
Information Fusion 21 (2015) 145–158
Contents lists available at SciVerse ScienceDirect

Information Fusion

journal homepage: www.elsevier .com/locate / inf fus
Providing SIEM systems with self-adaptation q
1566-2535/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.inffus.2013.04.009

q A Genetic-based Framework for an Adaptive Event Correlation.
⇑ Corresponding author.

E-mail addresses: guillermo.suarez.tangil@uc3m.es (G. Suarez-Tangil), epalo-
mar@inf.uc3m.es (E. Palomar), arturo@inf.uc3m.es (A. Ribagorda), isahe@tid.es (I.
Sanz).
Guillermo Suarez-Tangil a,⇑, Esther Palomar a, Arturo Ribagorda a, Ivan Sanz b

a Carlos III University of Madrid, Avda. Universidad, 30, 38911 Madrid, Spain
b Telefónica R & D, C/Don Ramon de la Cruz 84, 28006 Madrid, Spain
a r t i c l e i n f o

Article history:
Received 20 March 2012
Received in revised form 16 January 2013
Accepted 29 April 2013
Available online 16 May 2013

Keywords:
SIEM
Event correlation
Genetic programming
Artificial neural networks
Adaptive system
a b s t r a c t

Security information and event management (SIEM) is considered to be a promising paradigm to recon-
cile traditional intrusion detection processes along with most recent advances on artificial intelligence
techniques in providing automatic and self-adaptive systems. However, classic management-related
flaws still persist, e.g. the fusion of large amounts of security events reported from many heterogeneous
systems, whilst novel intriguing challenges arise specially when dealing with the adaptation to newly
encountered and multi-step attacks. In this article, we provide SIEM correlation with self-adaptation
capabilities to optimize and significantly reduce the intervention of operators. In particular, our enhanced
correlation engine automatically learns and produces correlation rules based on the context for different
types of multi-step attacks using genetic programming. The context is considered as the knowledge and
reasoning, not only acquired by a human expert but also inferred by our system, which assist in the iden-
tification and fusion of events. In this regard, a number of artificial neural networks are trained to classify
events according to the corresponding context established for the attack. Experimentation is conducted
on a real deployment within OSSIM to validate our proposal.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Primarily conceived to centralize all the security information
generated by distributed data sources (named sensors) placed
alongside a computer network, Security Information and Event
Management (SIEM) systems focus on (a) normalizing sensory data
(or collected events) in a common format, (b) providing a rapid ac-
cess to reported events, (c) performing an efficient analysis of scat-
tered events, and also (d) generating correlation alarms. These two
latter functionalities (c) and (d) represent important success fac-
tors for SIEM, as they are concerned with the quality (or relevance)
and not the quantity of the reported events to assist operators for
taking the appropriate incident response decisions [1].

Currently, the role of information fusion in the computer secu-
rity field is being considered as a compelling solution to enhance
and automate (c), i.e., the analysis of security events [2]. In fact, fu-
sion techniques can be effectively applied to intrusion detection
since they are proven to efficiently deal with heterogeneity in three
main aspects: when a number of different data sources are in-
volved, when these involved sensors are located at different places,
and when the information they process is represented possibly
using different formats [3].
1.1. Motivation

Hence, SIEM systems should place equal effort on guaranteeing
an appropriate security information fusion as on assuring an effi-
cient event correlation analysis. However, despite their promising
advantages, the following three intriguing challenges emerge.

First, current SIEM systems are highly dependent on the config-
uration of the multiple sensors deployed over the network. Multi-
ple techniques have been proposed so far to combine data derived
from disparate sources in such way that the inferred information
and knowledge assist in the identification of attacks. Most of them
explore data fusion [4], data mining [5] and artificial intelligence
(AI) [6] algorithms in network monitoring and pattern recognition
processes [7].

Secondly, existing correlation engines still require operators to
invest a non-negligible effort to aggregate related alerts and also
to select the most appropriate countermeasure [8]. Several tech-
niques have used prerequisite and consequence of attacks for
determining threat pattern sequences, most in the way of a series
of alerts [9,10].

Finally, emerging trends in SIEM systems are paying special
attention to the employment of automatic procedures for real time
analysis of the security events. On one hand, few approaches have
focused on the design of intelligent intrusion detection systems

http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2013.04.009&domain=pdf
http://dx.doi.org/10.1016/j.inffus.2013.04.009
mailto:guillermo.suarez.tangil@uc3m.es
mailto:epalomar@inf.uc3m.es
mailto:epalomar@inf.uc3m.es
mailto:arturo@inf.uc3m.es
mailto:isahe@tid.es
http://dx.doi.org/10.1016/j.inffus.2013.04.009
http://www.sciencedirect.com/science/journal/15662535
http://www.elsevier.com/locate/inffus

1 We further elaborate on these techniques in Section 6 in order to discuss about
our approach’s goodness.

146 G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158
(IDSs) capable of autonomous learning to incorporate new knowl-
edge from previously suffered attacks [11]. On the other hand, by
introducing self-learning and adaptation into event correlation,
SIEM systems would be provided with an autonomous up-to-date
knowledge on attacks specially focused on preventing zero-day at-
tacks from any further damage [12]. Moreover, an intelligent corre-
lation engine would be devoted to recognize related events from
complex multi-step attacks. In this regard, it is still an open issue
to automatically recognize the relevant events for a given attack.
To encounter this challenge, we believe that a simple relevancy
metric for attacks is mainly determined by their contexts (i.e., situ-
ational awareness [13]). Hence, in this work a context is considered
as the prior known knowledge which is used to assign an interpre-
tation to the sensory data, and resolve ambiguity upon the identi-
fication of multi-step attacks. In other words, determining the
context of a given attack facilitates the extraction of the potential
attack’s representations, i.e., most in the way of a collection of
events, from an holistic viewpoint.

1.2. Contribution

This article offers the following main findings contributing to
any previous related work as follows:

� We present a self-adaptive SIEM system which optimizes the
correlation process by applying AI techniques and includes
the following functionalities:

1. A context-based security information fusion subsystem,
namely CONTEXTUAL, classifies all the events collected by
the SIEM system by deploying artificial neural networks
(ANNs—widely applied to classification processes [14,15]).
A number of ANNs are trained to dynamically recognize
and categorize events into attack scenarios being super-
vised by the prior known knowledge embodied in the con-
text studied. More precisely, an ANN will establish the
patterns containing type and number of events to represent
a given multi-step attack. The classification provided by
CONTEXTUAL will assist the correlation engine to chain
context-related events.

2. An enhanced event correlation subsystem, namely GENIAL,
generates efficient correlation directives by introducing
Genetic Programming (GP) into the SIEM correlation
engine. GP is a machine learning technique inspired by bio-
logical evolution, and has already been applied to intrusion
detection approaches such as those in [11,16,17]. Our GP
implementation allows the correlation engine to automat-
ically learn and produce correlation rules for different types
of multi-step attacks so being able to relate events to the
specific attack context and also making the incident
response more efficient.

� Our system is designed to be self-adaptive mainly due to the
fact that inferred correlation data can evolve and then be used
to detect a certain type of attack.
� We carry out a real integration of our subsystems into OSSIM [18],

namely the de facto standard Open Source SIEM. Our experimenta-
tion proves the accuracy of the correlation directives generated by
our subsystems which successfully detect different attack scenar-
ios, such as distributed denial of service (DDoS) attacks.

The remainder of the article is organized as follows. In Section 2,
the main background found in the literature is outlined. We intro-
duce a brief overview of our system together with its building
blocks in Section 3. In Sections 4 and 5, the two subsystems are
described in detail. In Section 6, our proposal is deployed and
analyzed in a real networking environment, and finally, some
conclusions are established in Section 7.
2. Related work

Several SIEM software products have been recently developed
to provide essential intelligence in order to reach important asso-
ciated properties such as flexibility, adaptability, pattern recogni-
tion and efficiency. For example, ArcSight [19], RSA enVision [20],
Sensage [21], HP CLW [22], Novell IBM [23], LogLogic [24], netFo-
rensics [25], Bitacora [26], and OSSIM [18] are some of the multi-
layered security frameworks presented so far which establish their
own architecture and deployment options (we refer the interested
reader to [27] for an excellent evaluation of current SIEM prod-
ucts). However, in general, a SIEM system involves these four main
disciplines: detection, storage, processing, and correlation and
intelligence.

Reasonable intrusion detection practices rely on IDSs [28] and
event log analysis systems [29,30]. However, these techniques
are not enough to detect complex distributed attacks when used
separately. For instance, depending on where the IDS is placed it
will detect some behaviors and skip others. Two different ap-
proaches have been proposed to address it: (1) a centralized inte-
gration of the events reported as a whole [31,32] and (2)
distributed multi-agents systems [33,34]. Interested readers can
find an excellent survey on collaboration-based IDSs in [35]. Thus,
different AI techniques have been applied to optimize intrusion
detection aimed at dealing with persistent disadvantages such as
(i) the volume of alerts per day generated from different sources,
(ii) a high false-positive rates and (iii) the inefficiency to discover
novel attack scenarios [36]. In particular, Expert Systems [37], Data
Mining [38,39], Statistical Analysis [40], Neural Networks
[6,7,15,41], Machine Learning [34,42], Genetic Algorithms
[43,44], and Artificial Immune systems [45] are the most represen-
tative AI-based approaches.

Regarding storage and processing processes, early data aggrega-
tion schemes [8,46][47] and current data fusion techniques [48,49]
are conceived as a palliative for the critical management of heter-
ogeneous (in data and location) events generated in bulk.

On the other hand, event correlation has been extensively ad-
dressed in difference domains such as network fault diagnostic
[50], sensor networks [51] and attack detection [10] by applying
multiple strategies. Recently, a strong conception exists towards
the effectiveness of the correlation process when considering a
centralized strategy [52]. Basically, the correlation engine infers
extra information from the events finding out connections be-
tween them [53]. Principal objectives range from reducing the
large number of alerts reported to identify multi-step attack sce-
narios, and also to identify new attack signatures. This latter objec-
tive is perhaps the greatest challenge as attacks are continuously
evolving. However, the intelligent extraction of correlation rules
still deals with runtime overheads in terms of computational
power and memory consumption imposed by the application of
AI techniques. In particular, recent approaches to provide the cor-
relation process with automatization are mainly based on the fol-
lowing techniques1: (1) Similarity-based Clustering organizes related
events into attack groups according to a degree of similarity [39], (2)
Aggregation based on pre-defined attack scenarios performs correla-
tion by matching alerts up with patterns specified by operators or
learned through training datasets [8], and (3) Pre-requisites/Conse-
quences syntaxis is used to define the necessary conditions that must
exist for a certain attack to be successful, as well as the conditions
that may exist after a specific attack has occurred [9].

In this work we focus on optimizing event correlation from a
bio-inspired viewpoint. More specifically, genetic algorithms (GA)

G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158 147
and genetic programming (GP) have already been applied to either
generate intrusion detection rules for IDS [16] or to classify attacks
[17,43]. Our proposal scrutinizes the combined use of neural net-
works and GP to optimize the event correlation process as well
as presenting a holistic framework to efficiently apply such AI
techniques. Furthermore, the experiments and evaluations con-
ducted in this work are performed on a real network deployment,
with real traffic. We also provide an informal comparison of the
goodness of our approach with some other related works.
3. Overview of our system

In this section, we provide a brief summary of the main subsys-
tems, namely CONTEXTUAL and GENIAL, and other important char-
acteristics that our system holds.
3.1. System input: events

Our system is deployed on an open source SIEM system pub-
lished under GLP license, namely OSSIM. As depicted in Fig. 1,
our system receives sensory data or events from a number of
sources deployed within a OSSIM-monitored environment. We as-
sume that sensors are well-configured and report the encountered
events to the SIEM system in real-time. It is also assumed in our
model that events are reported containing a description of the
problem that caused each security event. Traditionally, such events
are compiled and stored in bulk by the SIEM system for a further
analysis which in turn promises near real-time alerts to some ex-
tent. Our enhancement introduces the ability to consolidate such
sensory data in an efficient and automatic manner.
Self-Adaption Event Correl

Neural-based
security

information fusion
sub-system

(CONTEXTUAL)

Ge
even

su
(

Host
Events

Network
Events

CONTEXTUAL

Neural
Networks

Pattern
Generation

Module

Positive
Events

Other Sensor
Events

Neural Network
Knowledge Base

Neural
Network

Tags
Events

Fig. 1. Our system
3.2. Security information fusion: CONTEXTUAL subsystem

Events are classified by CONTEXTUAL, i.e., an ANN and context–
based security information fusion subsystem, which uses a series
of previously defined tags. Basically, such tags are previously ex-
tracted by an experienced human operator with a good compre-
hension of each context, i.e., the concrete type and number of
events occurred when a certain attack is launched. More precisely,
the Neural Network Tags database specifies a series of labels or key-
words and it is used by the Pattern Generation Module to define the
patterns of a given attack scenario or context. Extracted patterns
are stored in the Neural Network Knowledge Base.

In order to such a classification occurs adaptably, a number of
ANNs is deployed for each context defined. Received events which
fit in with any extracted pattern will comprise the subset of events
called Positive Events.

3.3. Event correlation: GENIAL subsystem

The aforementioned subset resulting from CONTEXTUAL con-
tributes to produce an adaptive event correlation subsystem
namely GENIAL which is based on GP. Thus, GENIAL receives the
sensory data or events especially preprocessed and fused by CON-
TEXTUAL. In particular, the classification of positive and negative
samples assists in the generation of a population of genetic individ-
uals on which GENIAL executes a genetic algorithm. An individual
chains together events based on their relevant attributes which
strongly rely on the context being examined as well as on the char-
acteristics of the networking environment. Note that individuals
are candidate solutions in our genetic program and will represent
correlation directives in our domain. For several rounds or genera-
ation System

netic-based
t correlation
b-system

GENIAL)

Correlation
Rules

GENIAL

Individual
Generation

Positive
Events

Negative
Events

Evaluation

Individuals

Breeding

Quality of
fused

output?

Individual

in a nutshell.

148 G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158
tions, evaluation and breeding procedures are therefore performed
on a number of individuals towards producing the best individual.
3.4. System output: correlation directive

The best Individual produced during the execution of our genet-
ic algorithm is selected and exported to the OSSIM correlation en-
gine as a Correlation Rule using OSSIM’s native syntax.

Since our proposal has been designed minimizing dependencies
with the SIEM system, the only requirement to be satisfied is data-
base availability. Therefore, our subsystems have access to the
database where the SIEM system centralizes the reported events.
In fact, our system uses sensory data as input and outputs SIEM-
native event correlation rules targeting specific multi-step attacks.
Note that experimentation focuses on analyzing complex distrib-
uted attacks such as DDoS and web-scans dissemination by using
botnets, worms, trojans and virus, to name a few.
4. CONTEXTUAL: context-based security information fusion
subsystem

In this section, we introduce CONTEXTUAL, an adaptive security
information fusion subsystem based on ANNs which is devoted to
classify the security events into different types of attacks. The con-
text plays an essential role here since it represents the knowledge
defined by the expert and used during the ANNs’ configuration.

This subsystem consists of the following phases:

1. Tag definition and context representation. A data association
process is performed by a static identification of groups of
related events as described in Section 4.1.

2. Prior knowledge injection and ANN deployments. The train-
ing and deployment of a collection of ANNs (described in Sec-
tion 4.2) optimize the classification of unknown events into
the categories extracted during the phase above.

4.1. Tag definition and context representation

Current SIEM correlation engines are intent on recognizing
malicious activity by identifying the existing associations amongst
events. In this regard, the common practice is to employ reference
numbers for defining types of events and the sensing sources
which reported them. More precisely, sensors log the result of
those associations in different formats but containing similar infor-
mation extracted from the suspicious packet: source and destina-
tion’s IP addresses and ports, protocols, timestamp, sensor’s ID,
or event ID defining the suspicious activity, to name a few. As a re-
sult, correlation rules highly depend on sensors’ configuration and
any change on this configuration leads to revisiting every rule. To
encounter this problem, CONTEXTUAL is sensor-independent as re-
ceived events are classified into a series of keywords, namely tags,
Table 1
A sample of tags extracted during this work experimentation.

Description Tags

Web Access, attempt, attack, command, directory, password, crossite, http
response, iis

Configuration Conf, disclos, reveal
Sql Sql, oracle, odbc
Injection Injection
Virus Virus, trojan, ware, spam, bot, infection, propagation, virexploit, irc,

ware_blacklist
Scan Netscan, portscan
Crosssite Crosssite, xss
which are extracted from the event logs towards an automatic rec-
ognition of event types.

Thus, on one hand, a database called Neural Network Tags is cre-
ated by the human expert comprising the following:

Definition 1. A tag tj 2 T is a keyword which captures the nature
of a given event description. Each event is therefore defined more
precisely by its tag.

Thus, tags are extracted based on the experience of the human
expert and according to (i) the characteristics of the environment,
and also (ii) new incoming events in the SIEM system. For the sake
of clarity, in our experimental testbed, any web-based intrusion
pattern may be totally characterized as a particular set of tags
which may contain any of the following: web_access, web_attempt,
web_attack, web_command, web_directory, web_password,
web_crosssite, web_httpinspect, web_configuration, web_administra-
tion, web_xss, web_injection, web_overflow, web_scan, web_error,
web_auth, web_dos, web_highseverity, web_response, as shown in
Table 1. Data mining tools can be applied to minimize the interven-
tion of the expert in this stage.

On the other hand, a human expert is also needed to specify the
concrete number and type of the events representing each context.
In that regard, CONTEXTUAL generates a series of patterns defined
as follows:

Definition 2. A pattern p defines an histogram of occurrences for
each tag tj 2 T which all together determine a certain intrusive or
misuse activity registered by a SIEM-monitored environment.

In other words, the frequency f(tj) of tag tj in each histogram
represents the number n = f(tj) = jEjj of the security events {E1,E2, -
. . . , En} 2 Ej tagged accordingly with tj in pattern p, therefore,

Definition 3. A context representation Ci is defined by a total
number m of patterns pi

m 2 P which consists of all the events that
the attack i involves:

pi
m ¼ fjE1j; jE2j; . . . ; jEjjgj 8 Ej9 tj 2 T

Table 2 represents an excerpt of a number of patterns in P
which are generated in the phase below.
4.2. Prior knowledge injection and ANN deployments

CONTEXTUAL implements a series of ANNs which are defined to
represent a particular attack so categorizing different types of
security threats. In that regard, a human expert introduces the
prior knowledge into the Neural Network Knowledge Base which
keeps track of the identified patterns. Thus, such patterns attend
to configure the ANNs, i.e., weights and neuron connections, which
in turn indicate whether a collection of events (not necessarily in
order) can be classified into a given context representation (see
Fig. 2). ANNs are implemented using the Weka [54] library.
inspect, php, administration, script, scan, overflow, error, auth, DoS, highseverity,

telnet, dtelnet, ftp, dftp, smb, dsmb, vir_request, vir_response, trojan_blacklist,

Table 2
Initial set of patterns describing an attack scenario for a given context Cweb. Each pattern pweb

m in each row represents the number of events with tag tj and serves as input for each
ANN. Here fm(taccess) = {0, 0, 44, . . .}"m = {1, 2, 3, . . .}.

f(taccess) f(tattempt) f(tattack) f(tcmd) f(tdir) f(txss) f(tpwd) f(tauth) f(tj) Out

pweb
1

0 0 0 0 0 0 0 0 0 � � �
pweb

2
0 0 0 0 0 0 0 0 � � � No

pweb
3

44 31 13 0 0 1 0 � � � 7 Yes

pweb
4

463 0 0 1 462 0 � � � 462 0 Yes

pweb
5

50 19 8 0 0 � � � 0 8 20 Yes

pweb
6

50 30 14 0 � � � 4 0 3 4 Yes

pweb
7

563 0 0 � � � 0 563 563 0 0 Yes

pweb
8

64 49 � � � 0 0 1 0 4 0 Yes

pweb
9

653 � � � 20 0 0 0 0 0 0 No

pweb
m

� � � 6 649 0 0 1 0 0 1 No

Fig. 2. Each ANN is a multilayer perceptron which maps a set of input patterns
(Knowledge Base) with a number of incoming events. Let ek denotes a neuron and wj

the associated weight of each neuron connection. Function fm(tj) returns the
number of events tagged with tj 2 T for each tag encountered in Ci and for each
pattern in pi

m 2 P. Each ANN produces an appropriate output y (see Eq. (1)) for each
Ci previously defined.

G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158 149
Hence, we deploy a number of multilayer feedforward ANNs
which learn from a limited training set, i.e., the Neural Network
Knowledge Base by executing the phases below:

1. Pattern Generation Module. Human expertise on a context is
applied towards the specification of P, building the model to
relate a series of events to a concrete instance of a given
multi-step attack Ci. Hence, a total number m of patterns
pi

m 2 P is extracted and stored into the Neural Network Knowl-
edge Base for each Ci.
In order to create a training set for Ci as in Table 2, this process
requires the identification of positive (the yes-taught set) as well
as negative samples (the no-taught set). Samples are then chosen
such that representing the attack scenario and its variations.
Each ANN is trained offline to produce the output such that sat-
isfying Eq. (1) for each pi

m 2 P of Ci:
y¼rpi
m
ðeÞ¼

yes if ePh

no if e<h

�

where e¼
Xk

i¼1

wi �
XjT j
j¼1

wj
i � f

mðtjÞ ð1Þ
where h denotes the threshold generated and adjusted by each ANN
to achieved the expected classification for inputs, and fm(tj) returns
the total number of events tagged using tj for a given pattern pi

m of
the context Ci. We run our experiments for a number of neurons
which started small and kept increasing until satisfactory results
were obtained.
Each ANN learns the best configuration (the reliability ratio is 100%)
in order to satisfy the defined context representation. For example,
receiving a number of 15 events tagged as xss and 12 web_access
should match the crosssite scripting context Cxss. By contrast, consid-
ering a number of 30 events tagged as web_error, an 2 web_auth
does not represent any threat.
2. ANN Deployment. Once trained, the ANNs are deployed in a real

networking environment. Thus, the ANNs receive as inputs real-
time events and classify them with the corresponding context
label, e.g. DDoS. Moreover, new encountered patterns will be
dynamically added on the Neural Network Knowledge Base
which makes false positives to decrease rapidly.
Participation of a human expert is also required at the end of
this phase to carefully examine the knowledge base of Positive
Events, PE. This database consists of the events classified as
any of the context representations analyzed by the ANNs
deployed. In particular, the expert should inspect the patterns
and reconfigure the ANNs, if needed, in terms of the following
parameters: momentum, learning rate, and training time (see
Weka [54] library for details on these parameters). This process
represents the so-called event consolidation to a central data-
base which is the output of CONTEXTUAL.

A note on the consolidation of the new encountered patterns.
Preprocessed events in PE are correlated afterwards, most in the way
of an information fusion system does. In our experimentation we test
CONTEXTUAL output on both, the present correlation engine of OS-
SIM by default and also on the enhanced correlation subsystem using
GP namely GENIAL (which is presented in the section below). It is
interesting to note that CONTEXTUAL performance gets better results
if GENIAL is executed straight after. By contrast, OSSIM’s correlator is
not efficient interpreting CONTEXTUAL output even though this out-
put is presented in the correct format.

5. GENIAL: GP-based event correlation subsystem

In this section, we apply GP to enhance the OSSIM’s correlation
engine aimed at automatically generating event correlation direc-
tives. A complete set of directives is an XML representation of secu-
rity events as described further below. Basically, we implement
GENIAL based on a Java-based Evolutionary Computation (ECJ) Re-
search System which comprises the following phases (see also
Algorithm 1):

1. Preprocessing. ANNs’ outputs create a training set to guide a
supervised learning of the behavior of a given context represen-
tation Ci and then assist correlation in automatically inferring
the potential relationships amongst events. Important piece of
correlation information is inferred in this stage by inspecting
the events received.

150 G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158
2. Representation of individuals. An individual represents a cor-
relation directive as a combination of rules connected via oper-
ator functions such as AND and OR. Rules are written as lists of
conditions that should be satisfied between event log informa-
tion (or characteristics of the events received) and a series of
rule attributes described below.

3. Initialization of the population. A population consists of a for-
est of individuals (with a tree-based representation). The popu-
lation is randomly initialized according to the inferred
information extracted during the Preprocessing phase.

4. Evaluation of individuals. During a sequence of generations,
individuals are evaluated using the training set created in the
Preprocessing stage.

5. Breeding. By applying crossover and mutation operators on
individuals, new individuals (offprints of the previous genera-
tion) are generated.

Subsections below describe these phases in detail.

5.1. Preprocessing

The purpose of preprocessing the events extracted from the
ANNs is twofold. First, we need to construct a training set which
supervises the evaluation of individuals as described in Section 5.4.
Secondly, preprocessing assists us in inferring specific correlation
information for the context representations (or simply context
hereafter) identified.

On one hand, we have two different types of events, namely.

Definition 4. A positive context compiles the set of events that
were classified as ‘‘positive’’ by CONTEXTUAL’s set PE.
Definition 5. A negative context compiles the set of events that
were classified as ‘‘negative’’ by CONTEXTUAL and also were
obtained randomly from other contexts.

Hence, context specifications, i.e. outcomes of each ANN, are all
labeled as Positive and belong to the set PE in Algorithm 1 – line 1.
On the contrary, unclassified events form the set of Negative Con-
texts denoted as N in Algorithm 1 – line 2. However, both collec-
tions will produce the training set which is generated by
splitting them into several subsets of N-grams [55] called Registers
(and denoted by R in Algorithm 1 – line 3). Thus, we have.

Definition 6. A register ri 2 R represents a sequence of k events,
and are produced by different combinations between both Positive,
PE, and/or Negative, N , contexts, i.e., R ¼ fr1; � � � ; rng
s:t:ri � PE _ N .

A Positive Register compiles Positive Contexts, i.e., ri ¼
fE1; � � � ; Ekg; k > 0; s:t:8Ej � PE, whereas a Negative Register gathers
together events from N . Therefore, in this stage two files are
generated to train a population of events, namely.
Table 3
Event characteristics used to identify correlations between positive-tagged contexts and at
correlation is achieved.

Category

addrfrom addrto pluginid

Number of events per
p
p p p

– –
p

Protocols per – –
p

Time range – – –
Max slot time – – –
Min slot time – – –
� A positive training set is formed by the collection of Tp positive
registers.
� A negative training set consists of the total amount Tn of encoun-

tered negative registers.

On the other hand, by inspecting event characteristics from po-
sitive contexts in PE we can infer very useful information for the
correlation process, especially for representing individuals in our
domain. In particular, we have identified a limited number of attri-
butes extracted from the received events which capture intrinsic
event properties for the contexts performed in our evaluations.
Hence, a number of rules will be constructed in the following stage
of GENIAL which relate event characteristics to attributes so eval-
uating if a certain condition is satisfied, as shown in Table 3. From
our conducted experiments, we define the following attributes of
rules: name, type, pluginid, pluginsid, addrfrom, addrto, portfrom, portto,
protocol, reliability, timeout, occurrence, sticky, sticky_difference, con-
dition, value, interval, absolute, and reliability_abs (for further details
on these attributes refer to [56,18]).

In this regard, events will be classified into categories according
to the attributes in common. Thus, we can organize events in cat-
egories as.

Definition 7. A number of events are classified into the same
category if values of their event characteristics match up with the
following attributes: addrfrom, addrto, portto, pluginid, and pluginsid.

Apart from these attributes, the existing timing relationships
between any pair of consecutive events are also extracted from
events’ timestamps in PE to correlate temporal conditions
(timeout).

5.2. Representation of the individual

In this phase, we deal with the representation of candidate solu-
tions to our correlation problem which are represented by individ-
uals in a population, i.e., in the form of correlation directives. A
correlation directive is an XML data structure with the following
schema:

� Directive ? (Rule). Directive consists of a unique Rule. Attributes
of directives are an identifier, a name and a priority.
� Rule ? (Rules). Rule comprises at least one rule in Rules.
� Rules ? (Rule+). Element Rules mandatorily has one or more

occurrences of Rule. There are no specific attributes for this
element.

GP defines individuals as trees where intermediate nodes (or
simply nodes) have an operator function and every leaf node has
an attribute of our model. In the experiments conducted, the oper-
ator for non terminal nodes executes operators like AND and OR,
whilst attributes for terminal nodes consist of OSSIM rules. For
example, put simply an individual such the expression: rulex AND
tributes of a rule. We mark with a
p

when the attribute is applicable, and with – if no

pluginsid portto portfrom protocol timeout

– – –
–

p p p
–

– – – –
– – – –

– – – –
p

– – – –
p

– – – –
p

G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158 151
(ruley OR rulez). However, individuals should meet the following
constraints according to the aforementioned XML schema [18]:
(i) nodes have at most two ‘‘sibling’’ nodes, (ii) nodes’ children will
be either leaves (i.e. rules) or AND operations, and (iii) the root of
each individual cannot be an OR operation.

Now, to establish the best configuration for individuals in our
domain, we have organized rule attributes into two different types,
as follows:

� A number of rule attributes, which are referred as Relevant attri-
butes, are applied to find equivalences between events.
In particular, main relevant attributes for events are source and
destination addresses (addrfrom,addrto), their corresponding
ports (portfrom,portto), the sensor identifiers (i.e. pluginid and
pluginsid), and their timestamp when detected.
� A number of additional attributes, which are called Advanced

attributes, are applied to the evaluation process.
Attributes of this type are priority, reliability, occurrence and
timeout.

Hence, Relevant attributes are those which identify sensory data
from both the attacker and the victim viewpoints. However, Ad-
vanced attributes comprise information regarding the probability
of success of a given attack and the importance of the asset within
the organization environment. Therefore, Advanced attributes de-
pend on the organization network, whereas Relevant attributes rely
on the particular attack context.

5.3. Initialization of the population

ECJ development toolkit provides a tree building method,
namely the class HalfBuilder, which implements a complete
procedure to initialize a population of individuals. In this process,
nodes are inserted into the tree according to a certain probability
which determines how much the tree spreads itself.

Additionally, ECJ provides a friendly parameter file to specify all
the aforementioned constraints. However, Advanced attributes
intrinsically depend on the length and width of the generated
trees, and also on the information of the Relevant attributes which
is randomly filled out. Thus, we modify the ECJ initial population
builder (as described in Algorithm 1 – lines 4–7) in order to revisit
the generated tree by performing the following two phases:

1. A new method is added aimed at counting the total number of
leaves which match up with pluginid and pluginsid values for
each tree branch.

2. A new method is included which uniformly distributes the
attributes timeout, reliability and the total number of occurrences
stored in the positive training set along the tree branches.
Fig. 3. Evaluation of register r
3. An heuristic to aggregate events is also added based on the
source and destination IP addresses and ports information con-
tained within events. Basically, a tuple of events can be aggre-
gated in a N:M topology manner, where N is the number of
different sources and M represents destinations. Thus, we gen-
erate different rules according to the following types of interac-
tion: (i) unidirectional (aggregating events to/from a given
computer), (ii) bidirectional (putting together events exchanged
between a given pair of computers), and (iii) multi-directional
(aggregating in terms of a different attribute as there is no cor-
relation between IP addresses). This heuristic facilitates popula-
tion building and systematically categorizes correlations
between events according to the way events are aggregated.

5.4. Evaluation of the individuals

The process of evaluating individuals is supervised by the train-
ing sets as follows. First, each individual is evaluated using both
types of registers, i.e., positive and negative, previously generated
(see details in Fig. 3). Basically, trees are visited by applying pre-or-
der traversal which recursively visits each node on the left and
right subtrees from the root. In particular, nodes are evaluated in
the following terms:

� Leaf nodes are evaluated according to the events in each regis-
ter. In this regard, event characteristics are compared with the
Relevant attributes of the rule being evaluated. Additionally,
we seek for potential correspondences between each rule and
the number occurrence of events in chronological order.
� Nodes are evaluated by applying AND and OR functions to the

values produced in the evaluation of their children.

Once individuals have been iterated, they will be classified into:

� A positive individual returns true as a positive register matches
up; or
� A negative individual occurs when a negative register evaluated

over the individual returns false.

Thus, we make the population evolve for a series of generations
in which a fitness function is evaluated on every individual (Algo-
rithm 1 – line 10). The fitness function is used for measuring and
ranking every individual based on its quality to represent a candi-
date solution. Since our objective is to maximize the number of po-
sitive classifications over positive registers as well as to maximize
the number of negative classifications over negative registers, we
have defined the fitness function as

fitness ¼ 1� ðP þ NÞ � P
ðTp þ TnÞ � Tp

ð2Þ
1 over a given individual.

152 G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158
where PN and N are the number of positive and negative classifica-
tions respectively, and Tp and Tn are the total number of positive and
negative registers evaluated. Fitness values can therefore take any
nonnegative value between [0.0,1.0], being 0.0 the value for best
individuals and 1.0 for the worst ones. Consequently, a selection
of individuals is made during each generation based on their fitness,
as shown in Algorithm 1 – line 11. To sum up, the higher the num-
ber of negative/positive classifications, the better the individuals’
fitness is.

Algorithm 1. Proposed algorithm for GENIAL
1: PE ¼{Collection of Positive Events}
2: N={Collection of Negative Events}
3: R ¼{r1,r2,r3, . . . , rn/ri � P _ N}
4: Individuals {Initialization of the population}
5: Individuals {Initialization of the Relevant attributes}
6: Individuals {Initialization of the Advanced attributes}
7: directive = null; bestindividual = null; bestfitness = 1
8: for all Generations do
9: for all i in Individualsdo
10: fitness = eval(i,R) as in Eq. (2)
11: iffitness is better than bestfitnessthen
12: bestfitness = fitness
13: bestindividual = i
14: end if
15: end for
16: Individuals {Breed (Individuals)

S
bestindividual}

17: end for
18: directive = ToOssimSintax (bestindividual)
19: return directive

Important remarks. To define the appropriate fitness function
is always hard and depends on the problem domain. For instance,
such a function is generally determined by trial–and–error. We run
our experiments considering different fitness functions which gave
us worse results. For example, we have analyzed the function
based on the risk assessment present in OSSIM by default:

Risk ¼ ðAsset � Priority � ReliabilityÞ
25

ð3Þ

Function in Eq. (3) follows an heuristic algorithm which establishes
a risk that the monitored asset might undergo for a specific thread
(i.e. the reliability of the possible attack) and it is also based on the
directive priority. This function has been proven to report false pos-
itives and to ignore relevant characteristics presented in several
well-known datasets.

5.5. Breeding process

In this phase, the population is evolved by the recombination of
individuals by applying selection, crossover and mutation opera-
tors. A tournament selection is performed so that the best individ-
uals will survive in the next generation (Algorithm 1 – line 16). A
new set of individuals are therefore generated by forcing mutation
on the selected individuals.

We have modified the ECJ method called MultiBreedingPip-

eline to revisit the generated tree as advanced attributes are
modified in each generation.

Finally, the best individual, i.e., the correlation directive which
optimally fuses the events related to a specific context, is exported
from GENIAL to OSSIM using its native syntax (Algorithm 1 – line
18).
6. Experimental evaluation of our system

We performed several experiments in order to evaluate our ge-
netic-based framework for a self-adaptive event correlation.

6.1. Experimental testbed

A botnet (Fig. 4) has been implemented to disseminate and
launch a number of attacks. Several zombies distribute malware
from the master to all the bots. In particular, two types of DDoS
are launched in our testbed: HTTPFlood and ICMPFlood. We create
30 zombies and 10,000 floods per zombie. Generated events are
used by our framework to create the training set, as described in
Section 5. Once the best individual is reached, it is parsed according
to the correlation engine syntax, exported to the OSSIM, and re-
evaluated afterwards. OSSIM is deployed into the testbed along
with a number of both types, host and network-based, of intrusion
detection agents such as Snare [57] and Snort [58].

6.1.1. DDoS attacks experiment: HTTPFlood and ICMPFlood
We analyze and compare correlation directives generated by

OSSIM (versions 1.0.6 and 2.0.1) correlation engine with those pro-
duced by our framework for the detection of HTTPFlood and ICMP-
Flood attack contexts.

OSSIM correlation directives by default. On one hand, experi-
ments show that OSSIM v1.0.6 is proven to be non-efficient in
detecting the HTTPFlood attack. In fact, sensors not only provide
useless but also erroneous events as they report a ‘‘port scan’’ clas-
sification. The latter mistake is possibly derived from the web ser-
ver while processing numerous bot’s requests. More precisely, for
each HTTP request, the server opens a new port, so behaving sim-
ilar to a port scan. On the other hand, OSSIM v2.0.1 enhances the
configuration of Snort sensors triggering the following event:
‘‘COMMUNITY SIP TCP/IP message flooding directed to SIP proxy’’,
and the following duplicated alert: ‘‘Strange host behavior on
SRC_IP’’. However, OSSIM cannot produce a directive that corre-
lates the reported sensory data and the web-server’s log. Similarly,
there is no alert reported when launching the ICMPFlood attack.

Directives produced by our framework. We train our genetic
framework to detect the same attack. A total of 20,480 individuals
were randomly generated and evaluated. The best individual
showed a fitness of 0.250. This individual presented a number of
22 hits for the positive training set out of 27 (81%) and a number
of 122 hits for the negative training set out of 122 (100%). After
including the produced directive and executing the attack again,
OSSIM was capable of successfully detecting the DDoS attack with-
out human intervention. Additionally, the attack was detected
within the 10 s soon after, whilst the DDoS alert showed the max-
imum rate of risk. Furthermore, only one alert was triggered
whereas there exists more than one alert for the same attack in
the default correlation. On the contrary, there is no alert triggered
during normal operation of the web server.

We refer interested readers to Appendix A for further details on
the experimentation results. In particular, Tables A.7 and A.8 show
results for the correlation of HTTPFlood and ICMPFlood attacks
respectively in the scenarios above.

6.1.2. Metasploit penetration experiments
Metasploit framework (MSF) [59] is an open-source tool-kit,

which provides a framework to identify security issues, verify vul-
nerability mitigation, and manage expert-driven security assess-
ments. We include an evaluation of our system considering the
attacks occurred within our testbed when MSF is used to attack a
vulnerable victim. A number of penetration tests based on MSF
are presented and described in Appendix A.2 and Table A.9.

163.117.142.0/24
lab.inf.uc3m.es

lab29.seg.inf.uc3m.es

guernika.lab.inf.uc3m.es

f180.lab.inf.uc3m.es l20.lab.inf.uc3m.es

a250.lab.inf.uc3m.es

a100.lab.inf.uc3m.es

...

lab33.seg.inf.uc3m.es
v1.06

163.117149.0/24
seg.inf.uc3m.es

lab34.seg.inf.uc3m.es
v2.1

DoS

Ataque

Agent sent by the
Master to with the

Payload of the attack

Not compromised Zombie

Recluta

Recruiter: Turn
machines into Zombies

Recruit

Master

Web Server

Fig. 4. Experimental testbed where a DDoS attack is launched against a monitored server by a botnet deployment. Events generated are exported and used as the training set.

Table 4
Evaluation of several complex-to-detect attacks using Metasploit penetration
toolkit.

Exploit Type Run time (s) Fitness

ms08_067_netapi SMB exploit 10 9.76
amaya_bdo Browser exploit 11 8.86
ms_06_57_webview_setslice Browser exploit 8 8.76
ms06_067_keyframe Browser exploit 9 8.71
adobe_getico Browser exploit 13 9.30
msvidctl_mpgeg2 Browser exploit 51 7.95
ms10_002_aurora Browser exploit 10 8.71

G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158 153
OSSIM correlation directives by default. OSSIM configuration by
default is not capable of processing incoming events from the at-
tacks executed. Each sensor is configured to recognize specific net-
work packets or log files from the exploits. Thus, sensors are
reporting several de–correlated events for each exploit.

Directives produced by our framework. We train our genetic
framework to detect the same MSF attacks. After inserting the resul-
tant directives and executing the attacks again, the OSSIM system
can successfully detect each of the exploits shown in Table 4. It is
worthy of mentioning that attacks are detected while they are still
occurring as well as no single false positive is detected.
6.2. Real deployment

Our enhanced SIEM system is deployed in a large-scale network
infrastructure in production. Both CONTEXTUAL and GENIAL sub-
systems have been integrated into an OSSIM instance located at
a vantage point in the network. Additionally, various agents have
been placed all around the intra-building local area network links
as well as at end-user workstations and other system services such
as web, proxy, and backup servers.

Results of the observations made during a period of a week are
then commented and discussed. More specifically, a total of 15,000
bulky and complex flow of different events per second has been
processed on average. Given the complexity of the network topol-
ogy and considering the environment, it is crucial to tailor the
monitoring system according to the (i) different security needs
and capabilities, (ii) different assets and valuables to protect, and
(iii) different threat scenarios against the networked systems. In
this regard, OSSIM offers a number of open source tools to evaluate
each of the assets deployed in the environment.

Analysis of the observations. To determine the efficiency and
accuracy of our framework, two scenarios have been considered.
First, a stand-alone OSSIM instance was used for security monitor-
ing. Secondly, our framework was deployed in a separate instance
in line with the first scenario. Measurement has been tackled dur-
ing a period of 11 days. Fig. 5 shows the total number of correlation
alerts reported for each scenario. During those days, observed
events were manually inspected whereas reported alerts were
classified into (i) new or zero-day attacks (ZDA), (ii) true positive
(TP), and (iii) false negative (FN). ZDAs are those intrusions that
were only discovered by our framework in the second scenario.
TPs are those intrusions that triggered an alert, whereas FNs are
those alarms that were triggered due to no intrusion in both sce-
narios. We discovered that, on one hand, our framework detected
a number of ZDAs which were not detected by the stand-alone in-
stance of OSSIM. Table 5 enumerates intrusions discovered and

2 4 6 8 10

0
20

40
60

Reported Alarms During Observations

Days

Al
ar

m
s

OSSIM by default
Our Framework

Fig. 5. Alerts observed in the two scenarios deployed: (i) stand-alone OSSIM
instance, and (ii) our CONTEXTUAL and GENIAL framework integrated into OSSIM.

Table 5
Evaluation of several multi-step attacks reported by our framework in a real
networking environment.

Categories Run time (s) Fitness

Botnet anomaly 4 10 9.5
Bredavi trojan A 5 19 7.57
Bredavi trojan B 6 25 7.91
Conficker solaris 14 36 7.95
Dell remote access 17 42 7.95
Brute force SSHD 18 18 7.75
Port scan 24 123 7.94
Spyware 31 848 8.06
Telnet worm 56 85 8.09
Web scan 57 51 7.95

154 G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158
their evolving features as well. On the other hand, 53 out of 61
(86.89%) TP alerts were only reported by our framework. Whereas,
the total number of FNs reported in both scenarios, just 30 out of
340 alarms (8.82%) were reported by our framework.

6.3. Discussion

In this section, we present a qualitative discussion on the good-
ness of our framework in terms of the observations obtained dur-
ing the conducted empirical analysis. In that regard, we compare
our approach with the most relevant related works presented so
far. Table 6 summarizes our findings during this qualitative analy-
sis mainly focuses on examining the level of human participation
and adaptability of the approaches.
Table 6
Qualitative comparison with respect to related works.

Approach Human intervention

Aggregation [8] High
Pre-requisites/Consequences [9] High
Scenarios generation [60] High
Objective-based correlation [61] High
Similarity-based correlation [62] High
Attack graph correlation [63] High
Attack graph correlation [64] Low
Probabilistic correlation [65] High
Inference-rules correlation [66] High
Multi-dimensional correlation [67] Medium
Similarity-based clustering [39] Medium
Attack graph correlation [68] Low
Our approach Low
In particular, we find in [8] the least efficient framework in which
neither adaptation nor intelligence are introduced into the aggrega-
tion and correlation processes. Thus, human involvement is high.

Automatic correlation approaches appear on the basis of pre-
requisites and consequences such as [9]. Although their experi-
ments demonstrated the potential of their framework, it still
requires an extensive and significant effort identifying both, pre-
requisites and consequences, for each possible scenario. By con-
trast, our proposal optimizes this task by allowing the expert to
introduce his/her prior knowledge of the context (i.e., a generic/
specific misuse activity) into the reported sensory data for an effi-
cient classification and fusion of related events.

Zhu et al. [65] presented probabilistic alert correlation based on
the extraction of attack strategies from a static training file. Their
model applies machine-learning techniques but is not able to auto-
matically relate events to the corresponding attack in real-time.
Thus, similar algorithms such as [61–63,60] are not effective for
real deployments.

Multi-step intrusions started to be addressed from different
perspectives. For example, the approach proposed by Zhou et al.
in [66] studied the logical relationships between events of multi-
stage attacks aimed at automatically deriving what they called
inference rules to define such relationship. Authors assume that
events are previously classified into capabilities (a knowledge base
that identifies variants of the same attack). Similarly, Sadoddin
et al. [69] proposed the application of data mining techniques to
perform frequency analysis and pattern structure extraction on a
real-time framework. However, both approaches assume that the
sensors do not report FN alarms, but considering that all extracted
correlations will be effective. Based on our experiments, such
assumptions have proven to be unrealistic and invalid for ZDA
detection. Furthermore, a major drawback for such a frequency-
based learning leads to new correlations can only be discovered
if the underlying attack is launched repeatedly.

Human intervention is decreased as some sort of context-based
knowledge is considered. For example, Zhou et al. [67] use a decen-
tralized, multi-dimensional alert correlation algorithm which first
integrates events locally at each sensor into eight different types
of clusters with similar attack topology. The proposed clustering
is based on a pre-defined set of patterns so unknown attack strat-
egies could easily evade aggregation made locally. Furthermore,
Joshua et al. [39] also presented a clustering method to reduce
the sensory data reported. However, the classification method is
limited as it is trained using static datasets. On the contrary, our
approach includes dynamic data feedback which evolves according
to the context representations occurred in the network.

Finally, Wang et al. [64] applied attack graphs (graphical repre-
sentations of the existing interdependencies between vulnerabili-
ties and connectivity in the network) to correlate and hypothesize
events generated from both, known and unknown, attacks, and
Automatic classification Automatic correlation

No No
No Yes
Yes Yes
No Yes
No Yes
No Yes
No Yes
No Yes
No Yes
Yes No
Yes No
Yes Yes
Yes Yes

G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158 155
even to predict future alerts. From their experimentation, attack
graphs present better performance than other machine learning-
based approaches. Moreover, Ahmadinejad et al. [68] extended
Wang et al.’s work towards self-adapting over unknown attacks.
However, both proposals lack of robustness when unknown attacks
present high dissimilarity to the current knowledge base. In fact,
experiments conducted in [68] show correlations when partial
graphs of the attacks (from DARPA 2000 dataset) are presented,
whilst our framework is able to correlate ZDA attacks (i.e. when
host vulnerabilities are not present in the model).

In summary, our approach differs from the previous, so over-
coming others’ common drawbacks as:

� Adaptation is considered by design. Our framework is self-adap-
tive in both processes, classifying sensory data based on attack
contexts as well as generating correlation rules. Moreover, it has
been proven that our system decreases the human intervention
and prevents against ZDAs.
� Efficiency is considered by design. Our framework has been pro-

ven to be efficient and accurate when deployed in a real environ-
ment. In fact, our system presents efficiency in the way of true
positive rate is increased whilst false positive rate decreases.
� Context-based knowledge is considered by design. AI-based

approaches presented so far in security information fusion
domains do not explicitly consider contextual information for
correlation purposes, suffering from the classical problem of
generality in AI [70].
Table A.7
HTTP Flood.

OSSIM
version

Num.
zombis

Type of event

1.0.6 1 Spade: Non-live dest used

pam_unix: authentication successful
portscan: Open Port

5 Spade: Non-live dest used

pam_unix: authentication successful
portscan: Open Port

10 Spade: Non-live dest used

pam_unix: authentication successful
portscan: Open Port

30 Spade: Non-live dest used

pam_unix: authentication successful
portscan: Open Port

2.1 1 snort: COMMUNITY SIP TCP/IP message flooding direc
proxy
rrd_threshold: ntop global upTo64Pkts
p0f: OS Same

5 snort: COMMUNITY SIP TCP/IP message flooding direc
proxy
rrd_threshold: ntop global upTo128Pkts

10 snort: COMMUNITY SIP TCP/IP message flooding direc
proxy
rrd_anomaly: ntop global
rrd_threshold: ntop global
p0f: New OS
p0f: OS Same

} [Discovery]Snort: port scan detected.
} [Exploitation] Snare: Logon Fail-Unknown user name or bad password.
}[Exploitation] Snare: The Windows Firewall has detected an application listening for i
} [Exploitation] Snare: Account Used for Logon by.
} [Exploitation] Snort: SMB protocol negotiation.
} [Exploitation] Snort: NTLMSSP session with unauthenticated user.
} [Payload–infection] Snort: Meterpreter payload infection.
} [Payload–infection] Snare: A new process has been created.
7. Conclusion and future work

In this paper, a cutting-edge scheme tackling the design of a
self-adaptive SIEM system is introduced. The novelty of our pro-
posal falls on the adopted approach which can be summarized in
the following terms. From the point of view of the optimized SIEM,
the framework allows SIEM systems to automatically learn attack
signatures based on contextual knowledge as well as to automati-
cally produce optimum correlation directives. Two main subsys-
tems are therefore introduced: a context-based event classifier
based on ANNs, called CONTEXTUAL and, an enhanced SIEM corre-
lation engine based on GP, called GENIAL. From the point of view of
the human operator, our self-adaptive SIEM system considerably
decreases the human supervision to some extent. Furthermore,
we carried out a real integration of our subsystems into a OSSIM-
monitored environment to evaluate the goodness and feasibility
of our proposal.

Our future work is now focused on the following enhancements
to the proposed system especially within CONTEXTUAL, which
includes:

� The application of clustering techniques on the extraction
of tags which will provide CONTEXTUAL with self-adapta-
tion so eliminating the expert intervention in that matter,
and also
� The application of filtering techniques during the compilation of

relevant events, e.g. by introducing honeypots.
Num.
events

Type of alert Num.
alerts

Risk

16 TCP Portscan against Web
Server

5 5

2
396

1 TCP Portscan against Web
Server

1 2

1
862

0 TCP Portscan against Web
Server

1 5

1
526

2 TCP Portscan against Web
Server

14 5

11
61

ted to SIP 36 – – –

1
1

ted to SIP 195 – – –

5
ted to SIP 462 Strange host behavior on SRCIP 2 0

6
6

ncoming traffic.

156 G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158
Acknowledgements.

This work is supported by CDTI, Ministerio de Industria, Turis-
mo y Comercio of Spain in collaboration with Telefónica I + D; pro-
ject SEGUR@ with reference CENIT-2007 2004.We would also like
to thank the anonymous reviewers for their insightful comments
which certainly helped us to improve our article.
Appendix A. Simulation results

A.1. DDoS experiment

In this appendix, results of the simulation conducted in our test-
bed are provided. In particular, two types of DDoS attacks were
launched namely HTTP flood and ICMP flood. Tables A.7 and A.8
Table A.8
ICMP flood.

OSSIM
version

Num.
zombis

Type of event

1.0.6 1 Spade: Non-live dest used

pam_unix: authentication successful
portscan: TCP Portscan
portscan: Open Port
Spade: Source used odd dest port

5 Spade: Non-live dest used

pam_unix: authentication successful
portscan: TCP Portscan
portscan: Open Port
Spade: Source used odd dest port

10 Spade: Non-live dest used

pam_unix: authentication successful
portscan: TCP Portscan
portscan: Open Port
portscan: TCP Portsweep

2.1 1 snort: COMMUNITY SIP TCP/IP message flooding direc
proxy
rrd_threshold: ntop global
p0f: New OS
p0f: OS Same

5 snort: COMMUNITY SIP TCP/IP message flooding direc
proxy
rrd_threshold: ntop global
p0f: New OS
p0f: OS Same

10 snort: COMMUNITY SIP TCP/IP message flooding direc
proxy
rrd_threshold: ntop global
p0f: New OS
p0f: OS Same

Table A.9
Description of exploits used to test our framework.

Exploit Description

ms08_067_netapi Parsing flaw in the path canonicalization code of NetAPI32
attacker to run arbitrary code on the victim’s computer

amaya_bdo A buffer-based overflow exploitation on the AMAYA W3C W
victim’s computer

ms_06_57_webview
setslice

Internet Explorer vulnerability based on WebViewFolderIco
victim’s computer

ms06_067_keyframe DirectAnimation ActiveX control flow that could allow an a
adobe_getico Stack buffer overflow exploitation in the Adobe Collaboratio

victim’s computer
msvidctl_mpgeg2 Stack-based overflow exploitation on MPEG2 ActiveX contr

computer
ms10_002_aurora HTML Object Memory Corruption Vulnerability, which may

computer
give details on the results of the evaluations on our experimental
testbed.
A.2. Metasploit experiment

In this appendix, results of the penetration experiments con-
ducted on our testbed are provided. In particular, two isolated
computers are deployed, namely the victim and attacker computer.
The victim is a vulnerable Windows XP configured with Snare
Event Log Agent [57], and events are reported to the OSSIM v3 –
located in the same network as the victim. On the other hand,
the attacker is configured with MSF v3, and it is located in a differ-
ent network than the victim. Victim’s vulnerabilities are chosen
based on their prevalence and exploit code availability to demon-
strate the validity of our framework. The attacker uses selected ex-
Num.
events

Type of alert Num.
alerts

Risk

10 TCP Portscan against Web
Server

2 5

2
4
1
1

18 TCP Portscan against Web
Server

7 5

7
0

16
3

21 TCP Portscan against Web
Server

13 5

45
4

19
75

ted to SIP 107 – – –

4
1
2

ted to SIP 723 – – –

36
4
6

ted to SIP 1701 – – –

82
6

13

.dll through the Server Message Block (SMB). This vulnerability may allow an

eb Browser could lead an attacker to perform a to run arbitrary code on the

n ActiveX control flow that could allow an attacker to run arbitrary code on the

ttacker to run arbitrary code through Internet Explorer on the victim’s computer
n methods. This vulnerability may allow an attacker to run arbitrary code on the

ol. This vulnerability may allow an attacker to run arbitrary code on the victim’s

allow an attacker to run arbitrary code through Internet Explorer on the victim’s

G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158 157
ploits to compromise the victim. Table A.9 depicts the correspond-
ing exploits.

For the sake of completeness, we include an excerpt of the
events reported when running MSF attacks. In particular,
ms08_067_netapi exploit comprises the following steps: (i) dis-
covery phase, (ii) exploitation phase, and (iii) payload-injection,
as follows:

Running ms08_067_netapi exploit, the following events are re-
ported by the sensors:
References

[1] R. Gabriel, T. Hoppe, A. Pastwa, S. Sowa, Analyzing MALWARE log data to
support security information and event management: Some research results,
in: Proceedings of the 1st International Conference on Advances in Databases,
Knowledge, and Data Applications, 2009, pp. 108–113.

[2] I. Corona, G. Giacinto, C. Mazzariello, F. Roli, C. Sansone, Information fusion for
computer security: state of the art and open issues, Information Fusion 10 (4)
(2009) 274–284.

[3] T. Bass, Intrusion detection systems and multisensor data fusion,
Communications of ACM 43 (2000) 99–105.

[4] D. Hall, J. Llinas, An introduction to multisensor data fusion, Proceedings of the
IEEE 85 (1997) 6–23.

[5] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-
Wesley Longman Publishing Co., Inc., 2006.

[6] I. Ahmad, A.B. Abdullah, A.S. Alghamdi, Artificial neural network approaches to
intrusion detection: a review, in: Proceedings of the 8th Wseas International
Conference on telecommunications and informatics, WSEAS, 2009, pp. 200–
205.

[7] C. Zhang, J. Jiang, M. Kamel, Intrusion detection using hierarchical neural
networks, Pattern Recognition Letters 26 (6) (2005) 779–791.

[8] H. Debar, A. Wespi, Aggregation and correlation of intrusion-detection alerts,
in: Recent Advances in Intrusion Detection, Springer, 2001, pp. 85–103.

[9] P. Ning, Y. Cui, D.S. Reeves, Constructing attack scenarios through correlation
of intrusion alerts, in: Proceedings of the 9th ACM Conference on Computer
and Communications Security, ACM, 2002, pp. 245–254.

[10] T. Limmer, F. Dressler, Survey of Event Correlation Techniques for Attack
Detection in Early Warning Systems, 2008.

[11] W. Lu, I. Traore, Detecting new forms of network intrusion using genetic
programming, Computational Intelligence 20 (3) (2004) 475–494.

[12] W. Lee, S.J. Stolfo, K.W. Mok, Adaptive intrusion detection: a data mining
approach, Artificial Intelligence Review 14 (2000) 533–567.

[13] R. Sommer, V. Paxson, Enhancing byte-level network intrusion detection
signatures with context, in: Proceedings of the 10th ACM Conference on
Computer and Communications Security, ACM, 2003, pp. 262–271.

[14] B. Ripley, Neural networks and related methods for classification, Journal of
the Royal Statistical Society 56 (3) (1994) 409–456.

[15] J.Z. Lei, A. Ghorbani, Network intrusion detection using an improved
competitive learning neural network, in: Proceedings of 2nd Annual
Conference on Communication Networks and Services Research, IEEE
Computer Society, 2004, pp. 190–197.

[16] C. Yin, S. Tian, H. Huang, J. He, Applying genetic programming to evolve
learned rules for network anomaly detection, Advances in Natural
Computation (2005) 323–331.

[17] K. Faraoun, A. Boukelif, Genetic programming approach for multi-category
pattern classification applied to network intrusions detection, International
Journal of Computational 3 (1) (2006) 79–90.

[18] OSSIM, Open Source Security Information Management <http://
communities.alienvault.com/community>, visited March 2012.

[19] A. ESM, Enterprise Security Manager <http://www.arcsight.com/products/
products-esm/>, visited March 2012.

[20] RSA, Envision <http://www.rsa.com/node.aspx?id=3170>, visited March 2012.
[21] SenSage, Sensage SIEM Solution <http://www.sensage.com/>, visited March

2012.
[22] H. CLW, Compliance Log Warehouse <http://h20338.www2.hp.com/

NonStopComputing/cache/523873-0-0-0-121.html> (visited March 2012).
[23] N. Sentinel, Sentinel <http://www.novell.com/products/sentinel/> (visited

March 2012).
[24] LogLogic, Log Management and Security Event Management <http://

loglogic.com/> (visited March 2012).
[25] netForensics, nfx sim one <http://www.netforensics.com/products/

security_information_management/SIM_One/> (visited March 2012).
[26] Bitacora, System of Centralization, Management and Exploitation of a

Company’s Events <http://bitacora.s21sec.com/> (visited March 2012).
[27] M. Nicolett, K.M. Kavanagh, Magic quadrant for security information and event

management, Gartner RAS Core Research Note G 176034 (2010) 1.
[28] R. Bace, P. Mell, Intrusion detection systems, Nist Special Publication, NIST

(2001).
[29] D. Casey, Turning log files into a security asset, Network Security 2 (2008) 4–7.
[30] W. Peng, C. Perng, T.L.H. Wang, Event summarization for system management,

in: Proceedings of the 13th ACM SIGKDD Internatiuonal Conference on
Knowledge Discovery and Data Mining, ACM Press, 2007, p. 1028.
[31] V. Paxson, Bro: a system for detecting network intruders in real-time,
Computer networks 31 (23–24) (1999) 2435–2463.

[32] O. Depren, M. Topallar, E. Anarim, M. Ciliz, An intelligent intrusion detection
system (IDS) for anomaly and misuse detection in computer networks, Expert
Systems with Applications 29 (4) (2005) 713–722.

[33] E. Spafford, D. Zamboni, Intrusion detection using autonomous agents,
Computer Networks 34 (4) (2000) 547–570.

[34] S.-C. Zhong, Q.-F. Song, X.-C. Cheng, Y. Zhang, A safe mobile agent system for
distributed intrusion detection, in: Proceedings of the International
Conference on Machine Learning and Cybernetics, vol. 4, 2003, pp. 2009–2014.

[35] C.V. Zhou, C. Leckie, S. Karunasekera, A survey of coordinated attacks and
collaborative intrusion detection, Computers & Security 29 (1) (2010) 124–
140.

[36] S.X. Wu, W. Banzhaf, The use of computational intelligence in intrusion
detection systems: a review, Applied Soft Computing 10 (1) (2010) 1–35.

[37] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H. Javitz, A. Valdes, P.
Neumann, T. Garvey, A real-time intrusion-detection expert system (ides),
Project interim progress report, SRI International (1992).

[38] S. Brugger, Data Mining Methods for Network Intrusion Detection, Technique
Report, UC davis.

[39] N.O. Joshua, Adaptive clustering method for reclassifying network intrusions,
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 41, Springer Berlin Heidelberg, 2010.

[40] M. Bykova, S. Ostermann, B. Tjaden, Detecting network intrusions via a
statistical analysis of network packet characteristics, in: Proceedings of the
33rd Southeastern Symposium on System Theory, 2001, pp. 309–314.

[41] M. Amini, R. Jalili, H.R. Shahriari, Rt-unnid: a practical solution to real-time
network-based intrusion detection using unsupervised neural networks,
Computers and Security 25 (6) (2006) 459–468.

[42] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, W.-Y. Lin, Intrusion detection by machine
learning: a review, Expert Systems with Applications 36 (10) (2009) 11994–
12000.

[43] G. Stein, B. Chen, A.S. Wu, K.A. Hua, Decision tree classifier for network
intrusion detection with ga-based feature selection, in: Proceedings of the
43rd Annual Southeast Regional Conference, New York, USA, ACM Press, 2005,
pp. 136–141.

[44] S. Owais, V. Snasel, P. Kromer, A. Abraham, Survey: using genetic algorithm
approach in intrusion detection systems techniques, in: Proceedings of the 7th
Computer Information Systems and Industrial Management Applications, IEEE,
2008, pp. 300–307.

[45] J. Kim, P. Bentley, Towards an artificial immune system for network intrusion
detection: an investigation of clonal selection with a negative selection
operator, in: Proceedings of the 2001 Congress on Evolutionary Computation,
vol. 2, 2001, pp. 1244–252.

[46] H. Debar, D. Curry, B. Feinstein, Ietf rfc 4765 – the intrusion detection message
exchange format <www.ietf.org/rfc/rfc4765.txt>, March 2007.

[47] C. Lonvick, Isoc rfc 3164 – the bsd syslog protocol <www.ietf.org/rfc/
rfc4765.txt>, August 2007.

[48] S. Mathew, C. Shah, S. Upadhyaya, An alert fusion framework for situation
awareness of coordinated multistage attacks, in: Proceedins of the International
Workshop on Innovative Architecture for Future Generation High-Performance
Processors and Systems, IEEE Computer Society, 2005, pp. 95–104.

[49] Z. Li, Y. Chen, A. Beach, Towards scalable and robust distributed intrusion alert
fusion with good load balancing, in: Proceedings of the 2006 SIGCOMM
Workshop on Large-Scale Attack Defense, ACM, 2006, pp. 122–130.

[50] M. Sifalakis, M. Fry, D. Hutchison, Event detection and correlation for network
environments, IEEE Journal on Selected Areas in Communications 28 (1)
(2010) 60–69.

[51] S. Krishnamurthy, T. He, G. Zhou, J.A. Stankovic, S.H. Son, RESTORE: A real-time
event correlation and storage service for sensor networks, in: Proceedings of
the 3rd International Conference on Networked Sensing Systems (INSS), 2006,
pp. 1–9.

[52] B. Morin, L. Mé, H. Debar, M. Ducassé, M2D2: a formal data model for IDS alert
correlation, Proceedings of the 5th International Conference on Recent
Advances in Intrusion Detection, Springer, 2002.

[53] J. Saraydaryan, V. Legrand, S. Ubéda, Modeling of information system
correlated events time dependencies, in: Proceedings of the 8th
International Conferernce on New Technologies in Distributed Systems
(NOTERE), ACM, 2008, pp. 1–6.

[54] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. Witten, The WEKA
data mining software: an update, ACM SIGKDD Explorations Newsletter 11 (1)
(2009) 10–18.

[55] C. Marceau, Characterizing the behavior of a program using multiple-length n-
grams, in: Proceedings of the 2000 Workshop on New Security Paradigms,
NSPW ’00, ACM, New York, NY, USA, 2000, pp. 101–110.

[56] G. Suarez-Tangil, E. Palomar, J.D. Fuentes, J. Blasco, A. Ribagorda, Automatic
rule generation based on genetic programming for event correlation, in:
Proceedings of the Computational Intelligence in Security for Information,
Advances in Soft Computing, Springer, 2009, pp. 127–134.

[57] I. Alliance, Snare Event Log Agent <http://www.intersectalliance.com/projects/
Snare/> (visited March 2012).

[58] M. Roesch, Snort – Lightweight Intrusion Detection for Networks, in:
Proceedings of the 13th USENIX Conference on System Administration,
USENIX Association, 1999, pp. 229–238.

[59] L. Metasploit, The Metasploit Framework <http://www.metasploit.com/>
(visited March 2012).

http://refhub.elsevier.com/S1566-2535(13)00053-5/h0005
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0005
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0005
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0010
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0010
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0015
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0015
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0020
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0020
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0020
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0025
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0025
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0030
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0030
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0030
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0035
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0035
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0035
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0035
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0040
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0040
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0045
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0045
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0050
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0050
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0050
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0050
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0055
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0055
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0060
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0060
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0060
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0060
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0060
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0065
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0065
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0065
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0070
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0070
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0070
http://communities.alienvault.com/community
http://communities.alienvault.com/community
http://www.arcsight.com/products/products-esm/
http://www.arcsight.com/products/products-esm/
http://www.rsa.com/node.aspx?id=3170
http://www.sensage.com/
http://h20338.www2.hp.com/NonStopComputing/cache/523873-0-0-0-121.html
http://h20338.www2.hp.com/NonStopComputing/cache/523873-0-0-0-121.html
http://www.novell.com/products/sentinel/
http://loglogic.com/
http://loglogic.com/
http://www.netforensics.com/products/security_information_management/SIM_One/
http://www.netforensics.com/products/security_information_management/SIM_One/
http://bitacora.s21sec.com/
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0075
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0075
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0080
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0080
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0085
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0090
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0090
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0090
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0090
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0095
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0095
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0100
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0100
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0100
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0105
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0105
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0110
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0110
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0110
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0115
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0115
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0120
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0120
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0120
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0120
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0125
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0125
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0125
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0130
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0130
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0130
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0135
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0135
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0135
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0135
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0135
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0140
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0140
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0140
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0140
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0140
http://www.ietf.org/rfc/rfc4765.txt
http://www.ietf.org/rfc/rfc4765.txt
http://www.ietf.org/rfc/rfc4765.txt
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0145
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0145
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0145
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0145
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0145
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0150
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0150
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0150
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0150
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0155
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0155
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0155
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0160
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0160
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0160
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0160
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0165
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0165
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0165
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0165
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0165
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0170
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0170
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0170
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0175
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0175
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0175
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0175
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0180
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0180
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0180
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0180
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0180
http://www.intersectalliance.com/projects/Snare/
http://www.intersectalliance.com/projects/Snare/
http://www.metasploit.com/

158 G. Suarez-Tangil et al. / Information Fusion 21 (2015) 145–158
[60] O. Dain, R. Cunningham, Fusing a heterogeneous alert stream into scenarios,
in: Proceedings of the 2001 ACM CSS Workshop on Data Mining for Security
Applications, vol. 13, Philadelphia, PA, 2001.

[61] F. Cuppens, F. Autrel, A. Miege, S. Benferhat, et al., Recognizing malicious
intention in an intrusion detection process, in: Second International
Conference on Hybrid Intelligent Systems, vol. 87, 2002, pp. 806–817.

[62] P. Ning, D. Xu, Learning attack strategies from intrusion alerts, in: Proceedings
of the 10th ACM Conference on Computer and Communications Security, ACM,
2003, pp. 200–209.

[63] S. Noel, E. Robertson, S. Jajodia, Correlating intrusion events and building
attack scenarios through attack graph distances, in: 20th Annual Computer
Security Applications Conference, IEEE, 2004, pp. 350–359.

[64] L. Wang, A. Liu, S. Jajodia, Using attack graphs for correlating, hypothesizing,
and predicting intrusion alerts, Computer Communications 29 (15) (2006)
2917–2933.
[65] B. Zhu, A. Ghorbani, Alert correlation for extracting attack strategies,
International Journal of Network Security 3 (3) (2005) 244–258.

[66] J. Zhou, M. Heckman, B. Reynolds, A. Carlson, M. Bishop, Modeling network
intrusion detection alerts for correlation, ACM Transactions on Information
and System Security (TISSEC) 10 (1) (2007) 4.

[67] C. Vincent Zhou, C. Leckie, S. Karunasekera, Decentralized multi-dimensional
alert correlation for collaborative intrusion detection, Journal of Network and
Computer Applications 32 (5) (2009) 1106–1123.

[68] S. Ahmadinejad, S. Jalili, M. Abadi, A hybrid model for correlating alerts of
known and unknown attack scenarios and updating attack graphs, Computer
Networks 55 (9) (2011) 2221–2240.

[69] R. Sadoddin, A. Ghorbani, An incremental frequent structure mining framework
for real-time alert correlation, Computers & Security 28 (3) (2009) 153–173.

[70] J. McCarthy, Generality in artificial intelligence, Communications of the ACM
30 (12) (1987) 1030–1035.

http://refhub.elsevier.com/S1566-2535(13)00053-5/h0185
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0185
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0185
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0185
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0190
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0190
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0190
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0190
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0195
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0195
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0195
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0200
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0200
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0205
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0205
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0205
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0210
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0210
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0210
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0215
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0215
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0215
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0220
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0220
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0225
http://refhub.elsevier.com/S1566-2535(13)00053-5/h0225

	Providing SIEM systems with self-adaptation
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Related work
	3 Overview of our system
	3.1 System input: events
	3.2 Security information fusion: CONTEXTUAL subsystem
	3.3 Event correlation: GENIAL subsystem
	3.4 System output: correlation directive

	4 CONTEXTUAL: context-based security information fusion subsystem
	4.1 Tag definition and context representation
	4.2 Prior knowledge injection and ANN deployments

	5 GENIAL: GP-based event correlation subsystem
	5.1 Preprocessing
	5.2 Representation of the individual
	5.3 Initialization of the population
	5.4 Evaluation of the individuals
	5.5 Breeding process

	6 Experimental evaluation of our system
	6.1 Experimental testbed
	6.1.1 DDoS attacks experiment: HTTPFlood and ICMPFlood
	6.1.2 Metasploit penetration experiments

	6.2 Real deployment
	6.3 Discussion

	7 Conclusion and future work
	Acknowledgements.
	Appendix A Simulation results
	A.1 DDoS experiment
	A.2 Metasploit experiment

	References

