|
Dr. Loukides is a Senior Lecturer (Associate Professor) in
the Department of Informatics, King's College London. He was a Royal
Academy of Engineering Research Fellow at School of Computer
Science &
Informatics, Cardiff
University
and a
Postdoctoral Research Fellow at the Dept. of
Biomedical
Informatics, Vanderbilt
University, USA. His research interests are in data mining. His
research
investigates theoretical and practical aspects including algorithmic
design and optimization, and explores applications in social networks,
healthcare, and
business.
He serves as an Associate Editor in IEEE Trans. on Information
Forensics and Security (TIFS) and in Knowledge and Information Systems
(KAIS) and as a PC member of
conferences (e.g., KDD, ICDE, ICDM, SDM, WSDM, AAAI, and IJCAI). He
is editor of Medical
Data Privacy Handbook and author of Anonymization
of Electronic Medical Records to Support Clinical Analysis. He is a
Senior Member of IEEE and a Member of ACM.
Recent
Publications
1. L. Li, W. Zuba,
G. Loukides, S. P. Pissis, and M. Matsangidou. Scalable Order-Preserving Pattern Mining.
IEEE International Conference on Data Mining
(ICDM) (regular paper), 2024.
2. L. Li, H. Chen, G. Loukides, R. Gwadera, S. Stougie, and S. Pissis.
Heavy Nodes in a Small Neighborhood: Exact and Peeling Algorithms and Applications
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024.
3. H. Verbeek, L. Ayad,
G. Loukides, and S. P. Pissis. Minimizing the Minimizers via Alphabet
Reordering.
Annual Symposium on Combinatorial Pattern Matching
(CPM), 2024.
4. G. Bernardini, H.
Chen, I. L. Gørtz, C. Krogh, G. Loukides, S. P. Pissis, L.
Stougie, and M. Sweering. Connecting de Bruijn Graphs.
Annual Symposium on Combinatorial Pattern Matching
(CPM), 2024.
5. E. Gabory, C. Liu,
G. Loukides, S. P. Pissis, and W. Zuba. Space-Efficient Indexes for Uncertain
Strings.
IEEE International Conference on Data
Engineering (ICDE), 2024. (arxiv version) (code)
6. H. Zhong, G.
Loukides, A. Conte, and S. P. Pissis. Ego-Network Segmentation via
(Weighted) Jaccard Median.
IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2024. (code)
7. P. Charalampopoulos,
H. Chen, P. Christen, G. Loukides, N. Pisanti, S. P. Pissis, and J.
Radoszewski. Pattern Masking for
Dictionary Matching: Theory and Practice.
Algorithmica, 2024.
8. G. Bernardini, H.
Chen, A.
Conte, R. Grossi, V. Guerrini, G. Loukides, N. Pisanti, and S. P.
Pissis. Utility-Oriented String
Mining.
SIAM International Conference on Data Mining (SDM),
2024.
9. H. Chen, A. Conte,
R. Grossi, G. Loukides, S. P. Pissis, and M. Sweering. On Breaking Truss-Based and
Core-Based Communities.
ACM Transactions on Knowledge Discovery from Data
(TKDD), 2024. (code)
10.
L. A. K. Ayad, G. Loukides, S. P. Pissis, and H. Verbeek. Sparse Suffix and
LCP Array: Simple, Direct, Small, and Fast.
Latin American Symposium on Theoretical Informatics
(LATIN), 2024. (arxiv
version) (code)
11. G. Bernardini, C. Liu, G. Loukides, A. Marchetti-Spaccamela, S. P. Pissis, L. Stougie and M. Sweering.
Missing Value Replacement in Strings and Applications
Data Mining and Knowledge Discovery (DAMI), 2024 (forthcoming)
12. L. A. K. Ayad, G.
Loukides, and S. P. Pissis. Text
Indexing for
Long Patterns: Anchors are
All you Need.
International Conference on Very Large Data
Bases (VLDB), 2023. (code)
13. G. Loukides, S. P.
Pissis, and M. Sweering. Bidirectional String
Anchors for Improved Text Indexing and Top-K Similarity Search.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 2023. (code)
Selected
Publications (more at:
DBLP,
Google Scholar)
1. H. Zhong, G.
Loukies, A. Conte, and S. P. Pissis. Jaccard Median for
Ego-Network Segmentation.
IEEE International Conference on Data Mining
(ICDM), 2022. (code)
2. G. Bernardini, A.
Conte, G. Gourdel, R. Grossi, G. Loukides, N. Pisanti, S. P. Pissis, G.
Punzi, and L. Stougie, and M. Sweering.
Hide
and Mine in Strings: Hardness, Algorithms, and Experiments.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 2022. (code)
3. H. Chen, C. Dong, L.
Fan, G. Loukides, S. P. Pissis, and L. Stougie.
Differentially Private String Sanitization for Frequency-Based Mining
Tasks.
IEEE International Conference on Data Mining
(ICDM), 2021. Regular Paper. (code)
4. H. Chen, A. Conte,
R. Grossi, G. Loukides, S. P. Pissis, and M. Sweering. On Breaking
Truss-Based Communities.
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), 2021. Research Track. (code)
5. C. Hu, Li, Z. Liu,
X. Guo, Y. Wei, X. Guang, G. Loukides, and C. Dong. How
to Make Private Distributed Cardinality Estimation Practical, and Get
Differential Privacy for Free.
USENIX Security Symposium, 2021. (full
version)
6. L. Zheng, H. Chan,
G. Loukides, and M. Li. Maximizing
Approximately k-Submodular Functions.
SIAM International Conference on Data Mining
(SDM), 2021. (full
version, code)
7. G.
Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides, N. Pisanti, S.
P. Pissis, G. Rosone, and M. Sweering. Combinatorial
Algorithms for String Sanitization.
ACM Transactions on Knowledge Discovery from
Data (TKDD), 2020. (code)
8. G.
Bernardini, A. Conte, G. Gourdel, R. Grossi, G. Loukides, N. Pisanti,
S. P. Pissis, G. Punzi, and L. Stougie, and M. Sweering. Hide and
Mine in Strings: Hardness and Algorithms.
IEEE International Conference on Data Mining
(ICDM), 2020.
9.
C. Dong and G. Loukides. Approximating
Private Set
Union/Intersection Cardinality with Logarithmic Complexity.
IEEE Transactions on Information
Forensics and Security, vol 12 (11), 2017.
10.
G. Loukides and R. Gwadera. Optimal
event sequence
sanitization.
SIAM International Conference on Data
Mining (SDM), 2015.
11.
R. Gwadera, A. Gkoulalas-Divanis, and G. Loukides. Permutation-based Sequential Pattern
Hiding.
IEEE International Conference on Data
Mining (ICDM), 2013. (Acceptance rate for regular papers: 94/809≈11.6%)
[presentation, poster]
12.
A. Gkoulalas-Divanis and G. Loukides. Revisiting
Sequential Pattern Hiding to Enhance Utility.
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2011.
13. G. Loukides, A. Gkoulalas-Divanis, and B. Malin. Anonymization
of Electronic Medical Records for Validating Genome-Wide Association
Studies.
Proceedings of the National
Academy of
Sciences of the United States of America, vol. 107 (17),
2010. (Impact Factor 9.83)
Acknowledged as one
of the most
important technologies to improve the effectiveness of healthcare
by a
National Human Genome Research
Institute Nature
publication
|