Conformal Blocks: solutions to most of the exercises

2. Generalities on conformal transformations

2.1 Special conformal transformations

Problem:

Show that the general quadratic solution $\epsilon_{\mu}=\gamma_{\mu \nu \rho} x^{\nu} x^{\rho}$ to the equation $\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}=\left(\frac{2}{d}\right) \delta_{\mu \nu}\left(\delta^{\sigma \tau} \partial_{\sigma} \epsilon_{\tau}\right)$, in flat d-dimensional Euclidean space is $\epsilon^{\mu}=2 x^{\mu}(b \cdot x)-b^{\mu} x^{2}$.

Solution

We start from the most general quadratic term $\epsilon_{\mu}=\gamma_{\mu \nu \rho} x^{\nu} x^{\rho}$, where $\gamma_{\mu \nu \rho}=\gamma_{\mu \rho \nu}$. (Any part of γ antisymmetric in the last two indiceswould not actually contribute anything to ϵ so we can take it to be zero).
We have to substitute this into the equation

$$
\begin{equation*}
\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}=\left(\frac{2}{d}\right) \delta_{\mu \nu}\left(\delta^{\sigma \tau} \partial_{\sigma} \epsilon_{\tau}\right) . \tag{*}
\end{equation*}
$$

We first calculate (using $\gamma_{\tau \sigma \nu}=\gamma_{\tau \nu \sigma}$)

$$
\begin{aligned}
\partial_{\sigma} \epsilon_{\tau} & =\partial_{\sigma}\left(\gamma_{\tau \nu \rho} x^{\nu} x^{\rho}\right)=\gamma_{\tau \nu \rho}\left(\delta_{\sigma}^{\nu} x^{\rho}+x^{\nu} \delta_{\sigma}^{\rho}\right)=\gamma_{\tau \sigma \rho} x^{\rho}+\gamma_{\tau \nu \sigma} x^{\nu}=2 \gamma_{\tau \sigma \rho} x^{\rho} \\
\Rightarrow \delta^{\sigma \tau} \partial_{\sigma} \epsilon_{\tau} & =2 \gamma^{\tau}{ }_{\tau \rho} x^{\rho}
\end{aligned}
$$

Since $\gamma^{\tau}{ }_{\tau \rho}$ will occur quite a lot in the calculation, let's give it a name, $a_{\rho}=\gamma^{\tau}{ }_{\tau \rho}$ and so we have

$$
\delta^{\sigma \tau} \partial_{\sigma} \epsilon_{\tau}=2 a_{\rho} x^{\rho} .
$$

Now the equation (*) that we have to solve becomes

$$
2 \gamma_{\nu \mu \rho} x^{\rho}+2 \gamma_{\mu \nu \rho} x^{\rho}=\left(\frac{2}{d}\right) \delta_{\mu \nu} 2 a_{\rho} x^{\rho}
$$

We now want to get rid of the x on the left hand side. We can do this by differentiating with respect to σ and using $\partial_{\sigma} x^{\rho}=\delta_{\sigma}^{\rho}$ to get

$$
\Rightarrow 2 \gamma_{\nu \mu \sigma}+2 \gamma_{\mu \nu \sigma}=\left(\frac{4}{d}\right) \delta_{\mu \nu} a_{\sigma} \quad \Rightarrow \gamma_{\nu \mu \sigma}+\gamma_{\mu \nu \sigma}=\left(\frac{2}{d}\right) \delta_{\mu \nu} a_{\sigma}
$$

This is just the sort of combination that occurs when calculating the Christoffel symbols in GR, and we use the same trick here: we take three version of this equation with different permuattions of the indices and use the symmetry on the last pair of indices:

$$
\begin{aligned}
\left\{\begin{array}{r}
\left(\gamma_{\nu \mu \sigma}+\gamma_{\mu \nu \sigma}\right) \\
-\left(\gamma_{\mu \sigma \nu}+\gamma_{\sigma \mu \nu}\right) \\
+\left(\gamma_{\sigma \nu \mu}+\gamma_{\nu \sigma \mu}\right)
\end{array}\right\} & =\left(\frac{2}{d}\right)\left\{\begin{array}{r}
a_{\sigma} \delta_{\mu \nu} \\
-a_{\nu} \delta_{\mu \sigma} \\
+a_{\mu} \delta_{\nu \sigma}
\end{array}\right\} \\
\Rightarrow 2 \gamma_{\nu \mu \sigma} & =\left(\frac{2}{d}\right)\left(a_{\sigma} \delta_{\mu \nu}-a_{\nu} \delta_{\mu \sigma}+a_{\mu} \delta_{\nu \sigma}\right) \\
\Rightarrow 2 \gamma_{\nu \mu \sigma} & =\left(\frac{2}{d}\right)\left(a_{\sigma} \delta_{\mu \nu}-a_{\nu} \delta_{\mu \sigma}+a_{\mu} \delta_{\nu \sigma}\right) \\
\epsilon_{\mu}=\gamma_{\mu \nu \rho} x^{\nu} x^{\rho} & =\left(\frac{1}{d}\right)\left(a_{\rho} x^{\rho} x_{\sigma}+a_{\nu} x^{\nu} x_{\mu}-a_{\mu} x^{\rho} x_{\rho}\right)
\end{aligned}
$$

Putting $a^{\rho}=d b^{\rho}$ we get the general solution

$$
\epsilon^{\mu}=\left(2 b^{\sigma} x_{\sigma}\right) x^{\mu}-b^{\mu}\left(x^{2}\right) .
$$

Problem:

Consider the coordinate transformation of flat space

$$
\begin{equation*}
x^{\prime \mu}=\frac{x^{\mu}-\left(x^{2}\right) b^{\mu}}{1-2 \mathbf{x} \cdot \mathbf{b}+x^{2} b^{2}}, \tag{1}
\end{equation*}
$$

where \mathbf{b} is a constant vector. Show that $\frac{x^{\prime \mu}}{\left(x^{\prime}\right)^{2}}=\frac{x^{\mu}}{x^{2}}-b^{\mu}$.

Solution

We follow the hint and first find

$$
\left(x^{\prime}\right)^{2}=\frac{1}{\left(1-2 \boldsymbol{x} \cdot \boldsymbol{b}+x^{2} b^{2}\right)^{2}}\left(x^{2}-2(\boldsymbol{x} \cdot \boldsymbol{b}) x^{2}+\left(x^{2}\right)^{2} b^{2}\right)=\frac{x^{2}}{\left(1-2 \boldsymbol{x} \cdot \boldsymbol{b}+x^{2} b^{2}\right)}
$$

so that

$$
\frac{x^{\prime \mu}}{\left(x^{\prime}\right)^{2}}=\frac{\left(1-2 \boldsymbol{x} \cdot \boldsymbol{b}+x^{2} b^{2}\right)}{x^{2}}\left[\frac{x^{\mu}-x^{2} b^{\mu}}{1-2 \boldsymbol{x} \cdot \boldsymbol{b}+x^{2} b^{2}}\right]=\frac{x^{\mu}}{\left(x^{2}\right)}-b^{\mu}
$$

Problem:

Consider now the vector $y^{\mu}(t)$ with real parameter t defined by $y(t)^{\mu}=\frac{x^{\mu}-\left(x^{2}\right) t e^{\mu}}{1-2 t \cdot \mathbf{e}+x^{2} t^{2}}$, where $\mathbf{e}=\hat{\mathbf{b}}$ is the unit vector in the direction of \mathbf{b}. We denote $|\mathbf{b}|=b$ so that $\mathbf{b}=b \mathbf{e}$. Show that

$$
\text { (a) } \mathbf{e} \cdot \mathbf{y}=\frac{\mathbf{e} \cdot \mathbf{x}-t x^{2}}{1-2 t \mathbf{x} \cdot \mathbf{e}+x^{2} t^{2}} \text {, (b) } y^{2}=\frac{x^{2}}{1-2 t \mathbf{x} \cdot \mathbf{e}+x^{2} t^{2}} \text {, (c) } \frac{\mathrm{d} y^{\mu}}{\mathrm{d} t}=2(\mathbf{e} \cdot \mathbf{y}) y^{\mu}-y^{2} e^{\mu} .
$$

Solution:

(a)

$$
\boldsymbol{e} \cdot \boldsymbol{y}=\boldsymbol{e} \cdot\left(\frac{\boldsymbol{x}-\left(x^{2}\right) t \boldsymbol{e}}{1-2 t \boldsymbol{x} \cdot \boldsymbol{e}+x^{2} t^{2}}\right)=\frac{\boldsymbol{e} \cdot \boldsymbol{x}-\left(x^{2}\right) t \boldsymbol{e} \cdot \boldsymbol{e}}{1-2 t \boldsymbol{x} \cdot \boldsymbol{e}+x^{2} t^{2}}=\frac{\boldsymbol{e} \cdot \boldsymbol{x}-\left(x^{2}\right) t}{1-2 t \boldsymbol{x} \cdot \boldsymbol{e}+x^{2} t^{2}}
$$

since \boldsymbol{e} is a unit vectot, $\boldsymbol{e} \cdot \boldsymbol{e}=1$.
(b) We have already done this in part (a) where we calculated $\left(x^{\prime}\right)^{2}$. If, for the moment, we substitute $\boldsymbol{b}=t \boldsymbol{e}$ then we get $x^{\mu}=y^{\mu}$ and so, (usinge $\cdot \boldsymbol{e}=1$)

$$
y^{2}=\frac{x^{2}}{\left(1-2 \boldsymbol{x} \cdot(t \boldsymbol{e})+x^{2}(t \boldsymbol{e})^{2}\right)}=\frac{x^{2}}{\left(1-2 t \boldsymbol{x} \cdot \boldsymbol{e}+x^{2} t^{2}\right)}
$$

(c)

$$
\begin{aligned}
\frac{\mathrm{d} y^{\mu}}{\mathrm{d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{\boldsymbol{x}-\left(x^{2}\right) t \boldsymbol{e}}{1-2 t \boldsymbol{x} \cdot \boldsymbol{e}+x^{2} t^{2}}\right]=\left[\frac{-\left(x^{2}\right) \boldsymbol{e}}{1-2 t \boldsymbol{x} \cdot \boldsymbol{e}+x^{2} t^{2}}\right]-\left[\frac{\left(-2 \boldsymbol{x} \cdot \boldsymbol{e}+2 x^{2} t\right)\left(\boldsymbol{x}-\left(x^{2}\right) t \boldsymbol{e}\right)}{\left(1-2 t \boldsymbol{x} \cdot \boldsymbol{e}+x^{2} t^{2}\right)^{2}}\right] \\
& =y^{\mu}\left[\frac{2\left(\boldsymbol{e} \cdot \boldsymbol{x}-x^{2} t\right)}{1-2 t \boldsymbol{e} \cdot \boldsymbol{x}+x^{2} t^{2}}\right]-y^{2} y^{\mu}=2(\boldsymbol{e} \cdot \boldsymbol{y}) y^{\mu}-y^{2} e^{\mu} .
\end{aligned}
$$

as required.

2.2 Classical scale invariant Lagrangians

Consider a scalar field which transforms under an infinitesimal coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}$ as $\phi(x)=\left|\partial x^{\prime \mu} / \partial x^{\nu}\right|^{\Delta / d} \phi\left(x^{\prime}\right)$, where $\left|\partial x^{\prime \mu} / \partial x^{\nu}\right|$ is the Jacobian of the transformation.
(a) Show that under a scale transformation $x^{\prime \mu}=\lambda x^{\mu}$, the field ϕ has scale dimension Δ.
(b) Show that if $\delta x^{\mu}=\alpha^{\mu}$, the variation of ϕ is $\delta \phi=\frac{\Delta}{d}\left(\partial_{\mu} \alpha^{\mu}\right) \phi+\alpha^{\sigma} \partial_{\sigma} \phi$.
(c) Show for an infinitesimal scale transformation $\delta x^{\mu}=\epsilon x^{\mu}, \delta_{\epsilon} \phi=\epsilon\left(\Delta \phi+x^{\nu} \partial_{\nu} \phi\right)$.
(d) Show that the variation of the Lagrangian density $\mathcal{L}=\frac{1}{2} \partial_{\sigma} \phi \partial^{\sigma} \phi-V(\phi)$, is a total derivative under an infinitesimal scale transformation provided $\Delta=(d / 2)-1$, and $V=c \phi^{D / \Delta}$ for some constant c. [What are these potentials?]

Solution:

(a) If $x^{\prime \mu}=\lambda x^{\mu}$ then $\partial x^{\prime \mu} / \partial x^{\nu}=\lambda \delta_{\nu}^{\mu}$, or $\left(\partial x^{\prime \mu} / \partial x^{\nu}\right)=\lambda \boldsymbol{I}$, where \boldsymbol{I} is the identity matrix.

This means that

$$
\operatorname{det}\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right)=\operatorname{det}(\lambda \boldsymbol{I})=\lambda^{d} \quad \Rightarrow \quad \phi(x)=\left(\lambda^{d}\right)^{\Delta / d} \phi\left(x^{\prime}\right)=\lambda^{\Delta} \phi\left(x^{\prime}\right)
$$

We see that the field ϕ has scale dimension Δ.
(b) If $\delta x^{\mu}=\alpha^{\mu}$ then

$$
x^{\prime \mu}=x^{\mu}+\delta x^{\mu}=x^{\mu}+\alpha^{\mu} \quad \Rightarrow \frac{\partial}{\partial x^{\nu}}\left(x^{\mu}+\alpha^{\mu}\right)=\delta_{\nu}^{\mu}+\partial_{\nu} \alpha^{\mu}
$$

We can write the Jacobian matrix of partial derivatives as

$$
\frac{\partial}{\partial x^{\nu}}\left(x^{\mu}+\alpha^{\mu}\right)=\boldsymbol{I}+\boldsymbol{A}
$$

where \boldsymbol{I} is the identity matrix and the elements of the matrix \boldsymbol{A} are $\partial \alpha^{\mu} / \partial x^{\nu}$. Since α^{μ} is an infinitesimal transformation, the entries in A are small and so

$$
\operatorname{det}(\boldsymbol{I}+\boldsymbol{A})=1+\mathrm{Tr}(\boldsymbol{A})+O\left(A^{2}\right)=1+\partial_{\mu} \alpha^{\mu}
$$

and thus

$$
\begin{gathered}
\left|\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right|^{\Delta / d} \phi(x+\delta x)=\phi\left(x^{\mu}+\alpha^{\mu}\right)\left(1+\partial_{\nu} \alpha^{\nu}+O\left(\alpha^{2}\right)\right)^{\Delta / d} \\
=\left(\phi(x)+\alpha^{\sigma} \partial_{\sigma} \phi+O\left(\alpha^{2}\right)\right)\left(1+\frac{\Delta}{d} \partial_{\nu} \alpha^{\nu}+O\left(\alpha^{2}\right)\right)=\phi(x)+\left(\alpha^{\sigma} \partial_{\sigma} \phi+\frac{\Delta}{d} \partial_{\mu} \alpha^{\mu} \phi\right)+O\left(\alpha^{2}\right) \\
\Rightarrow \delta \phi=\frac{\Delta}{d}(\partial \cdot \alpha) \phi+\alpha \cdot \partial \phi
\end{gathered}
$$

(c) If we have an infinitesimal scale transformation $\delta x^{\mu}=\epsilon x^{m} u$, then

$$
\partial \cdot \alpha=\partial_{\mu}\left(\epsilon x^{\mu}\right)=\epsilon \delta_{\mu}^{\mu}=\epsilon d, \quad \text { and } \quad \alpha \cdot \partial=\epsilon x^{\mu} \partial_{\mu},
$$

and so

$$
\delta \phi=\epsilon\left(\Delta \phi+x^{\nu} \partial_{\nu} \phi\right) .
$$

(d) We have

$$
\delta \mathcal{L}=\partial_{\sigma}(\delta \phi) \partial^{\sigma} \phi-\delta \phi \frac{\partial V}{\partial \phi}
$$

where we have written $\partial V / \partial \phi=V^{\prime}$

$$
\begin{aligned}
& =\Delta \partial_{\sigma} \phi \partial^{\sigma} \phi+\delta_{\sigma}^{\tau} \partial_{\tau} \phi \partial^{\sigma} \phi+x^{\tau} \partial_{\tau} \partial_{\sigma} \phi \partial^{\sigma} \phi-\Delta \phi V^{\prime}-x^{\tau} \partial_{\tau} V \\
& =(\Delta+1) \partial_{\sigma} \phi \partial^{\sigma} \phi+\frac{1}{2} x^{\tau} \partial_{\tau}\left(\partial_{\sigma} \phi \partial^{\sigma} \phi\right)-\partial_{\tau}\left(x^{\tau} V\right)+\left(\partial_{\tau} x^{\tau}\right) V-\Delta \phi V^{\prime} \\
& =\partial_{\tau}\left(\frac{1}{2} x^{\tau} \partial_{\sigma} \phi \partial^{\sigma} \phi-x^{\tau} V\right)+\left[\Delta+1-\frac{d}{2}\right](\partial \phi)^{2}+\left(d V-\Delta \phi V^{\prime}\right) \\
& =\partial_{\tau}\left(x^{\tau} \mathcal{L}\right)+\left[\Delta-\frac{d-2}{2}\right](\partial \phi)^{2}+\left(d V-\Delta \phi V^{\prime}\right)
\end{aligned}
$$

This is a total derivative under an infinitesimal scale transformation provided $\Delta=(d / 2)-1$, and $d V=\Delta \phi V^{\prime}$. This last equation is solved by $V=c \phi^{d / \Delta}$ for any constant c, as required.
$d / \Delta=\frac{2 d}{d-2}$. This is an integer for $d=3,4,6$ in which case the classically scale-invariant potentials are

$$
\begin{array}{c|c|c|c}
d & 3 & 4 & 6 \\
\hline V & \phi^{6} & \phi^{4} & \phi^{3}
\end{array}
$$

We note that these are the renormalisable potentials.

2.3 Scale invariance is not conformal invariance

Consider the following Lagrangian in four dimensions

$$
\mathcal{L}=\mathcal{L}_{\phi}+\mathcal{L}_{A}, \quad \text { where } \mathcal{L}_{\phi}=\partial_{\sigma} \bar{\phi} \partial^{\sigma} \phi, \quad \mathcal{L}_{A}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu},
$$

where ϕ is a complex scalar field, $\bar{\phi}$ is its conjugate and $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the field strength of a gauge field A_{μ}. Under conformal transformations, the fields vary as

$$
\delta \phi=\frac{1}{4}(\partial \cdot \epsilon) \phi+\epsilon^{\sigma} \partial_{\sigma} \phi, \quad \delta \bar{\phi}=\frac{1}{4}(\partial \cdot \epsilon) \bar{\phi}+\epsilon^{\sigma} \partial_{\sigma} \bar{\phi}, \quad \delta A_{\mu}=\epsilon^{\sigma} \partial_{\sigma} A_{\mu}+A_{\sigma} \partial_{\mu} \epsilon^{\sigma} .
$$

(a) Show that

$$
\delta \mathcal{L}_{\phi}=\partial_{\mu}\left[\epsilon^{\mu}(\partial \phi \cdot \partial \bar{\phi})+\frac{1}{4} \phi \bar{\phi} \partial^{\mu}(\partial \cdot \epsilon)\right]-\frac{1}{4} \phi \bar{\phi} \partial_{\sigma} \square \epsilon^{\sigma}+\left[\partial_{\sigma} \epsilon_{\tau}+\partial_{\tau} \epsilon_{\sigma}-\frac{1}{2}(\partial \cdot \epsilon) \eta_{\sigma \tau}\right] \partial^{\sigma} \phi \partial^{\tau} \bar{\phi}
$$

hence \mathcal{L}_{ϕ} is invariant (up to a total derivative) for conformal transformations (explain why).
(b) Show that

$$
\begin{gathered}
\delta F_{\mu \nu}=\left(\partial_{\mu} \epsilon^{\sigma}\right) F_{\sigma \nu}+\left(\partial_{\nu} \epsilon^{\sigma}\right) F_{\mu \sigma}+\epsilon^{\sigma} \partial_{\sigma} F_{\mu \nu} \\
\delta \mathcal{L}_{A}=\partial_{\sigma}\left(-\frac{1}{4} \epsilon^{\sigma} F_{\mu \nu} F^{\mu \nu}\right)-\frac{1}{2}\left[\partial_{\sigma} \epsilon_{\tau}+\partial_{\tau} \epsilon_{\sigma}-\frac{1}{2}(\partial \cdot \epsilon) \eta_{\sigma \tau}\right] F^{\sigma}{ }_{\nu} F^{\tau \nu},
\end{gathered}
$$

so again \mathcal{L}_{A} is invariant (up to a total derivative) for conformal transformations.
(c) Now consider the usual interaction term (up to a factor of $-i e$)

$$
\mathcal{L}_{1}=A^{\mu} J_{\mu} \quad \text { where } \quad J_{\mu}=\left(\bar{\phi} \partial_{\mu} \phi-\phi \partial_{\mu} \bar{\phi}\right) .
$$

Show that

$$
\begin{gathered}
\delta J_{\mu}=\frac{1}{2}(\partial \cdot \epsilon) J_{\mu}+\epsilon^{\sigma} \partial_{\sigma} J_{\mu}+J_{\tau} \partial_{\mu} \epsilon^{\tau} \\
\delta \mathcal{L}_{1}=\partial_{\sigma}\left(\epsilon^{\sigma} A \cdot J\right)+\left[\partial_{\tau} \epsilon_{\mu}+\partial_{\mu} \epsilon_{\tau}-\frac{1}{2}(\partial \cdot \epsilon) \eta_{\mu \tau}\right] A^{\tau} J^{\mu}
\end{gathered}
$$

and hence the interaction term is (classically) invariant (up to total derivatives) under both scale transformations and special conformal transformations.
(d). Consider now the interaction term

$$
\mathcal{L}_{1}=A^{\mu} K_{\mu} \quad \text { where } \quad K_{\mu}=\left(\bar{\phi} \partial_{\mu} \phi+\phi \partial_{\mu} \bar{\phi}\right) .
$$

Show that

$$
\begin{gathered}
\delta K_{\mu}=\frac{1}{2}(\partial \cdot \epsilon) K_{\mu}+\epsilon^{\sigma} \partial_{\sigma} K_{\mu}+K_{\tau} \partial_{\mu} \epsilon^{\tau}+\frac{1}{2} \phi \bar{\phi} \partial_{\mu}(\partial \cdot \epsilon) . \\
\delta \mathcal{L}_{2}=\partial_{\sigma}\left(\epsilon^{\sigma} A \cdot K\right)+\left[\partial_{\tau} \epsilon_{\mu}+\partial_{\mu} \epsilon_{\tau}-\frac{1}{2}(\partial \cdot \epsilon) \eta_{\mu \tau}\right] A^{\tau} K^{\mu}+\frac{1}{2} \phi \bar{\phi} A^{\sigma}\left(\partial_{\sigma} \partial_{\tau} \epsilon^{\tau}\right) .
\end{gathered}
$$

Hence, this term is invariant (up to total derivatives) for conformal transformations for which $\partial_{\sigma} \partial_{\tau} \epsilon^{\tau}=0$, ie for translations, rotations, scale transformations but not special conformal transformations (explain why).
This solution is included on the next page, labelled 13 from an MSc course problem set.
13.

$$
\begin{gathered}
\delta \phi=\frac{1}{4}(\partial \cdot \epsilon) \phi+\epsilon \sigma \partial_{\sigma} \phi, \quad \delta \bar{\phi}=\frac{1}{4}(\partial \cdot \epsilon) \bar{\phi}+\epsilon^{\sigma} \partial_{\sigma} \bar{\phi}, \\
\delta A_{\mu}=\varepsilon^{\sigma} \partial_{\sigma} A_{\mu}+A_{\sigma} \partial_{\mu} \epsilon \sigma
\end{gathered}
$$

$$
\begin{aligned}
& \text { (a) } \mathcal{L}_{\phi}=\partial_{\sigma} \bar{\phi} \partial^{\sigma} \phi \\
& \Rightarrow \delta \mathcal{L}_{\phi}=\partial_{\sigma}(\delta \bar{\phi}) \partial^{\sigma} \phi+\partial_{\sigma} \bar{\phi} \partial^{\sigma}(\delta \phi) \\
& =\partial_{\sigma}\left(\frac{1}{4}(\partial \cdot \epsilon) \bar{\phi}+\epsilon^{\boldsymbol{\tau}} \partial_{\tau} \bar{\phi}\right) \partial^{\sigma} \phi \\
& +\partial_{\sigma} \bar{\phi} \partial^{\sigma}\left(\frac{1}{4}(\partial \cdot \epsilon) \phi+\epsilon^{\tau} \partial_{\tau} \phi\right) \\
& =\frac{1}{4}\left[\bar{\phi}\left(\partial^{\sigma} \phi\right) \partial_{\sigma}(\partial \cdot \epsilon)+\phi\left(\partial^{\sigma} \phi\right) \partial_{\sigma}(\partial \cdot \epsilon)\right] \\
& +\frac{1}{4}(\partial \cdot \epsilon)\left(\partial_{\sigma} \bar{\phi} \partial^{\sigma} \phi+\partial_{\sigma} \bar{\phi} \partial^{\sigma} \phi\right) \\
& +\partial_{\sigma} \epsilon^{\tau}\left(\partial_{\tau} \bar{\phi} \partial^{\sigma} \phi\right)+\epsilon^{\tau}\left[\partial_{\tau}\left(\partial_{\sigma} \bar{\phi}\right) \partial^{\sigma} \phi+\partial_{\sigma} \bar{\phi} \partial_{c}\left(\partial^{\kappa} \phi\right)\right] \\
& +\partial_{\sigma} \epsilon^{\tau}\left(\partial_{\sigma}^{\sigma} \bar{\phi} \partial_{2} \phi\right) \\
& =\frac{1}{4} \partial^{\sigma}(\bar{\Phi} \phi) \partial_{\sigma}(\partial \cdot \epsilon)+\frac{1}{2}(\partial \cdot \epsilon)\left(\partial_{\sigma} \bar{\psi} \partial^{\sigma} \phi\right) \\
& +\left(\partial_{\sigma} \epsilon_{\tau}+\partial_{\tau} \epsilon_{\sigma}\right)\left(\partial^{\tau} \bar{\phi} \partial^{\sigma} \phi\right)+\epsilon^{\tau} \partial_{\tau}\left(\partial_{\sigma} \bar{\phi} \partial^{\sigma} \phi\right) \\
& =\frac{1}{4} \partial^{\sigma}\left(\Phi \phi \partial_{\sigma}(\partial \cdot \epsilon)\right)-\frac{1}{4} \Phi \phi \Delta(\partial \cdot \epsilon) \\
& +\partial_{\tau}\left(\epsilon^{2}\left(\partial_{\sigma} \bar{\phi} \partial^{\sigma} \phi\right)\right)-(\partial \cdot \epsilon)\left(\partial_{\sigma} \bar{\phi} \partial_{\phi}^{\sigma}\right)+\frac{1}{2}(\partial \cdot \epsilon)\left(\partial_{\sigma} \bar{\phi} \partial^{\sigma} \phi\right) \\
& +\left(\partial_{\sigma} \epsilon_{\tau}+\partial_{\tau} \epsilon_{\sigma}\right)\left(\partial^{\tau} \bar{\phi} \partial^{\sigma} \phi\right) \\
& =\partial_{\sigma}\left(\frac{1}{4} \bar{\phi} \phi\left(\partial_{\epsilon}^{\sigma}(\partial \cdot \epsilon)\right)+\varepsilon^{\sigma} \partial \bar{\phi} \cdot \partial \phi\right)-\frac{1}{4} \bar{\phi} \phi \Delta(\partial \cdot \epsilon) \\
& +\left(\partial_{\sigma} \epsilon_{\tau}+\partial_{\tau} \epsilon_{\sigma}-\frac{1}{2}(\partial \cdot \epsilon) \eta_{\tau \sigma}\right) \partial_{-}^{\tau}-\partial^{\sigma} \phi
\end{aligned}
$$

This is a total dirugence fo confornal trasformations in 4 dimensions as
(1) $\partial_{\sigma} \epsilon_{2}+\partial_{\tau} \epsilon_{\sigma}=\frac{2}{d} \eta_{\tau \sigma}(\partial \cdot \epsilon)=\frac{1}{2} \eta_{\tau \sigma}(\partial \cdot \epsilon)$
(2) $\partial_{\sigma} \partial_{\tau} \partial_{\rho} \epsilon_{v}=0 \Rightarrow \sigma(\partial \cdot \epsilon)=0$
(b)

$$
F_{\mu v}=\partial_{\mu} A_{v}-\partial_{v} A_{\mu}
$$

$$
\delta\left(F_{\mu \nu}\right)=\partial_{\mu}\left(\delta A_{\nu}\right)-\partial_{\nu}\left(\delta A_{\mu}\right)
$$

$$
=\partial_{\mu}\left(\epsilon^{\sigma} \partial_{\sigma} A_{\nu}+A_{\sigma} \partial_{\nu} \epsilon^{\sigma}\right)-\partial_{\nu}\left(\epsilon^{\sigma} \partial_{\sigma} A_{\mu}+A_{\sigma} \partial_{\mu} \epsilon^{\sigma}\right)
$$

$$
=\left(\partial_{\mu} \epsilon^{\sigma}\right) \partial_{\sigma} A_{\nu}^{(1}+\epsilon^{\sigma} \partial_{\sigma} \partial_{\mu} A \nu
$$

$$
+\left(\partial_{\mu} A \sigma\right) \partial_{v} \epsilon^{\sigma^{3}}+A
$$

$$
-\partial_{\nu} \epsilon^{\sigma} \partial_{\sigma} A_{\mu}^{4}-\epsilon^{\sigma} \partial_{\sigma} \partial_{r} A_{\mu}
$$

$$
+\left(\partial_{r} A_{\sigma}\right) \partial_{\mu} \epsilon^{\sigma(2}-A_{\sigma} \partial_{r} \partial_{\mu} \epsilon^{\sigma}
$$

$$
=\left(\partial_{\mu} \epsilon^{\sigma}\right)\left(\partial_{\sigma} A_{\nu}-\partial_{\nu} A_{\sigma}^{(2)}\right.
$$

$$
+\left(\partial_{\nu} \epsilon^{\sigma}\right)\left(\partial_{\mu} A_{\sigma}-\partial_{\sigma} A_{\mu}^{4}\right)
$$

$$
+\epsilon^{\sigma} \partial_{\sigma}\left(\partial_{\mu} A_{\nu}-\partial_{v} A_{\mu}\right)
$$

$$
\Rightarrow \delta F_{\mu \nu}=\partial_{\mu} \epsilon^{\sigma} F_{\sigma \nu}+\partial_{\nu} \epsilon^{\sigma} F_{\mu \sigma}+\epsilon^{\sigma} \partial_{\sigma} F_{\mu \nu}
$$

$$
\Rightarrow \delta \mathcal{L}_{A}=\delta\left(-\frac{1}{4} F_{\mu \nu} F^{\mu v}\right)
$$

$$
=-\frac{1}{2} F^{\mu \nu} \delta\left(F_{\mu}\right)
$$

$$
=-\frac{1}{2} F^{\mu \nu}\left(\partial_{\mu} \epsilon^{\sigma} \cdot F_{\sigma \nu}+\partial_{\nu} \epsilon^{\sigma} \cdot F_{\mu \sigma}+\epsilon^{\sigma} \partial_{\sigma} \sigma_{\mu \nu} F_{1}\right)
$$

$$
=-\frac{1}{4} \epsilon^{\sigma} \partial_{\sigma}\left(F^{\mu \nu} F_{\nu \nu}^{C 1}\right)-\frac{1}{2} F^{\mu} F_{\nu}^{\sigma \nu}\left(\partial_{\mu} \epsilon_{\sigma}+\partial_{\sigma} \epsilon_{\mu}\right)
$$

$$
=-\frac{1}{4} \partial_{\sigma}\left(\varepsilon^{\sigma} F^{\mu v} F_{\mu \nu}\right)+\frac{1}{4}\left(\partial_{\sigma} t^{\sigma}\right) F^{\mu v} F_{\mu v}
$$

$$
-\frac{1}{2} F_{\nu}^{\nu} F^{\sigma_{\nu}}\left(\partial_{\mu} \epsilon_{\sigma}+\partial_{\sigma} \epsilon_{\mu}\right)
$$

$$
=\underbrace{-\frac{1}{4} \partial_{\sigma}\left(\varepsilon^{\sigma} F^{\mu \nu} F_{\mu \nu}\right)}_{\partial_{\sigma}\left(\epsilon^{\sigma} \mathcal{L}_{A}\right)}-\frac{1}{2} F_{\nu}^{\mu} F^{\sigma}(\underbrace{\left.\partial_{\mu} \epsilon_{\sigma}+\partial_{\sigma} \epsilon_{\mu}-\frac{1}{2} \mu \sigma \partial \cdot t\right)}_{\text {This vaiuhnit } e^{\mu} \text { is }}
$$

This rawishnit e^{μ} is a contonal tentonatio in $d=4$.
(c)

$$
\begin{align*}
& \mathcal{L}_{1}=A^{\mu} J_{\mu}, J_{\mu}=\Phi \partial_{\mu} \phi-\phi \partial_{\mu} \bar{\phi} \\
& \delta J_{\mu}=\delta \bar{\phi} \partial_{\mu} \phi+\bar{\phi} \partial_{\mu}\left(\delta_{\phi}\right)-\delta \phi\left(\partial_{\mu} \bar{\phi}\right)-\phi \partial_{\mu}(\delta \bar{\phi}) \\
& =\frac{1}{4}(\partial \cdot \epsilon) \Phi \partial_{\mu} \phi^{(1)}+\Phi \partial_{\mu}\left(\frac{1}{4}(\partial \cdot \epsilon) \phi\right)^{(2}-\frac{1}{4}(\partial \cdot \epsilon) \phi \partial_{\mu} \bar{\Phi} \tag{1}\\
& -\phi \partial_{\mu}\left(\frac{1}{4}(\partial \cdot \epsilon) \bar{\phi}\right)^{(3} \\
& +\epsilon^{\sigma} \partial_{\sigma} \phi \cdot \partial_{\mu} \bar{\phi}+\bar{\phi} \partial_{\mu}\left(\epsilon^{\sigma} \partial_{\sigma} \phi\right)-\epsilon^{\sigma} \partial_{\sigma} \phi \cdot \partial_{\mu} \bar{\phi}-\phi \partial_{\mu}\left(\epsilon^{\sigma} \partial_{\sigma} \bar{\phi}\right) \\
& \left.=\frac{1}{4}(\partial \cdot \epsilon) J_{\mu}^{(1)}+\frac{1}{4} \partial_{\mu}(\partial \cdot \epsilon) \phi \phi+\frac{1}{4}(\partial \cdot \epsilon) \phi^{(} \partial_{\mu} \phi\right]_{2} \\
& \left.-\frac{1}{4} \partial_{\mu}(\partial \cdot \sigma) \phi \phi-\frac{1}{4}(\partial \cdot \epsilon) \& \partial_{\mu} \bar{\phi}\right] 3 \\
& t \epsilon^{\sigma} \partial_{\sigma}\left(\phi \partial_{\mu} \bar{\phi}\right)_{L 3}^{L 3}+\Phi \partial_{\mu} \epsilon^{\sigma} \cdot \partial_{\sigma} \phi L_{L \psi}^{L \psi} \\
& -\epsilon^{\sigma} \partial_{\sigma}\left(\bar{\phi} \partial_{\mu} \phi\right)^{L_{3}}-\phi \partial_{\mu} \epsilon^{\sigma} \cdot \partial_{\sigma} \bar{\phi} \\
& =\frac{1}{2}(\partial \cdot \epsilon) J_{\mu}+\epsilon^{\sigma_{\partial_{\sigma}} J_{\mu}}+\underbrace{J_{\sigma} \partial_{\mu}}_{3} \epsilon^{\sigma}
\end{align*}
$$

$$
\begin{aligned}
\Rightarrow \delta \mathcal{L}_{1}= & \delta A^{\mu} \cdot J_{\mu}+A^{\mu} \cdot \delta J_{\mu} \\
= & \epsilon^{\sigma} \partial_{\sigma} A^{\mu} \cdot J_{\mu}^{L}+A \sigma \partial^{\mu} \epsilon^{\sigma} \cdot J_{\mu}{ }^{2} \\
& +\frac{1}{2}(\partial \cdot \epsilon) A^{\mu} J_{\mu}+A^{\mu} \varepsilon^{\sigma} \partial_{\sigma} J_{\mu} L^{\prime}+A^{\mu} J_{\sigma} \partial_{\mu} \epsilon^{\sigma}{ }^{<3} \\
= & \epsilon^{\sigma} \partial_{\sigma}\left(A^{\mu} J_{\mu}\right)^{L}+\partial^{<3}\left(A_{\sigma} J_{\mu}\right)\left(\partial^{\mu} \epsilon^{\sigma}+\partial^{\sigma} \epsilon^{\mu}\right) \\
& +\frac{1}{2}(\partial \cdot \epsilon) A^{\mu} J_{\mu} \\
= & \partial_{\sigma}\left(\epsilon^{\sigma} A^{\mu} J_{\mu}\right)-A^{\mu} J_{\mu}(\partial \cdot \epsilon)+\frac{1}{2} A^{\mu} J_{\mu}(\partial \cdot \epsilon) \\
& +A \sigma J_{\mu}\left(\partial \mu \epsilon^{\sigma}+\partial^{\sigma} \epsilon^{\mu}\right) \\
= & \partial_{\sigma}\left(\epsilon^{\sigma} \mathcal{L}_{1}\right)+A^{\sigma} J^{\mu}\left(\partial_{\mu} \epsilon_{\sigma}+\partial_{\sigma} \epsilon_{\mu}-\frac{1}{2} \eta_{\mu \sigma}(\partial \cdot \epsilon)\right)
\end{aligned}
$$

(d)

$$
\text { 1) } \begin{aligned}
& K_{\mu}=\bar{\phi} \partial_{\mu} \phi+\phi \partial_{\mu} \bar{\phi} \\
& \delta K_{\mu}= \delta \bar{\phi} \cdot \partial_{\mu} \phi+\bar{\phi} \partial_{\mu}(\delta \phi) \\
&+\delta \phi \cdot \partial_{\mu} \bar{\phi}+\phi \cdot \partial_{\mu}(\delta \bar{\phi}) \\
&= \frac{1}{4}(\partial \cdot \epsilon) \bar{\phi} \partial_{\mu} \phi+\frac{1}{4} \bar{\phi} \partial_{\mu}[(\partial \cdot \epsilon) \phi] \\
&+\frac{1}{4}(\partial \cdot \epsilon) \phi \partial_{\mu} \bar{\phi}+\frac{1}{4} \phi \partial_{\mu}[(\partial \cdot \epsilon) \bar{\phi}] \\
&+\epsilon^{\sigma} \partial_{\sigma} \bar{\phi} \cdot \partial_{\mu} \phi+\Phi \partial_{\mu}\left(\epsilon^{\sigma} \partial_{\sigma} \phi\right) \\
&+\epsilon^{\sigma} \partial_{\sigma} \phi \cdot \partial_{\mu} \bar{\phi}+\phi \partial_{\mu}\left(\epsilon^{\sigma} \partial_{\sigma} \phi\right) \\
&= \frac{1}{2}(\partial \cdot \epsilon) \bar{\phi} \partial_{\mu} \phi+\frac{1}{4} \bar{\phi} \phi \partial_{\mu}(\partial \cdot \epsilon) \\
&+\frac{1}{2}(\partial \cdot \epsilon) \phi \partial_{\mu} \bar{\phi}+\frac{1}{4} \bar{\phi} \phi \partial_{\mu}(\partial \cdot \epsilon) \\
&+\epsilon^{\sigma} \partial_{\sigma}\left(K{ }_{\mu}\right)+\bar{\phi} \partial_{\sigma} \phi \cdot \partial_{\mu} \epsilon^{\sigma}+\phi \partial_{\sigma} \bar{\phi} \cdot \partial_{\mu} \epsilon^{\sigma} \\
&= \frac{1}{2}(\partial \cdot \epsilon) K_{\mu} \\
&
\end{aligned}
$$

$$
\mathcal{L}_{2}=A^{\mu} K_{\mu}
$$

$$
\delta L_{2}=\delta A^{\mu} \cdot K_{\mu}+A^{\mu} \cdot \delta K_{\mu}
$$

$$
=\left(\varepsilon^{\sigma} \partial_{\sigma} A^{\mu}+A_{\sigma} \partial^{\mu} \epsilon^{\sigma}\right) k_{\mu}^{(2}
$$

$$
+A^{\mu}\left(\frac{1}{2}(\partial \cdot \epsilon) k_{\mu}+\epsilon^{\sigma} \partial_{\sigma} k_{\mu}^{<1}+k_{\sigma} \partial_{\mu} \epsilon^{\sigma}\right)+\frac{1}{2} A^{\mu} \Phi \phi\left(\partial_{\mu} \partial \cdot \epsilon\right)
$$

$$
=\epsilon^{\sigma} \partial_{\sigma}\left(A^{\mu} K_{\mu}\right)+A^{\sigma} K^{\mu}\left(\partial_{\mu} \epsilon_{\sigma}^{C_{2}}+\partial_{\sigma} \epsilon_{\mu} \epsilon^{3}\right)
$$

$$
+\frac{1}{2}(\partial \cdot \epsilon) A^{\mu} K_{\mu}+\frac{1}{2} A^{\mu} \bar{\phi} \phi \partial_{\mu}(\partial \cdot \epsilon)
$$

vanisker for cas. tront.

Totalderivative
Vamisher for
Translarions, horentz, i Bale trand. but not \in^{μ} for Trauslations, horentz + speciate conf in linear special corf. trons. $\Rightarrow \partial_{\sigma} \partial_{\rho} \epsilon^{\mu}=0 . \epsilon^{\mu}$ for specialcal is quadratic of this dodent vanish.

3. Specialisation to $d=2$

3.1 Conformal transformations in two dimensions

We have to consider the equation

$$
\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}=\delta_{\mu \nu}\left(\delta^{\sigma \tau} \partial_{\sigma} \epsilon_{\tau}\right),
$$

for each choice of indices $\{\mu, \nu\}$ in Cartesian coordinates, that is for $\{\mu, \nu\}=\{x, x\},\{x, y\},\{y, y\}$.
$\{\mu, \nu\}=\{x, x\}:$

$$
2 \partial_{x} \epsilon_{x}=\left(\partial_{x} \epsilon_{x}+\partial_{y} \epsilon_{y}\right) \quad \Rightarrow \quad \partial_{x} \epsilon_{x}=\partial_{y} \epsilon_{y}
$$

$\{\mu, \nu\}=\{x, y\}:$

$$
\partial_{x} \epsilon_{y}+\partial_{y} \epsilon_{x}=0
$$

$\{\mu, \nu\}=\{y, y\}:$

$$
2 \partial_{y} \epsilon_{y}=\left(\partial_{x} \epsilon_{x}+\partial_{y} \epsilon_{y}\right) \quad \Rightarrow \quad \partial_{y} \epsilon_{y}=\partial_{x} \epsilon_{x}
$$

If we now label the two components of ϵ as $\epsilon_{x}=f$ and $\epsilon_{y}=g$ we see that we have the following equations:

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\frac{\partial g}{\partial y}, \quad \frac{\partial f}{\partial y}=-\frac{\partial g}{\partial x} . \tag{*}
\end{equation*}
$$

These are the Cauchy-Riemanns equations for the f and g to be the real and imaginary parts of a complex function of $z=x+i y$. If we put

$$
F=f+i g, \quad \frac{\partial}{\partial z}=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right), \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) .
$$

The equation that F is a differentiable function of z is

$$
0=\frac{\partial F}{\partial \bar{z}}=\left(\frac{\partial f}{\partial x}-\frac{\partial g}{\partial y}\right)+i\left(\frac{\partial f}{\partial y}+\frac{\mathrm{d} g}{\partial x}\right),
$$

which are exactly the equations (*).

3.2 Special conformal transformations of the complex plane

We start from

$$
\begin{equation*}
x^{\prime \mu}=\frac{x^{\mu}-\left(x^{2}\right) b^{\mu}}{1-2 \mathbf{x} \cdot \mathbf{b}+x^{2} b^{2}} \tag{1}
\end{equation*}
$$

In complex coordinates $z=x+i y, \bar{z}=x-i y$ we have $\mathbf{x} \cdot \mathbf{x}=z \bar{z} \Rightarrow g_{z \bar{z}}=g_{\bar{z} z}=1 / 2, g_{z z}=g_{\bar{z} \bar{z}}=0$. Hence with $x^{\mu}=(z, \bar{z}), b^{\mu}=(b, \bar{b})$,

$$
z^{\prime}=\frac{z-(z \bar{z}) b}{1-(z \bar{b}+\bar{z} b)+z \bar{z} b \bar{b}}=\frac{z(1-\bar{z} b)}{(1-z \bar{b})(1-\bar{z} b)}=\frac{z}{1-z \bar{b}} .
$$

Similarly, or by complex conjugation, we get the transformation for \bar{z},

$$
z \mapsto \frac{z}{1-\bar{b} z}, \quad \bar{z} \mapsto \frac{\bar{z}}{1-b \bar{z}} .
$$

If $b=\alpha+i \beta$ then
$\delta z=\delta x+i \delta y=(\alpha+i \beta)(x+i y)^{2}=(\alpha+i \beta)\left(x^{2}-y^{2}+2 i x y\right)=\left(\alpha\left(x^{2}-y^{2}\right)-2 \beta x y\right)+i\left(\beta\left(x^{2}-y^{2}\right)+2 \alpha x y\right)$, generated by $Q=(\alpha+i \beta) L_{1}+\left(\alpha-i \beta \bar{L}_{1}\right)=\alpha\left(L_{1}+\bar{L}_{1}\right)+\beta i\left(L_{1}-\bar{L}_{1}\right)$.

3.3 Möbius maps

A Möbius map is of the form

$$
z \mapsto \frac{a z+b}{c z+d}
$$

The simplest way to show there is a unique map that sends $u \rightarrow u^{\prime}, v \rightarrow v^{\prime}, w \rightarrow w^{\prime}$ is to show there is a unique map that sends $u \rightarrow \infty, v \rightarrow 1, w \rightarrow 0$ and then there is a unique composition that sends $u \rightarrow \infty \rightarrow u^{\prime}$, etc.
Obviously to send $u \rightarrow \infty$ and $w \rightarrow 0$ we must have

$$
z \mapsto A \frac{z-w}{z-u}
$$

for some constant A and we choose A to send $v \rightarrow 1$,

$$
z \mapsto \frac{v-u}{v-w} \frac{z-w}{z-u}
$$

A Möbius map is infinitesimal if it is close to the identity map which has $a=d=1, b=c=0$ and so we require $a=1+\alpha, d=1+\delta, b=\beta, c=\gamma$ and get (ignoring second order terms)
$\delta z=\frac{a z+b}{c z+d}-z=\frac{z+\alpha z+\beta}{1+\delta+\gamma z}-z \approx(z+\alpha z+\beta)(1-\delta-\gamma z)-z \approx \beta+(\alpha-\delta) z+(-\gamma) z^{2}=A+B z+C z^{2}$,
as required

3.4 Quasiprimary state

Let $L_{0}|\psi\rangle=h|\psi\rangle$ and $L_{1}|\psi\rangle=0$.
Now consider $|\chi\rangle=\left(L_{-2}-(3 /(4 h+2)) L_{-1} L_{-1}\right)|\psi\rangle$.
Firstly, we can prove $L_{0}|\chi\rangle=(h+2)|\chi\rangle$

$$
\begin{aligned}
L_{0} L_{-2}|\psi\rangle & =\left[L_{0}, L_{-2}\right]|\psi\rangle+L_{-2} L_{0}|\psi\rangle=2 L_{-2}|\psi\rangle+h L_{-2}|\psi\rangle \\
& =(h+2) L_{-2}|\psi\rangle \\
L_{0} L_{-1} L_{-1}|\psi\rangle & =\left[L_{0}, L_{-1}\right] L_{-1}|\psi\rangle+L_{-1}\left[L_{0}, L_{-1}\right]|\psi\rangle+L_{-1} L_{-1} L_{0}|\psi\rangle \\
& =L_{-1} L_{-1}|\psi\rangle+L_{-1} L_{-1}|\psi\rangle+h L_{-1} L_{-1}|\psi\rangle \\
& =(h+2) L_{-1} L_{-1}|\psi\rangle \\
\Rightarrow L_{0}|\chi\rangle & =(h+2)|\chi\rangle .
\end{aligned}
$$

Now we consider $L_{1}|\chi\rangle$. We have

$$
\begin{aligned}
L_{1} L_{-2}|\psi\rangle & =\left[L_{1}, L_{-2}\right]|\psi\rangle+L_{-2} L_{1}|\psi\rangle=3 L_{-2}|\psi\rangle+0 \\
& =3 L_{-2}|\psi\rangle \\
L_{1} L_{-1} L_{-1}|\psi\rangle & =\left[L_{1}, L_{-1}\right] L_{-2}|\psi\rangle+L_{-1}\left[L_{1}, L_{-1}\right]|\psi\rangle+L_{-1} L_{-1} L_{1}|\psi\rangle \\
& =2 L_{0} L_{-1}|\psi\rangle+2 L_{-1} L_{0}|\psi\rangle+0 \\
& =2\left[L_{0}, L_{-1}\right]|\psi\rangle+4 L_{-1} L_{0}|\psi\rangle \\
& =2 L_{-1}|\psi\rangle+4 h L_{-1}|\psi\rangle \\
& =(4 h+2) L_{-1}|\psi\rangle \\
\Rightarrow L_{1}\left(L_{-2}-\frac{3}{4 h+2} L_{-1} L_{-1}\right)|\psi\rangle & =3 L_{-1}|\psi\rangle-(4 h+2) \frac{3}{4 h+2} L_{-1}|\psi\rangle \\
& =0 .
\end{aligned}
$$

3.5 One-, two- and three-point functions
(a) We consiber $\langle 0| \phi(z)|0\rangle$ and use

$$
\begin{aligned}
& \langle 0| L_{-1}=L_{-1}(0)=0 \\
& \langle 0| L_{0}=L_{0}(0)=0
\end{aligned}
$$

(i)

$$
\text { (i) } \begin{aligned}
\langle 0| L_{-1} & =0 \\
\Rightarrow 0 & =\left\langle 01 L_{1} \phi(z) \mid 0\right\rangle \\
& =\langle 0|\left[L_{1}, \phi(z)\right]|0\rangle+\langle 0| \phi(z) L^{\prime}|0\rangle \\
& =\frac{\partial}{\partial z}(\langle 0| \phi(z)|0\rangle) \\
\Rightarrow\langle 0| \phi(z) \mid 0 & =\text { const }=c .
\end{aligned}
$$

(ii) $<0 \mid L_{0}=0$

$$
\begin{aligned}
& \text { (ii) }\langle 0| L_{0}=0 \\
& \Rightarrow 0=\langle 0| L_{0} \phi(z)|0\rangle=\langle 0|\left[L_{0}, \phi(z)\right]|0\rangle+\langle 0| \phi(z) \zeta_{0}|0\rangle \\
&=\left(h+z \frac{\partial}{\partial z}\right)\langle 0| \phi(z)|0\rangle \\
&\left.=h\langle 0| \phi(z)|0\rangle \quad \text { since } \frac{\partial}{\partial z}\langle d \phi(z)| 0\right)=0 \\
& \Rightarrow h=0 \text { or }\langle 0| \phi(z)|0\rangle=0 \\
& \Rightarrow \quad\left\langle_{0}\right| \phi(z)|0\rangle=0 \quad \text { if } h \neq 0 .
\end{aligned}
$$

(b) Consider $\langle 0| \phi_{n}(z) \phi_{n^{\prime}}(\omega)|0\rangle$
(i)

$$
\begin{aligned}
0= & \langle 0| L_{-1} \phi_{h}\left(z\left|\phi_{h^{\prime}}^{\prime}(\omega)\right| 0\right\rangle \\
= & \langle 0|\left[L_{-1}, \phi_{n}(z)\right] \phi_{h}^{\prime}(w)|0\rangle \\
& +\left\langle d \phi_{n}(z)\left[L_{-1}, \phi_{b}(w)\right] \mid 0\right\rangle \\
& +\langle 0| \phi_{n}(z) \phi_{K}(w) L_{-}|0\rangle^{2} \\
= & \left.\langle 0| \frac{\partial}{\partial z} \phi_{h}(z) \phi_{n^{\prime}} / w\right)|0\rangle \\
& +\left\langle0 1 \phi _ { n } \left(z 1 \frac{\partial}{\partial w} \phi_{n}^{\prime}(w)|0\rangle\right.\right. \\
= & \left(\frac{\partial}{\partial z}+\frac{\partial}{\partial w}\right)\langle 0| \phi_{h}(z) \phi_{n}^{\prime}(w)|0\rangle
\end{aligned}
$$

If we put $\xi=z+w, \eta=z-w$, then $z=\frac{\xi+n}{2}, w=\frac{\xi-n}{2}$

$$
\frac{\partial}{\partial \xi}=\frac{1}{2}\left(\frac{\partial}{\partial z}+\frac{\partial}{\partial w}\right)
$$

So y $\quad\langle 0| \phi_{h}(z) \phi_{h^{\prime}}(\omega)|0\rangle=F(\xi, \eta)$
We have trun $\frac{\partial}{\partial \xi} F(\xi, \eta)=0 \quad \Rightarrow F(\xi, \eta)=f(\eta)=f(z-\omega)$
i.e. $\langle 0| \phi_{h}(z) \phi_{h^{\prime}}(w)|0\rangle=f(z-w)$.
(ii)

$$
\begin{aligned}
& 0=\langle 0| L_{0} \phi_{n}(z) \phi_{n}^{\prime}(\omega)|0\rangle \\
& =\left\langle 01\left[L_{0}, \phi_{h}(z)\right] \phi_{h^{\prime}}(\omega) \mid 0\right\rangle \\
& +\langle 0| \phi_{n}(z)\left[L_{0}, \phi_{n}^{\prime}(w)\right]|0\rangle+\langle 0| \phi_{n}(z) \phi_{n}{ }^{\prime}(w) L_{0}|0\rangle^{0} \\
& =\langle 0|\left(h+z \frac{\partial}{\partial z}\right) \phi_{h}(z) \phi_{n}^{\prime}(\omega)|0\rangle+\langle 0| \phi_{n}(z)\left(h^{\prime}+\omega_{\partial \omega}^{\partial}\right) \phi_{h}^{\prime}(\omega)|0\rangle \\
& =\left(h+h^{\prime}+z \frac{\partial}{\partial z}+w \frac{\partial}{\partial w}\right)\left\langle 01 \phi_{h}(z) \phi_{n^{\prime}}(\omega) \mid 0\right\rangle \\
& =\left(h+h^{\prime}+z \frac{\partial}{\partial z}+\frac{\omega^{\partial}}{\partial w}\right) f(z-w) \\
& =\left(h+h^{\prime}\right) f+z f^{\prime}-w f^{\prime} \\
& =\left(h+h^{\prime}\right) f+(z-\omega) f^{\prime}(z-\omega)=0 \\
& \Rightarrow \quad\left(h+h^{\prime}\right) f(t)+t f^{\prime}(t)=0 \\
& \Rightarrow \quad \frac{f^{\prime}(t)}{f(t)}=-\frac{\left(h+h^{\prime}\right)}{t} \\
& \Rightarrow \quad \int \frac{d f}{f}=-\left(h+h^{\prime}\right) \int \frac{d t}{t} \\
& \Rightarrow \ln f=\text { const }-\left(h+h^{\prime}\right) \ln t \\
& \Rightarrow f=\text { const. } t^{-\left(h+h^{\prime}\right)} \\
& \text { or }\langle 0| \phi_{h}(z) \phi_{h^{\prime}}(w)|0\rangle=\text { const. }(z-w)^{-h-h^{\prime}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \left\langle 01 L_{1}=0\right. \\
& \Rightarrow 0=\langle 0| L_{1} \phi_{n}(z) \phi_{n^{\prime}}(\omega)|0\rangle \\
& =\langle 0|\left[L_{1}, \phi_{n}(z)\right] d_{n^{\prime}}(w)|0\rangle \\
& +\langle 0| \phi_{n}(z)\left[L_{1}, \phi_{n}^{\prime}(\omega)\right]|0\rangle+\left\langle 0 \mid \phi_{n}(z) \phi_{n}^{\prime}(w) L_{r}+0\right\rangle^{0} \\
& =\left(2 h z+z^{2} \frac{\partial}{\partial z}+2 h^{\prime} w+w^{2} \frac{\partial}{\partial \omega}\right) f(z-w) \\
& =\left(2 h z+z^{2} \frac{\partial}{\partial z}+2 h^{\prime} w+w^{2} \frac{\partial}{\partial w}\right) c(z-w)^{-h-h^{\prime}} \\
& \text { const. } \\
& =\text { court. }\left[\left(2 h z+2 h^{\prime} w\right)(z-w)^{-h-h^{\prime}}+\left(-h-h^{\prime}\right) z^{2}(z-w)^{-h-h^{\prime}-1}\right. \\
& \left.+\omega^{2}\left(-h-h^{\prime}\right)(-1)(z-\omega)^{-h-h^{\prime}-1}\right] \\
& =\frac{\text { const. }}{(z-\omega)^{h+h^{\prime}}+1\left[\left(2 h z+2 h^{\prime} \omega\right)(z-\omega)-\left(h+h^{\prime}\right)\left(z^{2}-\omega^{2}\right)\right]} \\
& =\frac{\text { const. }}{(z-\omega)^{h+h^{\prime}+1}\left[\left(h-h^{\prime}\right)\left(z^{2}-2 z \omega+\omega^{2}\right)\right]} \\
& =\left(h-h^{\prime}\right) \text {. const. }(z-\omega)^{-h-h^{\prime}+1}=0 \\
& \Rightarrow\left\{\begin{array}{l}
\langle 0| \phi_{n}\left(z\left|\phi_{n}^{\prime}(w)\right| 0\right\rangle=0 \\
\langle 0| \phi_{n}(z) \phi_{n}(w)|0\rangle=\frac{\text { const. }}{(z-w)^{2 h}}
\end{array}\right.
\end{aligned}
$$

4. Full infinite symmetry

4.1 Conformal invariance in light-cone coordinates

Light-cone coordinates for Minkowski space are defined as $x^{+}=t+x, x^{-}=t-x$.
(a) The simplest way to find the metric is from the line element,

$$
\begin{aligned}
\mathrm{d} s^{2} & =\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\mathrm{d} t^{2}-\mathrm{d}^{2} x^{2}=\left(\frac{\mathrm{d} x^{+}+\mathrm{d} x^{-}}{2}\right)^{2}-\left(\frac{\mathrm{d} x^{+}-\mathrm{d} x^{-}}{2}\right)^{2} \\
& =\mathrm{d} x^{+} \mathrm{d} x^{-}=\eta_{++} \mathrm{d} x^{+} \mathrm{d} x^{+}+2 \eta_{+-} \mathrm{d} x^{+} \mathrm{d} x^{-}+\eta_{--} \mathrm{d} x^{-} \mathrm{d} x^{-}
\end{aligned}
$$

from which we can read off that $\eta_{++}=\eta_{--}=0, \eta_{+-}=\eta_{-+}=\frac{1}{2}$ so that

$$
\eta_{\mu \nu}=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right), \eta^{\mu \nu}=\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right) .
$$

(b) We first find

$$
T_{\mu}^{\mu}=T^{+}+T^{-}=\eta^{+-} T_{-+}+\eta^{-+} T_{+-}=4 T_{+-}=0 .
$$

Next,

$$
\partial^{\nu} T_{\nu+}=\eta^{\mu \nu} \partial_{\mu} T_{\nu+}=2 \partial_{+} T_{-+}+2 \partial_{-} T_{++}=2 \partial_{-} T_{++}=0,
$$

and finally

$$
\partial^{\nu} T_{\nu-}=\eta^{\mu \nu} \partial_{\mu} T_{\nu-}=2 \partial_{+} T_{--}+2 \partial_{-} T_{+-}=2 \partial_{+} T_{--}=0,
$$

(c) Finally, we use the chain rule

$$
\frac{\partial}{\partial t}=\frac{\partial x^{+}}{\partial t} \partial_{+}+\frac{\partial x^{-}}{\partial t} \partial_{-}=\partial_{+}+\partial_{-}, \frac{\partial}{\partial x}=\frac{\partial x^{+}}{\partial x} \partial_{+}+\frac{\partial x^{-}}{\partial x} \partial_{-}=\partial_{+}-\partial_{-},
$$

to re-write

$$
\begin{aligned}
& \frac{d}{d t} \int_{-\infty}^{\infty}\left(f\left(x^{+}\right) T_{++}+g\left(x^{-}\right) T_{--}\right) \mathrm{d} x \\
= & \int_{-\infty}^{\infty} \frac{\partial}{\partial t}\left(f\left(x^{+}\right) T_{++}+g\left(x^{-}\right) T_{--}\right) \mathrm{d} x \\
= & \int_{-\infty}^{\infty}\left(\partial_{+}+\partial_{-}\right)\left(f\left(x^{+}\right) T_{++}+g\left(x^{-}\right) T_{--}\right) \mathrm{d} x \\
= & \int_{-\infty}^{\infty}\left[\partial_{+}\left(f\left(x^{+}\right) T_{++}\right)+\partial_{-}\left(g\left(x^{-}\right) T_{--}\right)\right] \mathrm{d} x \\
= & \int_{-\infty}^{\infty}\left[\left(\partial_{+}-\partial_{-}\right)\left(f\left(x^{+}\right) T_{++}\right)+\left(\partial_{-}-\partial_{+}\right)\left(g\left(x^{-}\right) T_{--}\right)\right] \mathrm{d} x \\
= & \int_{-\infty}^{\infty} \frac{\partial}{\partial x}\left[f\left(x^{+}\right) T_{++}-g\left(x^{-}\right) T_{--}\right] \mathrm{d} x \\
= & 0
\end{aligned}
$$

where we repeatedly used

$$
\partial_{-}\left(f\left(x^{+}\right) T_{++}\right)=0, \quad \partial_{+}\left(f\left(x^{-}\right) T_{--}\right)=0 .
$$

4.2 Highest weight states

To show that $L_{1} \psi=0$ and $L_{2} \psi=0$ implies $L_{m}|\psi\rangle=0$ for all $m>0$.
We have $\left[L_{m}, L_{1}\right]=(m-1) L_{m+1}$, or

$$
L_{m}=\frac{1}{m-2}\left[L_{m-1}, L_{1}\right] m>2,
$$

and hence

$$
L_{m}|\psi\rangle=\frac{1}{n-2}\left(L_{m-1} L_{1}|\psi\rangle-L_{1} L_{m-1}|\psi\rangle\right) .
$$

This allows us to prove the result by induction.
Suppose that $L_{p}|\psi\rangle=0$ for $p=1, \ldots, m-1$ with $m \geq 3$, then $L_{m}|\psi\rangle=\frac{1}{m-2}\left(L_{m-1} L_{1}|\psi\rangle-L_{1} L_{m-1}|\psi\rangle\right)=$ 0
However, by assumption $L_{1}|\psi\rangle=L_{2}|\psi\rangle=0$.
Hence $L_{p}|\psi\rangle=0$ for all $p \geq 1$.

5. Brute Force

5.1 Determinant

This was not asekd for, but just for the record thuis is how to work out the matrix M_{2}. Let $|h\rangle$ be a primary state of weight h and we normalised it as $\langle h||h\rangle=1$.
The space of descendants at level 2 is two dimensional with basis states

$$
L_{-2}|h\rangle, \quad L_{-1} L_{-1}|h\rangle,
$$

We can calculate their overlaps,

$$
\begin{aligned}
\langle h| L_{2} L_{-2}|h\rangle & =\langle h| L_{-2} L_{2}+\left[L_{2}, L_{-2}\right]|h\rangle \\
& =\langle h|\left(4 L_{0}+\frac{c}{2}\right)|h\rangle \quad \text { (using } L_{2}|h\rangle=0 \text {) } \\
& =\left(4 h+\frac{c}{2}\right)\langle h \mid h\rangle=\left(4 h+\frac{c}{2}\right) \\
\langle h| L_{2} L_{-1} L_{-1}|h\rangle & =\langle h| L_{-1} L_{-1} L_{2}+\left[L_{2}, L_{-1}\right] L_{-1}+L_{-1}\left[L_{2}, L_{-1}\right]|h\rangle \\
& =\langle h| 0+3 L_{1} L_{-1}+L_{-1}\left(3 L_{1}\right)|h\rangle \\
& =\langle h| 3 L_{-1} L_{1}+3\left[L_{1}, L_{-1}\right]+0|h\rangle \\
& =\langle h| 0+6 L_{0}|h\rangle=6 h \\
\langle h| L_{1} L_{1} L_{-2}|h\rangle & =\left(\langle h| L_{2} L_{-1} L_{-1}|h\rangle\right)^{\dagger}=6 h \\
\langle h| L_{1} L_{1} L_{-1} L_{-1}|h\rangle & =\langle h| L_{1}\left(L_{-1} L_{-1} L_{1}+\left[L_{1}, L_{-1}\right] L_{-1}+L_{-1}\left[L_{1}, L_{-1}\right]\right)|h\rangle \\
& =\langle h| L_{1}\left(0+2 L_{0} L_{-1}+L_{-1}\left(2 L_{0}\right)\right)|h\rangle \\
& =\langle h| L_{1}\left(2(h+1) L_{-1}+2 h L_{-1}\right)|h\rangle=(4 h+2)\langle h| L_{1} L_{-1}|h\rangle \\
& =(4 h+2)\langle h| L_{-1} L_{1}+2 L_{0}|h\rangle=2 h(4 h+2)=4 h(2 h+1)
\end{aligned}
$$

This means the matrix of inner products is
$M_{2}=\operatorname{det}\left(\begin{array}{cc}4 h(2 h+1) & 6 h \\ 6 h & 4 h+c / 2\end{array}\right)=4 h(2 h+1)(4 h+c / 2)-36 h^{2}=32 h\left(h^{2}+h c+c / 16-5 h / 8\right)$
Now we calculate:

$$
\begin{aligned}
\left(h-h_{12}\right)\left(h-h_{21}\right) & =\left(h-\left[\frac{3}{4 t}-\frac{1}{2}\right]\right)\left(h-\left[\frac{3 t}{4}-\frac{1}{2}\right]\right) \\
& =h^{2}+h\left(1-\frac{3 t}{4}-\frac{3}{4 t}\right)+\frac{13}{16}-\frac{3 t}{8}-\frac{3}{8 t} \\
& =h^{2}+h\left(\frac{13-6 t-6 / t}{8}-\frac{5}{8}\right)+\frac{13-6 t-6 / t}{16} \\
& =h^{2}+h(c / 8-5 / 8)+c / 16 .
\end{aligned}
$$

where we used $c=13-6 t-6 / t$. So, in total, since $h_{11}=0$,

$$
\operatorname{det}\left(M_{2}\right)=32\left(h-h_{11}\right)\left(h-h_{12}\right)\left(h-h_{21}\right) .
$$

We have

$$
c=13-6 t-\frac{6}{t} \Rightarrow t=-\frac{13+c \pm \sqrt{(1-c)(25-c)}}{12}
$$

This means that t is complex if $1<c<15$, in fact it will be a pure phase, $t=\exp (i \theta)$ so that

$$
c=13-12 \cos \theta .
$$

Correspondingly, the only real values of $h_{r s}$ will be when t appears symmetrically. We have

$$
h_{r s}=\frac{r^{2}-1}{4 t}+\frac{\left(s^{2}-1\right) t}{4}-\frac{r s-1}{2}=\frac{r^{2}+s^{2}-2}{2} \cos \theta+\frac{r^{2}-s^{2}}{2 i} \sin \theta-\frac{r s-1}{2}
$$

This is only real for positive r and s if $r=s$ and so the only vanishing curves in the region $1<c<25$ are

$$
h=h_{r r}=\frac{r^{2}-1}{4}\left(t+\frac{1}{t}\right)-\frac{r^{2}-1}{2}=\frac{r^{2}-1}{2}(\cos \theta-1)=\frac{r^{2}-1}{24}(1-c)
$$

which are straight lines.

6. Differential equations

6.1 Singular vectors

We have to find the conditions under which $|\phi\rangle=\left(L_{-2} L_{-2}-(3 / 5) L_{-4}\right)|0\rangle$ is a highest weight state. We check

$$
\begin{aligned}
L_{1}|\phi\rangle & =L_{1}\left(L_{-2} L_{-2}-\frac{3}{5} L_{-4}\right)|0\rangle \\
& =\left(L_{-2} L_{-2} L_{1}+\left[L_{1}, L_{-2}\right] L_{-2}+L_{-2}\left[L_{1}, L_{-2}\right]-\frac{3}{5} L_{-4} L_{-1}-\frac{3}{5}\left[L_{1}, L_{-4}\right]\right)|0\rangle \\
& =\left(0+3 L_{-1} L_{-2}+3 L_{-2} L_{-1}-0-\frac{3}{5}\left(5 L_{-3}\right)\right)|0\rangle \\
& =\left(3 L_{-2} L_{-1}+3\left[L_{-1}, L_{-2}\right]+0-3 L_{-3}\right)|0\rangle \\
& =\left(0+3 L_{-1}-3 L_{-1}\right)|0\rangle \\
& =0
\end{aligned}
$$

and so we see that $|\phi\rangle$ is always a quasi-primary state.
We only have now to check

$$
\begin{aligned}
L_{2}|\phi\rangle & =L_{2}\left(L_{-2} L_{-2}-\frac{3}{5} L_{-4}\right)|0\rangle \\
& =\left(L_{-2} L_{-2} L_{2}+\left[L_{2}, L_{-2}\right] L_{-2}+L_{-2}\left[L_{2}, L_{-2}\right]-\frac{3}{5} L_{-4} L_{2}-\frac{3}{5}\left[L_{2}, L_{-4}\right]\right)|0\rangle \\
& =\left(0+\left(4 L_{0}+\frac{c}{2}\right) L_{-2}+L_{-2}\left(4 L_{0}+\frac{c}{2}\right)-0-\frac{18}{5} L_{-2}\right)|0\rangle \\
& =\left(8+c-\frac{18}{5}\right) L_{-2}|0\rangle \\
& =\left(\frac{22}{5}+c\right) L_{-2}|0\rangle
\end{aligned}
$$

so that $|\phi\rangle$ is a highest weight state when $c=-22 / 5$.
This is the central charge of the Lee-Yang model, the minimal model with $t=2 / 5$.

7. Recursion relations

7.1 For discussion in the live lecture.

8. AGT: an exact formula

8.1 Liouville theory

The standard parametrisation of c and h is

$$
c=1+6 Q^{2}, \quad h=\alpha(Q-\alpha), \quad Q=b+1 / b
$$

If b is real then we can put $b= \pm e^{u}$ and so $Q= \pm 2 \cosh u$ and $c=1+24 \cosh ^{2} u \geq 25$.
If b is pure imaginary then we can put $b= \pm i e^{v}$ and so $Q= \pm 2 i \sinh v$ and $c=1-24 \sinh ^{2} v \leq 1$.
If $\alpha=Q / 2+i P$ then $h=\alpha(Q-\alpha)=(Q / 2+i P)(Q / 2-i P)=Q^{2} / 4+P^{2}=\frac{c-1}{24}+P^{2}$.
This means that there are no null states in any of the representations which occur in (real-coupling) Liouville theory.

9. "Old" Conformal Bootstrap

Using model

We use

$$
14\rangle=\left(L_{-2}-\frac{4}{3} L_{1} L_{1}\right)|0\rangle
$$

andve-writect as:

$$
\left.=\left(L_{2}-L_{0}+\frac{1}{16}-\frac{4}{3}\left(L_{-1}-L_{0}+\frac{17}{16}\right)\left(L_{-1}-L_{0}+\frac{1}{10}\right)\right) \right\rvert\, \sigma i
$$

$$
\begin{aligned}
\Rightarrow\langle\sigma| \sigma(1)|\psi\rangle & =\left(\frac{2}{16}-\frac{4}{3}\left(\frac{17}{16}\right)\left(\frac{1}{16}\right)\right)\langle\sigma| \sigma(1)|\sigma\rangle \\
& =\frac{7}{196}\langle\sigma| \sigma(1)|\sigma\rangle=0 \\
& \Rightarrow\langle\sigma| \sigma(1)|\sigma\rangle=0 .
\end{aligned}
$$

$$
\text { Now } \quad\langle h| \sigma(1)|4\rangle=\left[\left(\frac{3}{16}-h\right)-\frac{4}{3}\left(\frac{18}{16}-h\right)\left(\frac{\pi}{16}-h\right)\right]\langle h| \sigma(1)|\sigma\rangle
$$

$$
=\left[-\frac{4}{3} h^{2}+h\left(\frac{1}{6}+\frac{9}{6}-1\right)+\left(\frac{3}{16}-\frac{4}{3} \cdot \frac{18}{16}\right)\right]\langle h| \sigma(1)|b\rangle
$$

$$
=-\frac{4}{3} h\left(h-\frac{1}{2}\right)\langle h| \sigma(1)|\sigma\rangle
$$

This can only be non zero if $h=0$ or $h=1 / 2$. These are the two other entries in the 'Kactatle' for $c=1 / 2$

Lee-Yang
Here we calculate the structure constant $C_{\phi \phi \phi}$ in the Lee-Yang model.

$$
\begin{aligned}
& \langle\phi| \phi \phi|\phi\rangle=\left(c_{\phi \phi 0}\right)^{2}\left|\frac{1}{0}\right|^{2}+\left(c_{\phi \phi \phi}\right)^{2}\left|\frac{1}{-1 / 5}\right|^{2} \\
& =\left(C_{\phi \phi} 0\right)^{2}|z(1-z)|^{4 / 5}\left|F\left(3 / 5,4 / 5 i^{6} / 5, z\right)\right|^{2} \\
& +\left(c_{d d d}\right)^{2}|z|^{2 / 5}|1-z|^{4 / 5}\left|F\left(3 / 51^{2 / 5} i^{4 / 5} i z\right)\right|^{2} \\
& \} \text { trot } 5.6
\end{aligned}
$$

We con take $z \in \mathbb{R}$ to simplify matters.

This should be equal to

$$
\begin{aligned}
& \left(c_{\phi \phi 0}\right)^{2}|(1-z) z|^{4 / 5} \mid F\left(3 / 51^{4 / 5} ; 6 /\left.5 i(-z)\right|^{2}\right. \\
& +\left(c_{\phi \phi \phi}\right)^{2}|1-z|^{2 / 5}|z|^{4 / 5} \mid F\left(3 / 51^{2 / 5} ; 4 /\left.5 i b z\right|^{2}\right.
\end{aligned}
$$

From 3.5 we have

$$
\begin{aligned}
& \quad F(3 / 5,4 / 5 ; 6 / 5,1-z)= \frac{\Gamma(6 / 5) \Gamma(-1 / 5)}{\Gamma(3 / 5) \Gamma(2 / 5)} F\left(3 / 5,4 / 5,{ }^{6} / 5, z\right) \\
&+ z^{-1 / 5} \frac{\Gamma(6 / 5) \Gamma(1 / 5)}{\Gamma(3 / 5) \Gamma(4 / 5)} F(3 / 5,2 / 5,4 / 5, z) \\
& \quad F(3 / 5,2 / 5,4 / 5,1-z)=\frac{\Gamma(4 / 5) \Gamma(-1 / 5)}{\Gamma(1 / 5) \Gamma(2 / 5)} F(3 / 5,2 / 5 ; 6 / 5, z) \\
& \quad+z^{-1 / 5} \frac{\Gamma(4 / 5) \Gamma(1 / 5)}{\Gamma(3 / 5) \Gamma(2 / 5)} F(1 / 5,2 / 5 ; 4 / 5, z)
\end{aligned}
$$

Need extra identity:

We att (z Nal 0<z<1)

$$
\begin{aligned}
& \left(c_{d<0}\right)^{2} z^{4 / 5}(1-z)^{4 / 5} F(3 / 5,4 / 5 ; b / 5 i z)^{2} \\
& +\left(C_{\phi \phi \phi}\right)^{2} z^{2 / 5}(1-z)^{4 / 5} F\left(3 / 5, L_{5 i}{ }^{4} / 5 i z\right)^{2} \\
& =\left(C_{\$ 40}\right)^{2} z^{4 / 5}(1-z)^{4 / 5}\left\{\frac{\Gamma(6 / 2) \Gamma(-1 / 5)}{\left.\Gamma(3 / 5) \Gamma L^{2 / 5}\right)} F\left(3 / 51^{4 / 5},^{6 / 5}, z\right)\right. \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& +\left(c_{d 4 d}\right)^{2} z^{4 / 5}(1-z)^{2 / 5}\left\{(1-z)^{1 / 5} \frac{\Gamma(4 / 5) \Gamma(-1 / 5)}{\Gamma(1 / 5) \Gamma(2 / 5)} F(3,5 i 5 i 6 / 5 ; z)\right. \\
& \left.+z^{-1 / 5}(1-z)^{-1 / 5} \frac{\Gamma(4 / 5) \Gamma(1 / 5)}{\Gamma(3 / 5) \Gamma(2 / 5)} F\left(3 / 52^{2 / 5} ; 4 / 5 i z\right)\right]^{2}
\end{aligned}
$$

(i) $z^{4 / 5}(1-z)^{4 / 5} F\left(3 / 5, \psi_{5} ; 6 / 5 ; z\right)^{2}: \quad 1=\left(\frac{\Gamma(6 / 5) \Gamma(-1 / 5)}{\Gamma(3 / 5) \Gamma(2 / 5)}\right)^{2}+\left(\frac{C_{d d d}}{C_{d d 0}}\right)^{2}\left(\frac{\Gamma(4 / 5) \Gamma(-1 / 5)}{\Gamma(1 / 5) \Gamma(2 / 5)}\right)^{2}$

(iii)

$$
\begin{aligned}
& \text { iii) }{ }^{3 / 5}(1-z)^{4 / 5} F\left(3 / 5, i_{5}, 6 / 5 i z\right) \cdot F\left(3 / 5 i^{2 / 5} i^{4 / 5} i^{i z}\right) \\
& 0=\frac{\Gamma(6 / 5)^{2} \Gamma(-1 / 5) \Gamma(1 / 5)}{\Gamma(3 / 5)^{2} \Gamma(45) \Gamma(4 / 5)}+\frac{\Gamma(4 / 5)^{2} \Gamma(-1 / 5) \Gamma(1 / 5)}{\Gamma(2 / 5)^{2} \Gamma(1 / 5) \Gamma(3 / 5)}\left(\frac{c_{\phi \phi \phi}}{C_{\phi \phi 0}}\right)^{2} \\
&
\end{aligned}
$$

0.b idennities: $\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}, \Gamma(x+1)=x \Gamma(x)$

If $c_{d d 0}=1$, natural: $\langle\phi(z) \phi(0)\rangle=|z|^{45}$

Then

$$
\begin{aligned}
\left(c_{d / d \phi}\right)^{2} & =-\frac{r(6 / 5)^{2} r(-1 / 5) r(/ 5 / 5}{r(3 / 5)^{2} \Gamma(2 / 5) r(4 / 5)} \cdot \frac{r(2 / 5)^{2} r(1 / 5) r(3 / 5)}{\Gamma(4 / 5)^{2} r(-1 / 5) r(1 / 5)} \\
& =-\frac{r(6 / 5)^{2} r(2 / 5) r(1 / 5)}{r(3 / 5) r(4 / 5)^{3}} \\
& =-\frac{1}{25} \frac{\Gamma(2 / 5) \Gamma(1 / 5)^{3}}{\Gamma(3 / 5) \Gamma(4 / 5)^{3}} .
\end{aligned}
$$

This solves the other egos as well.
Note that $\left(C_{d+d}\right)^{2}<0$

Solution: $C_{\phi d d}$ is premely imaging

Better solution: We cannot riomalise all fields to +1 as get red constants. So instead have a metric, $\left\langle\phi_{i} \phi_{j}\right\rangle=\frac{g_{i j}}{|z-\omega|^{2 \Delta_{i}}}$

$$
\begin{aligned}
\langle\phi| \phi \phi|\phi\rangle & =\left(C_{\phi \phi}^{\phi}\right)^{2} g_{\phi \phi}\left|\frac{11}{-1 / 5}\right|^{2} \\
& +\left(g_{\phi \phi}\right)^{2}\left|\frac{1}{0}\right|^{2}
\end{aligned}
$$

Take $g_{\phi \phi}=-1, \quad\left(c_{\phi \phi}^{\phi}\right)^{2}=+\frac{1}{25} \frac{\Gamma(2 / 5) \Gamma(1 / 5)^{3}}{\Gamma(3 / r) \Gamma(4 / 5)^{3}}$

Can get real structure constants at cat of regarre nom $g\langle d \mid \phi\rangle$ But the space of states $L_{-m}^{n_{m}} . \underline{L}_{-1}^{n_{1}}|\phi\rangle$ has an indefinite inner product so this is a small cost.

10. "New" Conformal Bootstrap

For discussion in the live lecture.

