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Introduction Context

Smart devices are rapidly emerging as popular appliances
with increasingly powerful capabilities
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Introduction Context

Smart devices o↵er the possibility to easily incorporate
third-party applications through online markets
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Introduction Context

Smartphones, mainly Android, are the platform of choice,
but new smart devices are appearing at a steady pace

(a) Market share until 2013... (b) ...2014 and forthcoming

Suarez-Tangil, G. (Carlos III University) PhD Defense October 2014 7 / 59



Introduction Context

Smart devices present greater security and privacy issues to
users due to their situational awareness

Popularity + Third-party Apps = Malware

One major source of security and privacy problems is precisely the ability
to incorporate third-party applications

New security problems

Leakage of users’ personal information

Traceability issues

Cybercrime

Etc
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Introduction Context

The rapid growth of smartphone raised a similar increase
in the number and sophistication of malware

Malware-as-a-Service (MAAS)

Cost(Attack) < Potential Revenue
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Introduction Context

Correlations/causations are paramount to place e↵orts,
and to understand future tendencies and threats

This Thesis...

... is strongly biased towards smartphones (particularly Android), since
they currently are the most extended class of smart devices
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Introduction Motivation

Thwarting malware is a thriving research area with a
substantial amount of still unsolved problems

Problem

Goal

Smart Devices

Impressive growth of
goodware and malware

Large number of potential
targets

Reuse-oriented malware

Good | Gray | Malware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Smart Malware

Increase in the
sophistication

Advanced behavior
Obfuscated
Targeted

Smart Analysis

Research smart analysis
& detection techniques

Automated analysis

E�cient analysis

Intelligent analysis

Suarez-Tangil, G. (Carlos III University) PhD Defense October 2014 11 / 59



Introduction Objectives

This Thesis provides new findings for the analysis of smart
malware

Design and develop a set of techniques to assist security analysts and
final users upon the analysis of untrusted apps for smart devices and to
automate the identification of smart malware

Partial objectives:

1 Study the evolution of malware and its analysis/detection
2 Develop methods for better analyzing malware in large markets:

Intelligent instruments
Automate the analysis

3 Facilitate the analysis of complex smart malware:
Targeting user-specific actions
Hindering detection with advanced obfuscation techniques
Exploiting platform limitations (e.g.: energy computation)
Etc.
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Contributions Foundations & Tools
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Contributions Foundations & Tools

Contribution 1: Evolution of Malware Analysis

Foundations & Tools (I/II)

A comprehensive analysis of the evolution
of untrusted code for smart devices and
current detection strategies
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Contributions Foundations & Tools

Malware Characterization

Traditional classifications

E.g., virus, trojans or spyware are rather imprecise due to the complexity
and reuse-oriented nature
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Contributions Foundations & Tools

A Taxonomy of Detection Techniques

Malware detection

Malware detection is a complex process pulling together monitoring,
analysis and identification tasks
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Contributions Foundations & Tools

A research lab for smart malware analysis and detection
Maldroid Lab will be used throughout the contributions

Overview and Architecture

Facilitate static analysis

Automate repackaging

Guarantee the isolation

Automate VM allocation

Automate installation

Parallelize execution

Automate event injection

Support synchronized
replicas in the cloud

Market'
Place'

User'
Device'

Sta$c&based+Analysis+

Dynamic&based+Analysis+
'

Cloud&based+Analysis+
'

C1:'
Evolu6on'

Google'Play'

Malgenome'

Virus'Share'

Aptoide'

C2:'
Dendroid'

C3:'
Alterdroid'

C4:'
Meterdroid'

C5:'
Targetdroid'

Markets+
Crawlers+

Malware++
Repos+

Tools%for%
Markets%

Tools%for%
Users%
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Contributions Foundations & Tools

Results: Evolution

P1: “Evolution, Detection and Analysis of Malware for Smart
Devices”.

Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro
Peris-Lopez, and Arturo Ribagorda.

In: IEEE Communications Surveys & Tutorials, 2013.

I.F. (2012): 4.81.

Position in category: 2/132 (Q1) in Computer Science.

Software registration: Maldroid Lab.

“A new generation laboratory of malware for testing smart
malware and evaluating detection strategies”

R� Universidad Carlos III de Madrid. All rights reserved.
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Contributions Static-based Analysis

Contribution 2: Dendroid

Static-based Analysis

A text mining approach for analyzing and
classifying malware families
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Contributions Static-based Analysis

Human-driven analysis is una↵ordable
Motivation and contribution

Challenges

Dealing with bulky amounts of apps

Classifying unseen samples

Grouping malware into families

Context

Malware Engineering

Reuse Malware

Data Mining e�ciently deals with massive amount of data

To automatically analyze/classify —unknown— samples

To obtain evolutionary analysis of malware families
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Contributions Static-based Analysis

We extract a high-level representation of the associated
CFG and analyze various statistical features
Preliminaries

Control Flow Graph (CFG)

Possible execution paths that a program might traverse during its
execution

Grammar

R: Return

G: Goto

I: If

B: BasicBlock

P: Package

S: String

Code Chunks

App: Methoda | ... | Methody
Method(s):

B[P0P1]B[I]B[P1R]

B[P1P1I]B[P0SP1P1P1]B[P1G]

B[P1P1I]B[I]B[P1R]

B[P0SP1P1P1]

...
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Contributions Static-based Analysis

The distribution of CCs suggests that each family can be
characterized by just a few code structures
Experimental work with code chunks: B[P0P1]B[I]B[P1R]B[P1P1I]B[P0SP1P1P1]B[P1G]

Data set

1231 Specimens

33 Families

84854 CCs

Features
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Contributions Static-based Analysis

Mining Code Chunks in Malware Families
Text Mining

Vector Space Model (VSM)

We adapt to our problem various numerical indicators well researched in
the field of information retrieval and text mining

Representation

dj = (w1j, ...,wkj):

documents

words

importance

Code Chunk Frequency

The frequency of a CC in a family Fj

Inverse Family Frequency

The IFF of a CC c with respect to a set of malware
families M = {F1, . . . ,Fm}
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Contributions Static-based Analysis

Dendroid: A Text Mining Approach
Our system
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Contributions Static-based Analysis

Malware classification error per family using 1-NN
Evaluation and results

Classification Error (%)
ADRD 0.00% GingerMaster 0.00%
AnserverBot 4.66% GoldDream 0.00%
Asroot 0.00% Gone60 0.00%
BaseBridge 7.92% HippoSMS 0.00%
BeanBot 0.00% KMin 0.00%
Bgserv 0.00% NickySpy 0.00%
CruseWin 0.00% Pjapps 0.00%
DroidDream 0.00% Plankton 0.00%
DroidDreamLight 0.00% RogueLemon 0.00%
DroidKungFu1 12.92% RogueSPPush 0.00%
DroidKungFu2 19.46% SndApps 0.00%
DroidKungFu3 8.12% Tapsnake 0.00%
DroidKungFu4 18.21% YZHC 0.00%
DroidKungFuSapp 0.00% Zsone 0.00%
FakePlayer 0.00% jSMSHider 0.00%
GPSSMSSpy 0.00% zHash 0.00%
Geinimi 0.00%

Table : Average classification error using 1-NN with 10-fold cross-validation.
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Contributions Static-based Analysis

Text classification is suitable for classifying malware
Conclusions

Text mining is suitable for

Measuring similarity among malware samples

Classifying unknown samples into known families

Hierarchical clustering

Phylogenetic trees for malware families

Extremely useful for analysts to identify the relationships among
families

Automation of malware classification

Results suggest that this technique is fast, scalable and very
accurate
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Contributions Static-based Analysis

Results: Dendroid

P2: “Dendroid: A Text Mining Approach to Analyzing and
Classifying Code Structures in Android Malware Families”.

Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro
Peris-Lopez, and Jorge Blasco.

In: Expert Systems with Applications (Elsevier), Vol. 41:4, pp.
1104-1117 (2014).

I.F. (2012): 1.85.

Position/Category: 56/243 (Q1) in Engineering.
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Contributions Dynamic-based Analysis

Contribution 3: Alterdroid

Dynamic-based Analysis

Di↵erential fault analysis of obfuscated
malware behavior
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Contributions Dynamic-based Analysis

Recent malware hides and obfuscates its functionality
Motivation and contribution

Challenges

Identification of
grayware

Identification of
obfuscated mw

Attribution of
behaviors to
parts of an app

Behavior#

APP#

net$
read$

net$
write$

leak$

file$
write$

file$
read$

dex$
load$

service$

net#
open#

file#
open#

sms/call$

App Fault&&
Injec,on&

Differen,al&
Analysis&

Di↵erential fault analysis can identify hidden malicious components
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Contributions Dynamic-based Analysis

Di↵erential fault analysis facilitate the analysis of complex
obfuscated mobile as shown with these representative cases
Experimental work

Suarez-Tangil, G. (Carlos III University) PhD Defense October 2014 31 / 59



Contributions Dynamic-based Analysis

Alterdroid can be used to automate the analysis of a
dataset of samples
Our system

Select 
Components 

Extract 
Components App 

Inject 
Faults 

Identify 
CoI 

Repackage 
Components 

Generate 
Inputs Execution 

Differential 
Signature 

Pattern 
Matching 

Execution 

Activity 
Signature 

Activity 
Signature 

Rules 

Fault Injection 
Differential Analysis 
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Contributions Dynamic-based Analysis

Alterdroid can be used to automate the analysis of a
dataset of samples
Evaluation and results (I/III)

#Apps #CoI #FIO #Match Overhead TP FN Accuracy

DKF 34 6.11 6.11 11.71 283.93 s 33 1 97.06%
ASB 187 1.35 1.35 3.90 246.22 s 186 1 99.47%
GM 4 4.00 4.00 6.00 248.23 s 3 1 75%
GM+ 4 4.00 4.00 3.00 1026.01 s 4 0 100%

Gray 16 2.88 2.88 4.19 248.24 s 16 0 100%

Good 81 0.57 0.00 0.00 0.00 s 81 0 100%

Table : Performance evaluation against existing malware, grayware, and goodware
apps. The number of CoIs, FIOs, Matches, is given on average per app, and the
overhead is given on average per FIO and app.
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Contributions Dynamic-based Analysis

Alterdroid can be used to automate the analysis of a
dataset of samples
Evaluation and results (II/III)

VirusShare (VS) Aptoide (AP)
S
um

. No. Apps 2 913 2 994
Avg. No. CoIS 145.6 284.4
Avg. No. FIOs 138.3 273.5

C
oI
S

ImageFileMatch 397 248 813 754
EncOrCompressed 16 687 35 293

ImgExtensionMismatch 5 771 5 246
DEXFileMatch 2 827 2 995
APKFileMatch 1 087 58

APKExtensionMismatch 517 39

F
IO

s ImageFile 397 248 813 754
GenericMutationFile 5 714 5 237

R
ul
es

No. RFAC 2 802 2 962
No. RNAC 2 773 2 929
No. RDLC 1 971 669
No. RSAC 220 0

– Average Overhead 584.51 s 666.67 s
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Contributions Dynamic-based Analysis

Performance of the detection of an obfuscated component
Evaluation and results (III/III)

Time of a di↵erential
analysis

t = nfault · tgenFault · tdi↵

SearchComponent

O(n + logm)

n = |CoIS |
m = |FIOs|

t = 5 minutes
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Contributions Dynamic-based Analysis

Alterdroid can automatically identify potentially malicious
components hidden within apps
Conclusions

Current static analysis techniques

Focused on inspecting code components

Miss pieces of code hidden or obfuscated in data objects

Current dynamic analysis techniques

Holistic vision of the behavior of an app

Lack of attribution of behavior to components

Di↵erential fault analysis

Good complement to both static and dynamic analysis tools
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Contributions Dynamic-based Analysis

Results: Alterdroid

P3: “Thwarting Obfuscated Malware via Di↵erential Fault
Analysis”.

Authors: Guillermo Suarez-Tangil, Flavio Lombardi, Juan E.
Tapiador, and Roberto Di Pietro.

In: IEEE Computer, vol. 47:6, pp. 24-31 (2014).

I.F. (2012): 1.68 (Q1) in Computer Science.

P4: “Alterdroid: Di↵erential Fault Analysis of Obfuscated
Malware Behavior”.

Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Flavio
Lombardi, and Roberto Di Pietro.

To: IEEE Trans. on Mobile Computing.
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Contributions Cloud-based Analysis

Layout

Cloud-based Analysis

Meterdroid

Targetdroid
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Contributions Cloud-based Analysis

Contribution 4: Meterdroid

Cloud-based Analysis (I/II)

Detecting malware: To cloud or not to cloud?

Challenges

Separating malicious from
non-malicious activities

On-platform analysis is very
consuming

O✏oaded engines

We evaluate energy-consumption
trade-o↵s of o✏oading...

... anomaly detectors using ML
systems

Feature extraction
Monitoring + Processing

Detection
Training + Testing
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Contributions Cloud-based Analysis

Energy consumption in Joules for all preprocessing,
training, detection and communication tests
Experimental work
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Contributions Cloud-based Analysis

Di↵erent deployment strategies and their trade-o↵s
To cloud or not to cloud? Evaluation and results

Strategies

Local Training

Local Detection

Remote Training

Remote Detection

Parameters the detector

Frequency of training !t

Frequency of detection !d

Size of the training set |D|
Size of the model |M|
Length of a vector |v |

Local Training, Local Detection

!t |D|Et(|v |) + !dEd(|v |)

Local Training, Remote Detection

!t

✓
|D|Et(|v |) + Ec(|M|)

◆
+ !dEc(|v |)

Remote Training, Local Detection

!t

✓
|D|Ec(|v |) + Ec(|M|)

◆
+ !dEd(|v |)

Remote Training, Remote Detection

!t |D|Ec(|v |) + !dEc(|v |)
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Contributions Cloud-based Analysis

Case study: Repackaged malware
Local Training, Local Detection vs. Remote Training, Remote Detection
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− K−means
− OCNB

Computation Communications

App Total

YouTube 551.59
MX Moto 644.52
Facebook 637.27

Life battery 1.8⇥ 106

Table : Consumption (in Joules) of three
popular apps during a time span of 10
minutes.
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Contributions Cloud-based Analysis

Our results confirm the intuition that externalized
computation is the best option energy-wise
Conclusions

To o✏oad

Several orders of magnitude cheaper than on-platform computations

Energy e�ciency of the communications in current platforms

Parameters related to the anomaly detection: dataset sizes and the
operation frequency

Anomaly detectors are very consuming tasks

Substantial di↵erences among the ML algorithms tested

They consume more than popular apps (games, OSN, ...)

Need for more lightweight ML algorithms for on platform detection
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Contributions Cloud-based Analysis

Results: Meterdroid

P5: “Power-aware Anomaly Detection in Smartphones: An
Analysis of On-Platform versus Externalized Operation”.

Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro
Peris-Lopez, and Sergio Pastrana.

To: Pervasive and Mobile Computing, submitted Feb. 2014.

I.F. (2012): 1.63 (Q1).
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Contributions Cloud-based Analysis

Contribution 5: Targetdroid

Cloud-based Analysis (II/II)

Detecting targeted malware in the cloud

Challenge

Malware is
becoming aware
of the context

Analysis dynamic
tools fail on
triggering the
malware

Typical wake-up conditions

User present: USB plug, screen-on,
acceleration, answered incoming call...

Location: Location change, near/leaving
address, at a location during o�ce hours...

Time: A given time, after an event...

Hardware: Power/LED status, LOCK event...

Config: Apps installed, contact in agenda...
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Contributions Cloud-based Analysis

Inputs provided by the user to his device constitute a major
source of stimuli for triggering certain app behaviors
Contribution: behavior-triggering model based on the user

User-centric models for triggering behaviors

We obtain an actionable model of user behavior from real users

We test how apps behave when users execute them in some context

BEHAVIOR(
COLLECTION(

BEHAVIOR(
INJECTION(

Physical)Device) Virtual)Device)

Behavioral*

Model*(M)*
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Contributions Cloud-based Analysis

Most events have an extremely low number of neighbors
Experimental Work

Input events and their degree distribution for a user interacting with an
Android platform
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Contributions Behavioral Triggering

Behavior-triggering stochastic models
User-centric models

Behavioral Models

Usage Patterns: u = h✏1, ✏2, . . . , ✏ki, ✏i 2 E
Context Patterns: t = hc1, c2, . . . , cli, ci 2 C

Stochastic Triggering Model

Markov Chains: discrete-time first-order Markov process
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Contributions Behavioral Triggering

Targetdroid allows to detect targeted malware
Our system
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Contributions Behavioral Triggering

It takes 3s to inject an SMS and 0.01s to inject a location
Evaluation

0 20 40 60 80 100 120

0.
0

0.
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8

Time (min)

C
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e

BA: Barabási-Albert
ER: Erdös-Rényi

1000 states

Number of parallel clones for 4000 states
1 2 3 4 5 6 7 8 9 10

10 min. 42% 60% 68% 73% 76% 79% 81% 81% 82.5% 83.4%
60 min. 79% 86% 89% 90% 90% 91% 91% 91% 91% 95%
120 min. 84% 87% 88% 88% 93% 93% 93% 93% 93% 93%
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Contributions Behavioral Triggering

Stochastic behavioral-triggering is a robust building block
for thwarting targeted malware
Conclusions

Detecting targeted malware via behavioral analysis requires smart inputs

Determining malware’s triggering conditions is a complex problem

Behavioral analysis requires user-centric inputs

Markov model chains

Modeling inputs as Markov chains reduces the search complexity

O↵ers an e↵ective representation of the usage and context patterns

Risk assessment is key to automatically detect targeted malware

Cloud clone replication systems

Cloud infrastructure empowers devices with powerful detection

Parallel testing is paramount to detect complex activation patterns
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Contributions Behavioral Triggering

Results: Targetdroid

P6: “Detecting Targeted Smartphone Malware with Behavior-
Triggering Stochastic Models”.

Authors: Guillermo Suarez-Tangil, Mauro Conti, Juan E.
Tapiador, and Pedro Peris-Lopez.

To: European Symposium On Research In Computer Security
(ESORICS), September 2014.

Rank (2013): CORE A in Computer Software.
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Conclusions

Thwarting smart malware is a thriving research area

Conclusions

Smart malware analysis
Impressive growth of goodware and malware

Increase in the sophistication
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Conclusions

This Thesis contributes to the analysis of Smart Malware
Discussion

Addresses several fundamental issues when automating smart malware
analysis in large-scale markets

01: Study the evolution of
malware and its
analysis/detection

02: Develop methods for better
analyzing malware in large
markets

Intelligent instruments to
automate the analysis

03: Facilitate the analysis of
complex smart malware

O1 O2 O3

Evolution
N N N

Dendroid
N

Alterdroid
N N

Meterdroid
N

Targetdroid
N
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Conclusions

All contributions resulting from this Thesis have been sent
to top ranked journals and conferences of the area
Results

Publications Indexes Rank

Journals
Published : 3 JCR Q1
Submitted : 2 JCR Q1

Conferences Published : 1 CORE A

Others Copyrighted : 4 – –

Total 10

Table : Summary of the publications of this Thesis and the citation indexes of
their corresponding publication venue.
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Conclusions

Summary of the PhD training
Timeline: Publications + Visits + Related

2011$ 2012$ 2013$ 2014$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$T h e s i s &

MsC$

$$$$$$$$$$$$$R e l a t e d &

R1. Automatic Rule Generation Based on GP for Event Correlation (CISIS’10)

R2. Artificial Immunity-based Correlation System (SECRYPT’11)

R3. Providing SIEM systems with self-adaptation (INFFUS’13)

R4. An Experimental Comparison of Privacy Methods in WSN (SENSIG’10)

R5. A privacy-respectful telematic verification system (MOBIQUITOUS’11)

R6. Information Sharing Models for Cooperative Cyber Defence (CYCON’13)

R7. Hindering Data Theft with Encrypted Data Trees (sub. JSS’13)

R8. Hindering Malware Detect. via Steganography in Smartdevices (sub. INSCRYPT’14)
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Conclusions

Smart Malware still pose many challenges to be
addressed with novel solutions
Future work

Stegomalware: We have crawled several legitimate markets and
mining their components finding evidences of apps using steganalysis

Submitted: Hindering Malware Detection via Steganography

Trusted Software: Most users do not pay much attention to the
permissions and/or the reputation of the app

Malware in Other Smart Devices: Malware will also hit other smart
devices as soon as they appear, with special focus on medical devices

Forensics Analysis: Analyzing post-mortem malware can be useful to
better improve future specimens using similar infection vector

Cooperative security: Mutually monitoring schemes could be
interesting, where each device monitors the behavior of others to
detect compromise
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Conclusions

MINING STRUCTURAL AND BEHAVIORAL
PATTERNS IN SMART MALWARE

Author: Guillermo Suarez-Tangil
Supervisors: Juan E. Tapiador, Pedro Peris-Lopez

COmputer SEcurity (COSEC) Lab
Computer Department — Universidad Carlos III de Madrid

PhD Defense – October 2014
Madrid, Spain

Suarez-Tangil, G. (Carlos III University) PhD Defense October 2014 59 / 59


	Introduction
	Contributions
	Conclusions

