- 1. Which ones of the following triples cannot represent the data of a triangle?
 - (1) AB = 2, BC = 3, AC = 5
 - (2) AB = 11, BC = 13, AC = 15
 - (3) AB = 25, BC = 17, AC = 9
 - (4) AB = 20, BC = 35, AC = 17
 - (5) $\angle A = 10^{\circ}, \angle B = 10^{\circ}, \angle C = 90^{\circ}$
 - (6) $\angle A = 50^\circ, \angle B = 30^\circ, \angle C = 100^\circ$
- **2.** Prove that the sum of the angles of a triangle is 180° .
- **3.** Let ABC and A'B'C' be triangles such that $\angle A = \angle A'$, AB = 3A'B' and BC = 3B'C'. If AC = 2, what is the value of A'C'?
- 4. Explain why none of the following functions is an isometry:
 - (1) 4z
 - $(2) \frac{z}{5}$
 - (3) $e^{|z|}$
- 5. Let ABCD be a trapezoid such that $AB \parallel DC$, BD = 6, AB = 12 and $\angle ADB = 90^{\circ}$. What is $\angle ADC$?

- 6. Prove that given a circle Γ and a point *P* outside of Γ there exist exactly two lines through *P* tangent to Γ .
- 7. Classify the following isometries of the Euclidean plane. In other words, which of the following isometries is a rotation, translation, line reflection or none of these?
 - (A) -z + 2
 - (B) iz + 17
 - (C) z + 5
 - (D) $\bar{z} + 2i$
 - (E) $i\bar{z} + 2i$
- 8. Let Γ_1 and Γ_2 be two distinct circles centered at O_1 and O_2 . Let l be a line tangent to Γ_1 and Γ_2 at P_1 and P_2 and suppose that the line containing O_1O_2 does not intersect l. Prove that $O_1O_2P_2P_1$ is a trapezoid.
- **9.** Let *ABC* be a right triangle such that $\angle A = 90^\circ$, AB = 2 and AC = 3. Suppose that *ABC* is inscribed in a circle of radius *r*. What is *r*?
- 10. Recall that the general form of a Euclidean isometry is az + b or $a\overline{z} + b$ where both a and b are complex numbers and |a| = 1. Recall that z = x + iy where xand y are real numbers. Let f(z) be the isometry which is the reflection across the line y = 2x + 1. Write down a formula for f(z).
- 11. Let ABC be an equilateral triangle, AB = 5, inscribed in a circle. What is the radius of the circle?
- 12. Let ABC be an isosceles triangle, AB = AC. Let M be a point on BC. Prove that M is the midpoint if and only if AM is perpendicular to BC.