
Conformal Blocks: solutions to most of the exercises

2. Generalities on conformal transformations

2.1 Special conformal transformations

Problem:

Show that the general quadratic solution εµ = γµνρx
νxρ to the equation ∂µεν+∂νεµ =

(
2
d

)
δµν(δστ∂σετ ) ,

in flat d-dimensional Euclidean space is εµ = 2xµ(b · x)− bµx2 .

Solution

We start from the most general quadratic term εµ = γµνρx
νxρ , where γµνρ = γµρν . (Any part of γ

antisymmetric in the last two indiceswould not actually contribute anything to ε so we can take it
to be zero).

We have to substitute this into the equation

∂µεν + ∂νεµ =

(
2

d

)
δµν(δστ∂σετ ) . (∗)

We first calculate (using γτσν = γτνσ)

∂σετ = ∂σ(γτνρ x
νxρ) = γτνρ(δ

ν
σx

ρ + xνδρσ) = γτσρx
ρ + γτνσx

ν = 2γτσρx
ρ

⇒ δστ∂σετ = 2γτ τρ x
ρ

Since γτ τρ will occur quite a lot in the calculation, let’s give it a name, aρ = γτ τρ and so we have

δστ∂σετ = 2aρx
ρ .

Now the equation (∗) that we have to solve becomes

2γνµρx
ρ + 2γµνρx

ρ =
(

2
d

)
δµν 2aρx

ρ

We now want to get rid of the x on the left hand side. We can do this by differentiating with respect
to σ and using ∂σx

ρ = δρσ to get
⇒ 2γνµσ + 2γµνσ =

(
4
d

)
δµν aσ ⇒ γνµσ + γµνσ =

(
2
d

)
δµν aσ

This is just the sort of combination that occurs when calculating the Christoffel symbols in GR,
and we use the same trick here: we take three version of this equation with different permuattions
of the indices and use the symmetry on the last pair of indices:

(γνµσ + γµνσ)
−(γµσν + γσµν)
+(γσνµ + γνσµ)

 =
(

2
d

)
aσδµν
−aνδµσ
+aµδνσ


⇒ 2γνµσ =

(
2
d

)
(aσδµν − aνδµσ + aµδνσ)

⇒ 2γνµσ =
(

2
d

)
(aσδµν − aνδµσ + aµδνσ)

εµ = γµνρx
νxρ =

(
1
d

)
(aρx

ρxσ + aνx
νxµ − aµxρxρ)

Putting aρ = d bρ we get the general solution

εµ = (2bσxσ)xµ − bµ(x2) .



Problem:

Consider the coordinate transformation of flat space

x′µ =
xµ − (x2)bµ

1− 2 x · b + x2b2
, (1)

where b is a constant vector. Show that x′µ

(x′)2 = xµ

x2
− bµ .

Solution

We follow the hint and first find

(x′)2 =
1

(1− 2x · b + x2b2)2

(
x2 − 2(x · b)x2 + (x2)2b2

)
=

x2

(1− 2x · b + x2b2)

so that
x′µ

(x′)2
=

(1− 2x · b + x2b2)

x2

[
xµ − x2bµ

1− 2x · b + x2b2

]
=

xµ

(x2)
− bµ

Problem:

Consider now the vector yµ(t) with real parameter t defined by y(t)µ = xµ−(x2)teµ

1−2tx·e+x2t2
, where e = b̂

is the unit vector in the direction of b. We denote |b| = b so that b = b e. Show that

(a) e · y =
e · x− tx2

1− 2tx · e + x2t2
, (b) y2 =

x2

1− 2tx · e + x2t2
, (c)

dyµ

dt
= 2(e · y)yµ − y2 eµ .

Solution:

(a)

e · y = e ·
(

x− (x2)te

1− 2tx · e + x2t2

)
=

e · x− (x2)te · e
1− 2tx · e + x2t2

=
e · x− (x2)t

1− 2tx · e + x2t2

since e is a unit vectot, e · e = 1.

(b) We have already done this in part (a) where we calculated (x′)2. If, for the moment, we
substitute b = te then we get x′µ = yµ and so, (usinge · e = 1)

y2 =
x2

(1− 2x · (te) + x2(te)2)
=

x2

(1− 2tx · e + x2t2)

(c)
dyµ

dt
=

d

dt

[
x− (x2)te

1− 2tx · e + x2t2

]
=

[
−(x2)e

1− 2tx · e + x2t2

]
−
[

(−2x · e + 2x2t)(x− (x2)te)

(1− 2tx · e + x2t2)2

]
= yµ

[
2(e · x− x2t)

1− 2te · x + x2t2

]
− y2yµ = 2(e · y)yµ − y2 eµ .

as required.



2.2 Classical scale invariant Lagrangians

Consider a scalar field which transforms under an infinitesimal coordinate transformation xµ → x′µ

as φ(x) = |∂x′µ/∂xν |∆/d φ(x′) , where |∂x′µ/∂xν | is the Jacobian of the transformation.

(a) Show that under a scale transformation x′µ = λxµ, the field φ has scale dimension ∆.

(b) Show that if δxµ = αµ, the variation of φ is δφ = ∆
d (∂µα

µ)φ + ασ∂σφ .
(c) Show for an infinitesimal scale transformation δxµ = εxµ, δεφ = ε(∆φ+ xν∂νφ) .
(d) Show that the variation of the Lagrangian density L = 1

2 ∂σφ∂
σφ− V (φ) , is a total derivative

under an infinitesimal scale transformation provided ∆ = (d/2) − 1, and V = c φD/∆ for some
constant c. [What are these potentials?]

Solution:

(a) If x′µ = λxµ then ∂x′µ/∂xν = λδµν , or (∂x′µ/∂xν) = λIII , where III is the identity matrix.

This means that

det

(
∂x′µ

∂xν

)
= det(λIII) = λd ⇒ φ(x) = (λd)∆/dφ(x′) = λ∆ φ(x′) .

We see that the field φ has scale dimension ∆.

(b) If δxµ = αµ then

x′µ = xµ + δxµ = xµ + αµ ⇒ ∂

∂xν
(xµ + αµ) = δµν + ∂να

µ

We can write the Jacobian matrix of partial derivatives as
∂

∂xν
(xµ + αµ) = III +AAA

where III is the identity matrix and the elements of the matrix AAA are ∂αµ/∂xν . Since αµ is an
infinitesimal transformation, the entries in A are small and so

det(III +AAA) = 1 + Tr(AAA) +O(A2) = 1 + ∂µα
µ

and thus ∣∣∣∣∂x′µ∂xν

∣∣∣∣∆/d φ(x+ δx) = φ(xµ + αµ)(1 + ∂να
ν +O(α2))∆/d

= (φ(x) + ασ∂σφ+O(α2))(1 +
∆

d
∂να

ν +O(α2)) = φ(x) + (ασ∂σφ+
∆

d
∂µα

µφ) +O(α2)

⇒ δφ =
∆

d
(∂ · α)φ+ α · ∂φ

(c) If we have an infinitesimal scale transformation δxµ = εxmu, then

∂ · α = ∂µ(εxµ) = ε δµµ = ε d , and α · ∂ = εxµ∂µ ,

and so
δφ = ε(∆φ+ xν∂νφ) . (†)



(d) We have

δL = ∂σ(δφ)∂σφ− δφ∂V
∂φ

where we have written ∂V/∂φ = V ′

= ∆∂σφ∂
σφ+ δτσ∂τφ∂

σφ+ xτ∂τ∂σφ∂
σφ−∆φV ′ − xτ∂τV

= (∆ + 1)∂σφ∂
σφ+

1

2
xτ∂τ (∂σφ∂

σφ)− ∂τ (xτV ) + (∂τx
τ )V −∆φV ′

= ∂τ (
1

2
xτ∂σφ∂

σφ− xτV ) +

[
∆ + 1− d

2

]
(∂φ)2 + (dV −∆φV ′)

= ∂τ (xτL) +

[
∆− d− 2

2

]
(∂φ)2 + (dV −∆φV ′)

This is a total derivative under an infinitesimal scale transformation provided ∆ = (d/2) − 1, and
dV = ∆φV ′. This last equation is solved by V = c φd/∆ for any constant c, as required.

d/∆ = 2d
d−2 . This is an integer for d = 3, 4, 6 in which case the classically scale-invariant potentials

are
d 3 4 6

V φ6 φ4 φ3

We note that these are the renormalisable potentials.



2.3 Scale invariance is not conformal invariance

Consider the following Lagrangian in four dimensions

L = Lφ + LA , where Lφ = ∂σφ̄ ∂
σφ , LA = −1

4FµνF
µν ,

where φ is a complex scalar field, φ̄ is its conjugate and Fµν = ∂µAν − ∂νAµ is the field strength of
a gauge field Aµ. Under conformal transformations, the fields vary as

δφ =
1

4
(∂ · ε)φ+ εσ∂σφ , δφ̄ =

1

4
(∂ · ε)φ̄+ εσ∂σφ̄ , δAµ = εσ∂σAµ +Aσ∂µε

σ .

(a) Show that

δLφ = ∂µ

[
εµ(∂φ · ∂φ̄) +

1

4
φφ̄∂µ(∂ · ε)

]
− 1

4
φφ̄∂σ�ε

σ +

[
∂σετ + ∂τ εσ −

1

2
(∂ · ε)ηστ

]
∂σφ∂τφ̄ ,

hence Lφ is invariant (up to a total derivative) for conformal transformations (explain why).

(b) Show that
δFµν = (∂µε

σ)Fσν + (∂νε
σ)Fµσ + εσ∂σFµν .

δLA = ∂σ(−1

4
εσFµνF

µν)− 1
2

[
∂σετ + ∂τ εσ −

1

2
(∂ · ε)ηστ

]
F σνF

τν ,

so again LA is invariant (up to a total derivative) for conformal transformations.

(c) Now consider the usual interaction term (up to a factor of −ie)

L1 = AµJµ where Jµ = (φ̄ ∂µφ− φ∂µφ̄) .

Show that
δJµ = 1

2(∂ · ε)Jµ + εσ∂σJµ + Jτ∂µε
τ .

δL1 = ∂σ(εσA·J) +
[
∂τ εµ + ∂µετ − 1

2(∂ · ε)ηµτ
]
AτJµ ,

and hence the interaction term is (classically) invariant (up to total derivatives) under both scale
transformations and special conformal transformations.

(d). Consider now the interaction term

L1 = AµKµ where Kµ = (φ̄ ∂µφ+ φ∂µφ̄) .

Show that
δKµ = 1

2(∂ · ε)Kµ + εσ∂σKµ +Kτ∂µε
τ + 1

2φφ̄∂µ(∂·ε) .

δL2 = ∂σ(εσA·K) +
[
∂τ εµ + ∂µετ − 1

2(∂ · ε)ηµτ
]
AτKµ + 1

2φφ̄A
σ(∂σ∂τ ε

τ ) .

Hence, this term is invariant (up to total derivatives) for conformal transformations for which
∂σ∂τ ε

τ = 0, ie for translations, rotations, scale transformations but not special conformal transfor-
mations (explain why).

This solution is included on the next page, labelled 13 from an MSc course problem set.











3. Specialisation to d = 2

3.1 Conformal transformations in two dimensions

We have to consider the equation

∂µεν + ∂νεµ = δµν(δστ∂σετ ) ,

for each choice of indices {µ, ν} in Cartesian coordinates, that is for {µ, ν} = {x, x}, {x, y}, {y, y}.

{µ, ν} = {x, x}:
2∂xεx = (∂xεx + ∂yεy) ⇒ ∂xεx = ∂yεy

{µ, ν} = {x, y}:
∂xεy + ∂yεx = 0

{µ, ν} = {y, y}:
2∂yεy = (∂xεx + ∂yεy) ⇒ ∂yεy = ∂xεx

If we now label the two components of ε as εx = f and εy = g we see that we have the following
equations:

∂f

∂x
=
∂g

∂y
,

∂f

∂y
= −∂g

∂x
. (∗)

These are the Cauchy-Riemanns equations for the f and g to be the real and imaginary parts of a
complex function of z = x+ iy. If we put

F = f + ig ,
∂

∂z
=

1

2
(∂x − i∂y) ,

∂

∂z̄
=

1

2
(∂x + i∂y) .

The equation that F is a differentiable function of z is

0 =
∂F

∂z̄
=

(
∂f

∂x
− ∂g

∂y

)
+ i

(
∂f

∂y
+

dg

∂x

)
,

which are exactly the equations (∗).



3.2 Special conformal transformations of the complex plane

We start from

x′µ =
xµ − (x2)bµ

1− 2 x · b + x2b2
, (1)

In complex coordinates z = x+ iy, z̄ = x− iy we have x · x = zz̄ ⇒ gzz̄ = gz̄z = 1/2, gzz = gz̄z̄ = 0.
Hence with xµ = (z, z̄), bµ = (b, b̄),

z′ =
z − (zz̄)b

1− (zb̄+ z̄b) + zz̄bb̄
=

z(1− z̄b)
(1− zb̄)(1− z̄b)

=
z

1− zb̄
.

Similarly, or by complex conjugation, we get the transformation for z̄,

z 7→ z

1− b̄z
, z̄ 7→ z̄

1− bz̄
.

If b = α+ iβ then

δz = δx+iδy = (α+iβ)(x+iy)2 = (α+iβ)(x2−y2+2ixy) = (α(x2−y2)−2βxy)+i(β(x2−y2)+2αxy) ,

generated by Q = (α+ iβ)L1 + (α− iβL̄1) = α(L1 + L̄1) + βi(L1 − L̄1).

3.3 Möbius maps

A Möbius map is of the form

z 7→ az + b

cz + d

The simplest way to show there is a unique map that sends u→ u′, v → v′, w → w′ is to show there
is a unique map that sends u→∞, v → 1, w → 0 and then there is a unique composition that sends
u→∞→ u′, etc.

Obviously to send u→∞ and w → 0 we must have

z 7→ A
z − w
z − u

for some constant A and we choose A to send v → 1,

z 7→ v − u
v − w

z − w
z − u

A Möbius map is infinitesimal if it is close to the identity map which has a = d = 1, b = c = 0 and
so we require a = 1 + α, d = 1 + δ, b = β, c = γ and get (ignoring second order terms)

δz =
az + b

cz + d
−z =

z + αz + β

1 + δ + γz
−z ≈ (z+αz+β)(1−δ−γz)−z ≈ β+(α−δ)z+(−γ)z2 = A+Bz+Cz2 ,

as required



3.4 Quasiprimary state

Let L0|ψ〉 = h|ψ〉 and L1|ψ〉 = 0.

Now consider |χ〉 = (L−2 − (3/(4h+ 2))L−1L−1)|ψ〉.
Firstly, we can prove L0|χ〉 = (h+ 2)|χ〉

L0L−2|ψ〉 = [L0, L−2]|ψ〉+ L−2L0|ψ〉 = 2L−2|ψ〉+ hL−2|ψ〉
= (h+ 2)L−2|ψ〉

L0L−1L−1|ψ〉 = [L0, L−1]L−1|ψ〉+ L−1[L0, L−1]|ψ〉+ L−1L−1L0|ψ〉
= L−1L−1|ψ〉+ L−1L−1|ψ〉+ hL−1L−1|ψ〉
= (h+ 2)L−1L−1|ψ〉

⇒ L0|χ〉 = (h+ 2)|χ〉 .

Now we consider L1|χ〉. We have

L1L−2|ψ〉 = [L1, L−2]|ψ〉+ L−2L1|ψ〉 = 3L−2|ψ〉+ 0

= 3L−2|ψ〉
L1L−1L−1|ψ〉 = [L1, L−1]L−2|ψ〉+ L−1[L1, L−1]|ψ〉+ L−1L−1L1|ψ〉

= 2L0L−1|ψ〉+ 2L−1L0|ψ〉+ 0

= 2[L0, L−1]|ψ〉+ 4L−1L0|ψ〉
= 2L−1|ψ〉+ 4hL−1|ψ〉
= (4h+ 2)L−1|ψ〉

⇒ L1(L−2 −
3

4h+ 2
L−1L−1)|ψ〉 = 3L−1|ψ〉 − (4h+ 2)

3

4h+ 2
L−1|ψ〉

= 0 .



3.5 One–, two– and three–point functions









4. Full infinite symmetry

4.1 Conformal invariance in light-cone coordinates
Light-cone coordinates for Minkowski space are defined as x+ = t+ x, x− = t− x.

(a) The simplest way to find the metric is from the line element,

ds2 = ηµνdxµ dxν = dt2 − d2x2 =

(
dx+ + dx−

2

)2

−
(

dx+ − dx−

2

)2

= dx+dx− = η++dx+dx+ + 2η+−dx+dx− + η−−dx−dx− ,

from which we can read off that η++ = η−− = 0, η+− = η−+ = 1
2 so that

ηµν =

(
0 1

2
1
2 0

)
, ηµν =

(
0 2
2 0

)
.

(b) We first find
Tµµ = T+

+ + T−− = η+−T−+ + η−+T+− = 4T+− = 0 .

Next,
∂νTν+ = ηµν∂µTν+ = 2∂+T−+ + 2∂−T++ = 2∂−T++ = 0 ,

and finally
∂νTν− = ηµν∂µTν− = 2∂+T−− + 2∂−T+− = 2∂+T−− = 0 ,

(c) Finally, we use the chain rule

∂

∂t
=
∂x+

∂t
∂+ +

∂x−

∂t
∂− = ∂+ + ∂− ,

∂

∂x
=
∂x+

∂x
∂+ +

∂x−

∂x
∂− = ∂+ − ∂− ,

to re-write

d

dt

∫ ∞
−∞

(
f(x+)T++ + g(x−)T−−

)
dx

=

∫ ∞
−∞

∂

∂t

(
f(x+)T++ + g(x−)T−−

)
dx

=

∫ ∞
−∞

(∂+ + ∂−)
(
f(x+)T++ + g(x−)T−−

)
dx

=

∫ ∞
−∞

[
∂+(f(x+)T++) + ∂−(g(x−)T−−)

]
dx

=

∫ ∞
−∞

[
(∂+ − ∂−)(f(x+)T++) + (∂− − ∂+)(g(x−)T−−)

]
dx

=

∫ ∞
−∞

∂

∂x

[
f(x+)T++ − g(x−)T−−

]
dx

= 0

where we repeatedly used

∂−(f(x+)T++) = 0 , ∂+(f(x−)T−−) = 0 .



4.2 Highest weight states

To show that L1ψ = 0 and L2ψ = 0 implies Lm|ψ〉 = 0 for all m > 0.

We have [Lm, L1] = (m− 1)Lm+1, or

Lm =
1

m− 2
[Lm−1, L1] m > 2 ,

and hence

Lm|ψ〉 =
1

n− 2
(Lm−1L1|ψ〉 − L1Lm−1|ψ〉) .

This allows us to prove the result by induction.

Suppose that Lp|ψ〉 = 0 for p = 1, . . . ,m−1 withm ≥ 3, then Lm|ψ〉 = 1
m−2 (Lm−1L1|ψ〉 − L1Lm−1|ψ〉) =

0

However, by assumption L1|ψ〉 = L2|ψ〉 = 0.

Hence Lp|ψ〉 = 0 for all p ≥ 1.



5. Brute Force

5.1 Determinant
This was not asekd for, but just for the record thuis is how to work out the matrix M2.
Let |h〉 be a primary state of weight h and we normalised it as 〈h||h〉 = 1.
The space of descendants at level 2 is two dimensional with basis states

L−2|h〉 , L−1L−1|h〉 ,

We can calculate their overlaps,

〈h|L2L−2|h〉 = 〈h|L−2L2 + [L2, L−2]|h〉

= 〈h|(4L0 +
c

2
)|h〉 (using L2|h〉 = 0)

= (4h+
c

2
)〈h|h〉 = (4h+

c

2
)

〈h|L2L−1L−1|h〉 = 〈h|L−1L−1L2 + [L2, L−1]L−1 + L−1[L2, L−1]|h〉
= 〈h|0 + 3L1L−1 + L−1(3L1)|h〉
= 〈h|3L−1L1 + 3[L1, L−1] + 0|h〉
= 〈h|0 + 6L0|h〉 = 6h

〈h|L1L1L−2|h〉 = (〈h|L2L−1L−1|h〉)† = 6h

〈h|L1L1L−1L−1|h〉 = 〈h|L1(L−1L−1L1 + [L1, L−1]L−1 + L−1[L1, L−1])|h〉
= 〈h|L1(0 + 2L0L−1 + L−1(2L0))|h〉
= 〈h|L1(2(h+ 1)L−1 + 2hL−1)|h〉 = (4h+ 2)〈h|L1L−1|h〉
= (4h+ 2)〈h|L−1L1 + 2L0|h〉 = 2h(4h+ 2) = 4h(2h+ 1)

This means the matrix of inner products is

M2 = det

(
4h(2h+ 1) 6h

6h 4h+ c/2

)
= 4h(2h+ 1)(4h+ c/2)− 36h2 = 32h(h2 + hc+ c/16− 5h/8)

Now we calculate:

(h− h12)(h− h21) =

(
h−

[
3

4t
− 1

2

])(
h−

[
3t

4
− 1

2

])
= h2 + h

(
1− 3t

4
− 3

4t

)
+

13

16
− 3t

8
− 3

8t

= h2 + h

(
13− 6t− 6/t

8
− 5

8

)
+

13− 6t− 6/t

16

= h2 + h(c/8− 5/8) + c/16 .

where we used c = 13− 6t− 6/t. So, in total, since h11 = 0,

det(M2) = 32 (h− h11) (h− h12) (h− h21) .



We have

c = 13− 6t− 6

t
⇒ t = −

13 + c±
√

(1− c)(25− c)
12

.

This means that t is complex if 1 < c < 15, in fact it will be a pure phase, t = exp(iθ) so that

c = 13− 12 cos θ .

Correspondingly, the only real values of hrs will be when t appears symmetrically. We have

hrs =
r2 − 1

4t
+

(s2 − 1)t

4
− rs− 1

2
=
r2 + s2 − 2

2
cos θ +

r2 − s2

2i
sin θ − rs− 1

2

This is only real for positive r and s if r = s and so the only vanishing curves in the region 1 < c < 25
are

h = hrr =
r2 − 1

4

(
t+

1

t

)
− r2 − 1

2
=
r2 − 1

2
(cos θ − 1) =

r2 − 1

24
(1− c)

which are straight lines.



6. Differential equations

6.1 Singular vectors

We have to find the conditions under which |φ〉 = (L−2L−2− (3/5)L−4)|0〉 is a highest weight state.
We check

L1|φ〉 = L1(L−2L−2 −
3

5
L−4)|0〉

= (L−2L−2L1 + [L1, L−2]L−2 + L−2[L1, L−2]− 3

5
L−4L−1 −

3

5
[L1, L−4])|0〉

= (0 + 3L−1L−2 + 3L−2L−1 − 0− 3

5
(5L−3))|0〉

= (3L−2L−1 + 3[L−1, L−2] + 0− 3L−3)|0〉
= (0 + 3L−1 − 3L−1)|0〉
= 0

and so we see that |φ〉 is always a quasi-primary state.

We only have now to check

L2|φ〉 = L2(L−2L−2 −
3

5
L−4)|0〉

= (L−2L−2L2 + [L2, L−2]L−2 + L−2[L2, L−2]− 3

5
L−4L2 −

3

5
[L2, L−4])|0〉

= (0 + (4L0 +
c

2
)L−2 + L−2(4L0 +

c

2
)− 0− 18

5
L−2)|0〉

= (8 + c− 18

5
)L−2|0〉

= (
22

5
+ c)L−2|0〉

so that |φ〉 is a highest weight state when c = −22/5.

This is the central charge of the Lee-Yang model, the minimal model with t = 2/5.

7. Recursion relations

7.1 For discussion in the live lecture.



8. AGT: an exact formula

8.1 Liouville theory

The standard parametrisation of c and h is

c = 1 + 6Q2 , h = α(Q− α) , Q = b+ 1/b .

If b is real then we can put b = ±eu and so Q = ±2 coshu and c = 1 + 24 cosh2 u ≥ 25.

If b is pure imaginary then we can put b = ±iev and so Q = ±2i sinh v and c = 1− 24 sinh2 v ≤ 1.

If α = Q/2 + iP then h = α(Q− α) = (Q/2 + iP )(Q/2− iP ) = Q2/4 + P 2 = c−1
24 + P 2.

This means that there are no null states in any of the representations which occur in (real-coupling)
Liouville theory.

9. “Old” Conformal Bootstrap

Ising model



Lee-Yang

Here we calculate the structure constant Cφφφ in the Lee-Yang model.







10. “New” Conformal Bootstrap

For discussion in the live lecture.


