening() openDownloadedFile() setNetworkPolicies() dispatchMessage()
getHost() getServiceProviderName() storeFile() sendto() setMobileDataEnabled() append()
getRemotePort() getVoiceMailNumber() install() readTextFile() setBandwidth() disableCellBroadcast()
getRemoteAddress() getAddress() notify() sendfile() setHostname() moveMessageToFolder()
getLinkAddress() setUserName() setOption() setDeviceName() setTextVisibility()
getNetworkPolicies() checkRead() registerListener()
getDefault() checkWrite() setScanMode()
getCellIdentity() processMessage()
getLatitude() setAuthUserName()
getLongitude() writeToParcel()
getInstalledApplications()
getAllPermissionGroups()

10 20 30 40 50 60 70 80 90 100

0
20

40
60

80
10
0

M
al

w
ar

e
(%

)

Samples (%)
(a) RSS (Sarma et al. [34]).

10 20 30 40 50 60 70 80 90 100

0
20

40
60

80
10
0

M
al

w
ar

e
(%

)

Samples (%)
(b) TRIFLOW.

Figure 5: Results of the triage evaluation. Each plot shows the distribution of the fraction of malware correctly prioritized (y-axis) when a
market operator can only afford to analyze w% of the samples (x-asis) at each time interval (e.g., daily-basis). Results are given for both RSS
(left) and TRIFLOW (right). The red arrows within each plot represent the gain achieved by each scoring system with respect to a random
prioritization policy.

analyzed samples. More precisely, we assume that the operator
receives batches ofN samples per minute and their analysts are ca-
pable of processing 10%, 20%, . . ., 100% of them. This constitutes
a realistic scenario as some market operators can be more agile than
others. The same applies to antivirus vendors. For instance, out of
the 310,000 new samples received every day, Kaspersky Labs only
processes 1% manually (2 per minute)2. For our experiments we set
N = 10, though the particular value is irrelevant for our analysis
as it only constitutes a scale factor.

For each workload, we prepare a batch of samples containing
randomly chosen samples from the joint goodware and malware
datasets (recall that the malware-to-goodware ratio for testint is 1:5,
so on average there will be 5 times more goodware than malware
in each batch). Each sample in the batch is then scored and the top

2http://apt.securelist.com

w% ranked samples are given to the analyst for a deeper analysis.
We measure how many samples (in %) in that final block of samples
passed on to the analyst are malware. We repeated this process 900
times, obtaining one percentage each time. For each workload w,
the distribution of values is given in the boxplots shown in Fig. 5.
We repeated the process for both TRIFLOW and RSS [34]. We
also compared how both systems behave against a random ordering
of the batch of samples. The square (�) symbol in each plot of
Fig. 5 denotes the average ratio of malware samples given to the
human analyst after using a random prioritization policy, while the
diamond (�) symbol denotes the value given by the triage system.
The red arrow joining them represents the difference between both
numbers, i.e., the time saved after triaging the batch.

Our results show that in all cases TRIFLOW can prioritize more
malware samples per batch (see upper quartiles in Figure 5b) than
RSS for every single workload value. Although not shown in the

App: 4735ba2dfbdbb0f1e9a286da83155760c77dcce1bea9c4032ffd39792b251898.apk
Score = 2.78e-05
Score contributions:

1 [81.81 %] UNIQUE_IDENTIFIER -> LOG
[0.03 %] 1.1 TelephonyManager.getDeviceId() -> Log.w()
[0.05 %] 1.2 TelephonyManager.getSimSerialNumber() -> Log.w()
[0.04 %] 1.3 TelephonyManager.getSubscriberId() -> Log.w()
...

2 [6.95 %] UNIQUE_IDENTIFIER -> SMS_MMS
[6.95 %] 2.1 TelephonyManager.getSimSerialNumber() -> SmsManager.sendTextMessage()

3 [2.19 %] NETWORK_INFORMATION -> LOG
...

Figure 6: Snippet of a TRIFLOW report for a malware app belonging to the Plankton family.

paper, the results for DroidRisk [41] and RS [14] are similar. Re-
markably, our approach performs better than RSS when the op-
erators are overwhelmed. For example, TRIFLOW performs un-
der a workload of 30% equally than RSS under a workload of
70%. Thus, the absolute number of malware samples analyzed after
triage is 83% with RSS and 92% with TRIFLOW. When analyzing
the overall improvement reported after a random triage (denoted
with � symbol), we can observe that TRIFLOW not only improves
on average with respect to RSS, but also with respect to the most
challenging cases (note that the distance between � and the lower
quartiles is notably larger in TRIFLOW). The same conclusions can
be obtained by looking at the lower whiskers (worst cases without
considering outliers), where a random triage perform surprisingly
better than RSS for workloads from 10% to 60%.

3.4.2 Explaining the Score
TRIFLOW provides an informative break down of the score of an

app in terms of each contributing information flow. This helps the
analyst to understand why an app receives a particular score and
how much each potential flow within the app contributes to it. The
report is generated by sorting the flows predicted in the app in de-
scending order of their I(f) values and then computing how much
(in %) they contribute to the total score. Fig. 6 shows an excerpt
of a report describing a malware leaking sensitive information via
SMS.

3.5 Efficiency
We now discuss the efficiency of TRIFLOW measured as the time

required to obtain the score for an app. The scoring process has
two main steps: extracting the sources and sinks of the app to con-
struct the set F̂ of possible information flows, and then computing
the score by adding up the product θfI(f) for each flow f ∈ F̂ .
The first step requires identifying all existing sources and sinks,
whereas the second depends on the size of F̂ , i.e., the number
of sources times the number of sinks in the app. Fig. 7 shows
both quantities for all the apps in our datasets (GooglePlay and
Drebin). We consistently observe approximately twice the number
of sources than sinks in each app, with an average of 290.10 and
176.81, respectively. The average size, measured as the number of
potential flows, is 77,187.

Fig. 8 shows the overall time required to obtain the score for
each app as a function of its number of potential flows. On aver-
age it takes 56 seconds to triage the entire app. The minimum and
maximum scoring time for an app in our dataset is 0.01 seconds
and 76.63 minutes, respectively. Approximately 50% of the apps
require less than 31 s; 80% of the apps require less than 103 s; and

0 200 400 600 800 1000 1200

Number of sources per app

0

100

200

300

400

500

600

N
u

m
b

e
r

o
f

s
in

k
s
 p

e
r

a
p

p

Figure 7: Number of sources vs number of sinks for all the apps in
our datasets.

90% of the apps require less than 155 s. On average, TRIFLOW re-
quires 2.3 ms per potential flow in the app. Execution times are not
constant for a given size because not all potential flows will have a
non-null probability of occurrence. The higher the number of flows
with θf > 0, the higher the number of risk terms that have to be
added to the total score. This process is largely non-optimized in
our prototype, hence the substantial variability observed in Fig. 8.

When processing a large dataset of apps, most of the computa-
tion time goes to the extraction of the information flows. Fig. 9
shows the comparison between the time taken by our approach and
FlowDroid. We can observe that FlowDroid is computationally
more intensive than TRIFLOW. In particular, we observe an im-
provement of about two orders of magnitude for smaller set of apps
and about one order of magnitude for larger sets. This is a natural
advantage of using a probabilistic predictor with respect to a precise
tainting analysis, though it should only be used as an estimation for
fast risk analysis.

4. DISCUSSION
We next discuss a number of potential limitations of our ap-

proach related to its accuracy, the underlying risk notion, the va-
lidity of our results, and attacks against the scoring system.

Accuracy. A crucial step in TRIFLOW is the accurate identifica-
tion of the sources and sinks present in an app. Our approach to

1 10 100 1,000 10,000 100,000 1e+06

App size (No. sources x No. sinks)

0.01

0.1

1

10

100

1,000

10,000
T

im
e

 (
s
)

Figure 8: Scoring time for all the apps in our datasets as a func-
tion of each app’s size measured as the total number of possible
information flows. Note that the plot is in log-log scale.

0 2000 4000 6000 8000 10000

Number of apps

10
-2

10
0

10
2

10
4

10
6

T
im

e
 (

s
)

Flow Analysis

TriFlow Analysis

Figure 9: Cumulative time (in seconds) required to extract all pos-
sible information flows of a set of apps.

do this is fast and robust (i.e., all sources and sink identified are
actually in the app). It decompiles each app and looks into its smali
code to find all sources and sinks. Still, it might not be accurate and
in some cases it might miss some sources or sinks. The main cause
for these inaccuracies is the use of reflection, particularly if meth-
ods are invoked dynamically at runtime. Since this cannot be de-
termined at compilation time, such sources and sinks will certainly
be missed by our approach. We do not know how much reflection
is currently used by apps to access sources and sinks and, there-
fore, we cannot measure the extent of this limitation. However,
apps leveraging reflection must use the java.lang.reflect package,
so signaling this might provide the user with a warning about pos-
sible flows being missed by TRIFLOW.

Risk notion. TRIFLOW scores apps according to the probable pres-
ence of interesting flows. In this paper, we have quantified how
significant a flow is using the mechanism described in Section 3.3,
which captures how useful the flow might be to identify malicious
apps. While we believe this is a useful risk metric, we also ac-
knowledge that its use might easily lead to misinterpretations. Specif-

ically, apps that score high should not be thought of as “likely mal-
ware,” but simply as apps that possibly contain dangerous informa-
tion flows (dangerous in the sense that are more frequent in mali-
cious than in benign apps). During our experiments we came across
some benign apps that score higher than many malicious samples,
including, for instance, three known antivirus products (McAfee
Mobile Security, NQ Mobile Security, and Vodafone Protect).

Our flow weighting scheme could be easily extended to incor-
porate other relevant flow features, or simply replaced by another
measure of significance provided by the analyst (e.g., different weights
for different SuSi categories). More generally, TRIFLOW should be
viewed just as a risk metric finer-grained than permissions, and in a
real setting its use should be complemented with other risk metrics
that consider features of an app other than permissions or informa-
tion flows.

Datasets. The experimental results discussed in this paper might
be affected by the number and representativeness of the apps in our
datasets. While the exact coverage of our datasets cannot be known,
we believe they are fairly representative in terms of different types
of benign and malicious apps. For the latter we relied on the Drebin
dataset, which extends the widely used Malgenome dataset and has
been consistently used by most works in the Android malware area
in the last two years. In the case of benign apps, we could only
afford analyzing around 4000 applications, including 42 which are
amongst the top most downloaded apps from Google Play in 2016.
The limiting factor here is the extraction of information flows (with
FLOWDROID, in our case), which requires a substantial amount of
computational resources and, furthermore, fails for a large fraction
of apps. This limitation is, in fact, one key motivation for our work.
In any case, we did our best to avoid selection bias by choosing
apps of different sizes and from different categories, prioritizing
when possible those more popular (in terms of downloads) in the
Google Play market.

Evasion attacks. A sensible goal for an adversary is to modify his
app so that it receives the lowest possible score. Since the score is
monotonically increasing in the number of flows, adding sources
or sinks will never decrease the score. To reduce the overall score
an adversary will need to remove the use of some sources or sinks
(which may affect the app’s functionality), or just make them un-
detectable (e.g., as discussed above in the case of reflection). Alter-
natively, the adversary could try to replace current flows by others
that use sources and sinks that are functionally equivalent to the
original but receive a considerably lower weight. In our current im-
plementation, this would only be possible by relying on methods
rarely used by malware. We have not explored the extent of this
limitation, and it is left for future work.

Our approach is vulnerable to collusion attacks since it does not
consider information flows across apps (i.e., when the source is
located in one app and the data is passed on to another app that
access the sink). This can be seen as an extension to information
flows of the classical permission redelegation attacks [13], and can
only be solved by extending individual analysis to groups of apps
(e.g., such as in [22, 39]).

5. RELATED WORK

Information flow analysis in Android. Information flows pro-
vide meaningful traces that describe how data components are prop-
agated amongst the variables (and components) of a program [45].
Such flows can be used to represent the behavior of a given pro-

gram, showing how and for what purpose programs are using spe-
cific pieces of information [6]. Any information flow is character-
ized by two main points defining the direction of the flow, known
as the source and the sink. Sources are points within the program
where sensitive data are obtained or stored in memory, while sinks
are points where such data are leaked out of the program [44].

Unlike traditional desktop operating systems, apps in Android
have their own life cycle and multiple execution entry points [19].
There are two types of information flows in Android applications.
Explicit information flows analyze data-flow dependencies without
considering the control-flow of the program. In contrast, implicit
information flows analyze the control-flow dependencies between
a source an a sink [31]. State-of-the-art analysis techniques (e.g.
FlowDroid [5]) generally rely on explicit flows for two main rea-
sons. First, implicit data flows can be tracked at a reasonable cost
in most of the applications; and second, tracking such flows are
unnecessary for many systems [31].

From another point of view, information flows are categorized as
either inter-app or intra-app depending on the type of communi-
cation. Inter-app communication, and, as a result, inter-app infor-
mation flows are established between components of two different
applications [9, 12]. On the opposite side, intra-app data flows are
those established between different components of the same ap-
plication [35]. In addition, information flows are usually tracked
using—static or dynamic—taint analysis [21]. Static taint analysis
aims at detecting privacy leaks before the execution of the appli-
cation by constructing a control flow graph, while dynamic taint
analysis tries to keep track of such leaks in run-time or in a cus-
tomized execution environment [18].

There are several recent information flow analysis frameworks
for Android (see Table 6). Static taint analysis tools such as Flow-
Droid [5], DroidSafe [16], FlowMine [36], CHEX [24], LeakMiner
[43], and AndroidLeaks [15] have a relatively low run-time over-
head with respect to other information flow frameworks. However,
suffer from some critical issues that cannot be overlooked. On the
one hand, they are imprecise as they need to simulate run-time
behaviors [5], and, as a result, suffer from a high false positive
rate [6]. On the other hand, some of these frameworks do not scale
well with the number of applications [16]. Finally, applications
could use advanced obfuscation techniques to hinder the extraction
of information flows (e.g., [38]).

Similar to our approach, authors in MUDFLOW [6] use infor-
mation flow analysis to study how malicious and benign apps treat
sensitive data. MUDFLOW is able to establish a profile based on
sensitive flows that allows them to characterize potential risks that
are typically observed in malware. Our system, in a way, is moti-
vated by these findings and by the fact that flow extraction involves
a non-negligible amount of resources. In this paper, instead of sim-
ply analyzing the abnormal usage of sensitive information, we use
speculative information flows to further triage Android apps.

Dynamic taint analysis systems such as TaintDroid [10] and Droid-
Scope [42] generally compensate for the lack of precision of static
tools. Hoowever, these frameworks inherit the limitations of dy-
namic analysis systems, i.e., they may miss data flows from parts
of the code not explicitly exercised [6,16]. Furthermore, apart from
the fact that they impose a high run-time overhead [43], a malicious
app could potentially fingerprint a given dynamic monitoring sys-
tem to evade detection [5].

Tainting analysis frameworks are generally based on sensitive
API calls tracking. Thus, it is paramount that this tracking consid-
ers the way apps interact with the system services. In Android, this
interaction is stateless. This means that the taint analysis system
has to take into account the life-cycle of applications and model all

possible entry points and callbacks defined by the developer. Fur-
thermore, sensitive API calls can also be declared in a native library
outside of the main Dalvik Executable (DEX) and should also be
modeled. Table 6 summarizes the most relevant information flow
analysis frameworks discussed in each of the aforementioned cat-
egories together with the type of components modeled from the
Android OS. Note that FlowDroid and DroidSafe are the only two
static tainting frameworks that consider all modeling assumptions
simultaneously.

Permission-based risk metrics for Android apps. The develop-
ment of metrics and systems to assess risk in Android apps is an
area that has received much attention in the last years. Works in
this area have generally relied on metadata obtained from the app’s
package, such as requested permissions, and from the market, in-
cluding the number of downloads, number of views, or the devel-
oper’s reputation. Permission-based risk scores have been by far
the most commonly explored because of two key advantages: per-
missions are relatively easy to understand by users and are com-
patible with the risk communication mechanism currently used in
Android. Furthermore, app developers can reduce risk by avoiding
the use of unnecessary permissions [14].

One of the seminal works in this area is [11], in which the au-
thors propose a system based on a number of rules that represent
risky permissions to flag apps. More recent contributions intro-
ducing permission-based risk metrics include DroidRanger [46],
DroidRisk [41], MAST [7], WHYPER [28], RiskMon [20], MADAM
[33], and the works of [27] and [23]. The risk metric proposed in
DroidRisk [41] is based on the frequency and number of permis-
sions an application request. In MAST [7], a risk signal is created
based on the declared indicators of the app’ functionality, such as
permissions, intent filters, and the presence of native code. The
intuition behind this idea is that apps which are stronger in terms
of finding relations between these indicators impose a higher mag-
nitude of risk and, thus, should be flagged as malicious. WHY-
PER [28] uses natural language processing techniques to reveal
why an app may need a specific permission, paying attention to
permissions’ purposes. MADAM [33] relies mainly on metadata
from the market, including the developer’s reputation and market
provenance. Finally, RiskMon and the work in [23] consider API
traces as well, since some of them are critical and do not require any
permissions. Finally, [14], [34], and [29] assign high risk scores
to permissions or combination of permissions that are critical and
rarely requested by the apps in the same category.

As permission-based metrics are based on metadata of the app
obtained through static analysis, they can be imprecise and prone
to errors. Other metrics have tried to overcome this by looking into
features other than permissions. For instance, RiskRanker [17] in-
troduces a risk signal based on root exploits, while [23] proposes
a risk score considering static metadata, dynamic information from
intents, components, network usage, and the app’s behavior (e.g.,
whether an app launches other apps). Finally, the majority of met-
rics, except [20] and [27], do not take into account the security
requirements or expectations of smartphone users. This is partic-
ularly important in practice, since risk ultimately depends on each
user’s preferences and execution context.

Our approach is complementary to most of these works. While
we share the goal of quantifying risk, our primary focus is not on
malware detection, but on prioritizing information flow analysis.
Furthermore, our flow-based scoring mechanism can be easily in-
tegrated with existing metrics based on other risk factors to provide
a more comprehensive risk assessment.

Table 6: Information flow analysis tools for Android.

Tool Type Information Flows Modeling Assumptions
Static Dynamic Explicit Implicit Callbacks Life-Cycle Native Code

FlowDroid [5] 3 3 3 3 3

DroidSafe [16] 3 3 3 3 3

CHEX [24] 3 3 3

LeakMiner [43] 3 3 3

AndroidLeaks [15] 3 3 3

TaintDroid [10] 3 3 3 3 3

DroidScope [42] 3 3 3 3 3

6. CONCLUSION
In this paper, we designed and implemented a novel tool, called

TRIFLOW, that automatically scores Android apps based on a fore-
cast of their information flows and their associated risk. Our ap-
proach relies on a probabilistic model for information flows and a
measure of how significant each flow is. Both items are experimen-
tally obtained from a dataset containing benign and malicious apps.
After this training phase, the models are used by a fast mechanism
to triage apps, thus providing a queuing discipline for the pool of
apps waiting for a precise information flow analysis.

Our experimental results suggest that TRIFLOW provides a sen-
sible ordering based on the potential interest of the app. Given the
huge amount of computational resources demanded by information
flow analysis tools, we believe this could be very helpful to max-
imize the expected utility when dealing with large pools of apps.
Additionally, TRIFLOW could also be used as a standalone risk
metric for Android apps, providing a complementary perspective
to alternative risk assessment approaches based on permissions and
other static features. Finally, to encourage further research in this
area, we make our results and implementation available online.

Acknowledgments
This work was supported by the MINECO grants TIN2013-46469-
R and TIN2016-79095-C2-2-R, and by the CAM grant S2013/ICE-
3095. The authors would like to thank the anonymous reviewers for
their valuable comments.

7. REFERENCES
[1] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining

api-level features for robust malware detection in android. In
International Conference on Security and Privacy in
Communication Systems, pages 86–103, 2013.

[2] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. D. McDaniel, and
M. Smith. Sok: Lessons learned from android security
research for appified software platforms. In IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016, pages 433–451, 2016.

[3] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie. A
study of grayware on google play. In 2016 IEEE Security
and Privacy Workshops, SP Workshops 2016, San Jose, CA,
USA, May 22-26, 2016, pages 224–233, 2016.

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck. Drebin: Effective and explainable detection of
Android malware in your pocket. In Network and Distributed
System Security Symposium (NDSS). 2014.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise

context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In ACM SIGPLAN Notices,
volume 49, pages 259–269, 2014.

[6] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden. Mining apps for abnormal
usage of sensitive data. In IEEE Int. Conference on Software
Engineering (ICSE), volume 1, pages 426–436, 2015.

[7] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. Mast:
Triage for market-scale mobile malware analysis. In Sixth
ACM Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec ’13, pages 13–24, 2013.

[8] W. Chen, D. Aspinall, A. D. Gordon, C. Sutton, and
I. Muttik. More semantics more robust: Improving android
malware classifiers. In 9th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, WiSec ’16, pages
147–158, 2016.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android. In
9th international conference on Mobile systems,
applications, and services, pages 239–252, 2011.

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[11] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In 16th ACM
Conference on Computer and Communications Security,
CCS ’09, pages 235–245, 2009.

[12] P. Faruki, S. Bhandari, V. Laxmi, M. Gaur, and M. Conti.
Droidanalyst: Synergic app framework for static and
dynamic app analysis. In Recent Advances in Computational
Intelligence in Defense and Security, pages 519–552. 2016.

[13] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: Attacks and defenses. In USENIX
Security Symposium, 2011.

[14] C. S. Gates, N. Li, H. Peng, B. P. Sarma, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy. Generating summary risk
scores for mobile applications. IEEE Trans. Dependable Sec.
Comput., 11(3):238–251, 2014.

[15] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: automatically detecting potential privacy
leaks in android applications on a large scale. 2012.

[16] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen,
and M. C. Rinard. Information flow analysis of android
applications in droidsafe. In NDSS, 2015.

[17] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: Scalable and accurate zero-day android malware
detection. In 10th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’12, pages
281–294, 2012.

[18] W. Huang, Y. Dong, A. Milanova, and J. Dolby. Scalable and
precise taint analysis for android. In International
Symposium on Software Testing and Analysis, pages
106–117, 2015.

[19] J.-w. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim.
Andro-dumpsys: anti-malware system based on the
similarity of malware creator and malware centric
information. Computers & Security, 2016.

[20] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu. Riskmon:
Continuous and automated risk assessment of mobile
applications. In 4th ACM Conference on Data and
Application Security and Privacy, CODASPY ’14, pages
99–110, 2014.

[21] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer.
Android taint flow analysis for app sets. In 3rd ACM
SIGPLAN International Workshop on the State of the Art in
Java Program Analysis, pages 1–6, 2014.

[22] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, and Y. L. Traon.
Apkcombiner: Combining multiple android apps to support
inter-app analysis. In ICT Systems Security and Privacy
Protection: 30th IFIP TC 11 International Conference, SEC
2015, Hamburg, Germany, May 26-28, 2015, Proceedings,
pages 513–527, 2015.

[23] S. Li, T. Tryfonas, G. Russell, and P. Andriotis. Risk
assessment for mobile systems through a multilayered
hierarchical bayesian network. IEEE Transactions on
Cybernetics, (99):1–11, 2016.

[24] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically
vetting android apps for component hijacking vulnerabilities.
In ACM conference on Computer and communications
security, pages 229–240, 2012.

[25] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro,
G. Ross, and G. Stringhini. Mamadroid: Detecting android
malware by building markov chains of behavioral models. In
The Network and Distributed System Security Symposium
(NDSS), 2017.

[26] McAfee. Threats report. Technical report, McAfee, 2016.
[27] A. Mylonas, M. Theoharidou, and D. Gritzalis. Assessing

privacy risks in android: A user-centric approach. In Risk
Assessment and Risk-Driven Testing, pages 21–37. 2013.

[28] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. Whyper:
Towards automating risk assessment of mobile applications.
In USENIX Security, volume 13, 2013.

[29] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy. Using probabilistic generative
models for ranking risks of android apps. In ACM
Conference on Computer and Communications Security,
CCS ’12, pages 241–252, 2012.

[30] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning
approach for classifying and categorizing android sources
and sinks. In 2014 Network and Distributed System Security
Symposium (NDSS), 2014.

[31] A. Razeen, V. Pistol, A. Meijer, and L. P. Cox. Better
performance through thread-local emulation. In 17th
International Workshop on Mobile Computing Systems and
Applications, pages 87–92, 2016.

[32] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou,
V. P. Ranganath, H. Li, and N. Guevara. Experimental study
with real-world data for android app security analysis using

machine learning. In 31st Annual Computer Security
Applications Conference, pages 81–90, 2015.

[33] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli.
Madam: Effective and efficient behavior-based android
malware detection and prevention. IEEE Transactions on
Dependable and Secure Computing, (99), 2016.

[34] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru,
and I. Molloy. Android permissions: A perspective
combining risks and benefits. In 17th ACM Symposium on
Access Control Models and Technologies, SACMAT ’12,
pages 13–22, 2012.

[35] R. Schuster and E. Tromer. Droiddisintegrator:
Intra-application information flow control in android apps. In
11th ACM Asia Conference on Computer and
Communications Security, 2016.

[36] L. Sinha, S. Bhandari, P. Faruki, M. S. Gaur, V. Laxmi, and
M. Conti. Flowmine: Android app analysis via data flow. In
2016 13th IEEE Annual Consumer Communications &
Networking Conference (CCNC), pages 435–441, 2016.

[37] G. Suarez-Tangil, J. E. Tapiador, P. Peris, and A. Ribagorda.
Evolution, detection and analysis of malware for smart
devices. IEEE Communications Surveys & Tutorials,
16(2):961–987, May 2014.

[38] G. Suarez-Tangil, J. E. Tapiador, and P. Peris-Lopez.
Stegomalware: Playing hide and seek with malicious
components in smartphone apps. In 10th International
Conference on Information Security and Cryptology
(Inscrypt), pages 496–515, 2014.

[39] G. Suarez-Tangil, J. E. Tapiador, and P. Peris-Lopez.
Compartmentation policies for android apps: A
combinatorial optimization approach. In Int. Conf. Network
and System Security (NSS), pages 63–77, 2015.

[40] Symantec. Internet security threat report. Technical report,
Symantec, 2016.

[41] Y. Wang, J. Zheng, C. Sun, and S. Mukkamala. Quantitative
security risk assessment of android permissions and
applications. In Data and Applications Security and Privacy,
pages 226–241, 2013.

[42] L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing
the os and dalvik semantic views for dynamic android
malware analysis. In 21st USENIX Security Symposium
(USENIX Security 12), pages 569–584, 2012.

[43] Z. Yang and M. Yang. Leakminer: Detect information
leakage on android with static taint analysis. In Software
Engineering (WCSE), pages 101–104, 2012.

[44] M.-K. Yoon, N. Salajegheh, Y. Chen, and M. Christodorescu.
Pift: Predictive information-flow tracking. In 21st
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
713–725, 2016.

[45] W. You, B. Liang, J. Li, W. Shi, and X. Zhang. Android
implicit information flow demystified. In 10th ACM
Symposium on Information, Computer and Communications
Security, pages 585–590, 2015.

[46] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off
of my market: Detecting malicious apps in official and
alternative android markets. In NDSS, 2012.

