
Conformal Blocks: notes, references and exercises

1. Introduction

2. Generalities on conformal transformations

A nice of lecture notes on CFT in d > 2:

Lectures on Conformal Field Theories in more than two dimensions
Hugh Osborn (2019)

The standard early references on conformal partial waves are from the 1970s by the group of S.
Ferrara, R. Gatto, G. Parisi, A.F. Grillo:

Covariant expansion of the conformal four-point function
Nucl.Phys.B 49 (1972) 77-98, Nucl.Phys.B 53 (1973) 643-643 (erratum)

Analyticity properties and asymptotic expansions of conformal covariant green’s functions
Nuovo Cim.A 19 (1974) 667-695

Properties of Partial Wave Amplitudes in Conformal Invariant Field Theories
Nuovo Cim.A 26 (1975) 226

The specialisation to d = 2 in the 80’s mean that relatively little attention seemed to be paid to
the general case until AdS/CFT at the end of the 90’s. Some referenceas from the early 2000s:

hep-th/0011040
Conformal Four Point Functions and the Operator Product Expansion
F.A. Dolan, H. Osborn

arxiv.org/hep-th/0309180
Conformal Partial Waves and the Operator Product Expansion
F.A. Dolan, H. Osborn

Latest work includes

arXiv:2001.08778
Distributions in CFT I. Cross-Ratio Space
Petr Kravchuk, Jiaxin Qiao, Slava Rychkov

3. Specialisation to d = 2

The standard text book, the “Big Yellow Book”

[YBK] Conformal Field Theory
P. Di Francesco, P. Mathieu and D. Sénéchal, 1997

4. Full infinite symmetry

The seminal paper introducing many ideas in 2d CFT:

https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
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[BPZ] Nuclear Physics B (241) 1984, 333-380
Infinite conformal symmetry in two-dimensional quantum field theory
A A Belavin, A M Polyakov and A B Zamolodchikov

For a recent discussion of the crossing and the phases that occur and why:
arxiv.org/2001.05055
Fermionic CFTs and classifying algebras
Ingo Runkel, Gerard M. T. Watts

5. Brute Force

No specific references, the method idea is immedate.

6. Differential equations

This method was introduced (along with many other ideas) in [BPZ]

7. Recursion relations

They were introduced in

Theoretical and Mathematical Physics volume 73, pages1088–1093 (1987)
Conformal symmetry in two-dimensional space: Recursion representation of conformal block
Al. B. Zamolodchikov

They are discussed and used in

hep-th/9506136
Structure Constants and Conformal Bootstrap in Liouville Field Theory
A.B.Zamolodchikov, Al.B.Zamolodchikov

hep-th/0107118
A non-rational CFT with c = 1 as a limit of minimal models
I. Runkel, G. M. T. Watts

They were resummed into a closed expression (with a few typos) in

arxiv.org/1502.07742
Virasoro conformal blocks in closed form
Eric Perlmutter

8. AGT: an exact formula

The AGT (Alday, Gaiotto, Tachikawa) correspondence was announced in:

arxiv.org/0906.3219
Liouville Correlation Functions from Four-dimensional Gauge Theories
Luis F. Alday, Davide Gaiotto, Yuji Tachikawa

Some discussion of the AGT and its relation to the states:
arxiv.org/0912.0504
On AGT conjecture

http://qft.itp.ac.ru/BPZ.pdf
http://qft.itp.ac.ru/BPZ.pdf
http://qft.itp.ac.ru/BPZ.pdf
https://arxiv.org/abs/2001.05055
https://arxiv.org/abs/2001.05055
https://arxiv.org/abs/2001.05055
https://link.springer.com/content/pdf/10.1007/BF01022967.pdf
https://link.springer.com/content/pdf/10.1007/BF01022967.pdf
https://link.springer.com/content/pdf/10.1007/BF01022967.pdf
https://arxiv.org/abs/hep-th/9506136
https://arxiv.org/abs/hep-th/9506136
https://arxiv.org/abs/hep-th/9506136
https://arxiv.org/abs/hep-th/0107118
https://arxiv.org/abs/hep-th/0107118
https://arxiv.org/abs/hep-th/0107118
https://arxiv.org/abs/1502.07742
https://arxiv.org/abs/1502.07742
https://arxiv.org/abs/1502.07742
https://arxiv.org/abs/0906.3219
https://arxiv.org/abs/0906.3219
https://arxiv.org/abs/0906.3219
https://arxiv.org/abs/0912.0504
https://arxiv.org/abs/0912.0504


V.A. Fateev, A.V. Litvinov

arxiv.org/1012.1312
On combinatorial expansion of the conformal blocks arising from AGT conjecture
V.A. Alba, V.A. Fateev, A.V. Litvinov, G.M. Tarnopolsky

9. “Old” Conformal Bootstrap

Again, see [BPZ], [YBK].

10. “New” Conformal Bootstrap

This was started in

arxiv.org/0807.0004
Bounding scalar operator dimensions in 4D CFT
Riccardo Rattazzi, Vyacheslav S. Rychkov, Erik Tonni, Alessandro Vichi

One of its most striking results in for the 3d Ising model:

arxiv.org/1203.6064
Solving the 3D Ising Model with the Conformal Bootstrap
Sheer El-Showk, Miguel F. Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, Alessan-
dro Vichi

A good introduction is

arxiv.org/1602.07982
TASI Lectures on the Conformal Bootstrap
David Simmons-Duffin

The example on an application of the conformal bootstrap came from these lectures:

arxiv.org/1601.05000
EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions
Slava Rychkov

11. New and other directions

Applications to the eigenstate thermalisation hypothesis:
arxiv.org/1501.05315
Virasoro Conformal Blocks and Thermality from Classical Background Fields
A. Liam Fitzpatrick, Jared Kaplan, Matthew T. Walters

A different approach to the large c limit: arxiv.org/1109.6764
The large central charge limit of conformal blocks
Vladimir Fateev, Sylvain Ribault
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Exercises

Here are some exercises to test thinking and understanding, expand on the lecture as well as some
standard standard technical exercises, organised more or less by section.

2. Generalities on conformal transformations

2.1 Special conformal transformations

Show that the general quadratic solution εµ = γµνρx
νxρ to the equation

∂µεν + ∂νεµ =

(
2

d

)
δµν(δστ∂σετ ) ,

in flat d-dimensional Euclidean space is εµ = 2xµ(b · x)− bµx2 , where bµ are constants. nb you can
assume γµνρ = γµρν .

Consider the coordinate transformation of flat space

x′µ =
xµ − (x2)bµ

1− 2 x · b + x2b2
, (1)

where b is a constant vector. Show that x′µ

(x′)2 = xµ

x2
− bµ .Hint: find (x′)2 first.

Consider now the vector yµ(t) with real parameter t defined by

y(t)µ =
xµ − (x2)teµ

1− 2tx · e + x2t2
,

where e = b̂ is the unit vector in the direction of b. We denote |b| = b so that b = b e. Show that

(a) e · y =
e · x− tx2

1− 2tx · e + x2t2
, (b) y2 =

x2

1− 2tx · e + x2t2
, (c)

dyµ

dt
= 2(e · y)yµ − y2 eµ .

This shows that xµ → yµ(t) is a finite special conformal transformation. Noting that x′ = y(b), we
see that a finite special conformal transformation takes the form of an inversion (in the unit circle)
followed by a translation followed by another inversion in the unit circle.

2.2 Classical scale invariant Lagrangians

Consider a scalar field which transforms under an infinitesimal coordinate transformation xµ → x′µ

as

φ(x) =

∣∣∣∣∂x′µ∂xν

∣∣∣∣∆/d φ(x′) ,

where |∂x′µ/∂xν | is the Jacobian of the transformation.

(a) Show that under a scale transformation x′µ = λxµ, the field φ has scale dimension ∆.

(b) Show that under an infinitesimal transformation, δxµ = αµ, the variation of φ is

δφ =
∆

d
(∂µα

µ)φ + ασ∂σφ .



(c) Show that the infinitesimal variation of φ under an infinitesimal scale transformation δxµ = εxµ

is
δεφ = ε(∆φ+ xν∂νφ) . (†)

(d) Show that the variation of the Lagrangian density

L =
1

2
∂σφ∂

σφ− V (φ) ,

where φ transforms as (†), is a total derivative under an infinitesimal scale transformation provided
∆ = (d/2)− 1, and V = c φD/∆ for some constant c. [What are these potentials?]

2.3 Scale invariance is not conformal invariance

Consider the following Lagrangian in four dimensions

L = Lφ + LA , where Lφ = ∂σφ̄ ∂
σφ , LA = −1

4FµνF
µν ,

where φ is a complex scalar field, φ̄ is its conjugate and Fµν = ∂Aµ − ∂Aν is the field strength of a
gauge field Aµ. Under conformal transformations, the fields vary as

δφ =
1

4
(∂ · ε)φ+ εσ∂σφ , δφ̄ =

1

4
(∂ · ε)φ̄+ εσ∂σφ̄ , δAµ = εσ∂σAµ +Aσ∂µε

σ .

(a) Show that

δLφ = ∂µ

[
εµ(∂φ · ∂φ̄) +

1

4
φφ̄∂µ(∂ · ε)

]
− 1

4
φφ̄∂σ�ε

σ +

[
∂σετ + ∂τ εσ −

1

2
(∂ · ε)ηστ

]
∂σφ∂τφ̄ ,

hence Lφ is invariant (up to a total derivative) for conformal transformations (explain why).

(b) Show that
δFµν = (∂µε

σ)Fσν + (∂νε
σ)Fµσ + εσ∂σFµν .

δLA = ∂σ(−1

4
εσFµνF

µν)− 1
2

[
∂σετ + ∂τ εσ −

1

2
(∂ · ε)ηστ

]
F σνF

τν ,

so again LA is invariant (up to a total derivative) for conformal transformations.

(c) Now consider the usual interaction term (up to a factor of −ie)

L1 = AµJµ where Jµ = (φ̄ ∂µφ− φ∂µφ̄) .

Show that
δJµ = 1

2(∂ · ε)Jµ + εσ∂σJµ + Jτ∂µε
τ .

δL1 = ∂σ(εσA·J) +
[
∂τ εµ + ∂µετ − 1

2(∂ · ε)ηµτ
]
AτJµ ,

and hence the interaction term is (classically) invariant (up to total derivatives) under both scale
transformations and special conformal transformations.

(d). Consider now the interaction term

L1 = AµKµ where Kµ = (φ̄ ∂µφ+ φ∂µφ̄) .

Show that
δKµ = 1

2(∂ · ε)Kµ + εσ∂σKµ +Kτ∂µε
τ + 1

2φφ̄∂µ(∂·ε) .
δL2 = ∂σ(εσA·K) +

[
∂τ εµ + ∂µετ − 1

2(∂ · ε)ηµτ
]
AτKµ + 1

2φφ̄A
σ(∂σ∂τ ε

τ ) .

Hence, this term is invariant (up to total derivatives) for conformal transformations for which
∂σ∂τ ε

τ = 0, ie for translations, rotations, scale transformations but not special conformal transfor-
mations (explain why).



3. Specialisation to d = 2

3.1 Conformal transformations in two dimensions

Show that the equations
∂µεν + ∂νεµ = δµν(δστ∂σετ ) ,

in flat two-dimensional Euclidean space in Cartesian coordinates are equivalent to the Cauchy
Riemann equations

3.2 Special conformal transformations of the complex plane

Show that the special conformal transformation (1) gives

z 7→ z

1− b̄z
, z̄ 7→ z̄

1− bz̄
.

Consider the infinitesimal transformations

δz = bz2 , δz̄ = b̄z̄2 ,

generated by
Q = bL1 + b̄L̄1 .

We can usually take the transformations of z and z̄ to be independent, but if we require that they
are complex conjugate, so that b = (α + iβ) and b̄ = (α − iβ) with real coefficients α and β, show
that this leads to the following infinitesimal transformations of the Cartesian coordinates:

δx = αx(x2 − y2)− 2βxy , δy = 2αxy + β(x2 − y2)

generated by
Q = α(L1 + L̄1) + βi(L1 − L̄1) .

3.3 Möbius maps

Consider the map

z 7→ az + b

cz + d

Show that there is a unique map which takes any three points to any other three points.

Verify that an infinitesimal Möbius map is of the required form.

3.4 Quasiprimary state

Show that if |ψ〉 is a quasi-primary state of weight h, then the new states |χ〉 defined by

|χ〉 = (L−2 −
3

4h+ 2
L−1L−1)|ψ〉 ,

is a quasi-primary state of weight (h+ 2).



3.5 One–, two– and three–point functions

In this question all dependence on anti-holomorphic coordinates z̄i is suppressed. Recall that the
vacuum state |0〉 obeys

0 = L−1|0〉 = L0|0〉 = L1|0〉 = 〈0|L−1 = 〈0|L0 = 〈0|L1

and that a primary field satisfies

[Lm, φh(z)] = zm(h(m+ 1)φh(z) + z
∂φh
∂z

(z)) ,

(a) Use invariance of the vacuum to show that the expectation value of a single primary field
vanishes if it has non-zero conformal weight i.e. that

0 = 〈0|φh(z)|0〉 if h 6= 0

(b) Use the invariance of the vacuum under the action of L−1 to show that the two-point function
of two primary fields is translation invariant, i.e.

〈0|φh(z)φh′(w)|0〉 = f(z − w)

Next, use the invariance of the vacuum under the action of L0 to show that the two-point function
of two primary fields has the correct scale behaviour, i.e.q

〈0|φh(z)φh′(w)|0〉 = constant(z − w)−h−h
′

Finally, use the invariance of the vacuum under the action of L1 to show that the two-point function
of two primary fields vanishes unless they have the same conformal weight.

(c) (Harder) Repeat this analysis for the three point function of three primary fields

〈0|φh1(z1)φh2(z2)φh3(z3)|0〉

to show that this has the general form

constant(z1 − z2)h3−h2−h1(z2 − z3)h1−h3−h2(z3 − z1)h2−h1−h3

4. Full infinite symmetry

4.1 Conformal invariance in light-cone coordinates
Consider a classically conformally conformally invariant theory in 2-dimensional Minkowski space.
Consider light-cone coordinates x+ = t+ x, x− = t− x.

Find the metric ηµν and ηµν .

Show that ∂µTµν = 0 and Tµµ = 0 imply that

∂−T++ = ∂+T−− = T+− = 0



Show that for any functions f and g,

d

dt

∫ ∞
−∞

(
f(x+)T++ + g(x−)T−−

)
dx = 0

4.2 Highest weight states

Show that if a state ψ satisfies both L1ψ = 0 and L2ψ = 0 then it satisfies Lm|ψ〉 = 0 for all m > 0.

5. Brute Force

5.1 Determinant

Verify that, when expanded out,

A2 (h− h11)(h− h12)(h− h21)

where

c = 13− 6t− 6/t , hrs =
r2 − 1

4t
+

(s2 − 1)t

4
− rs− 1

2
,

is equal to the the determinant det(M2) for some A2.

What are the straight lines in the plot of vanishing curves (in the lecture at 0:50)? Why are these
the only lines in the region 1 < c < 25?

6. Differential equations

6.1 Singular vectors

Recall a highest weight state |ψ〉 is one for which L1|ψ〉 = L2|ψ〉 = 0.
Find the value of c for which (L−2L−2 − (3/5)L−4)|0〉 is a highest weight state.

7. Recursion relations

7.1

What does the recursive formula over poles in c tell you about the expansion of a Virasoro conformal
block over the set of global conformal blocks?

What does this have to do with the fact that the same factor (1/10) was present in both the
expansion of the function

1

1− z
+

1

z
− 1

over global conformal blocks (at 0:38 in the lecture) and over Virasoro blocks (at 0:41 in the lecture)?



8. AGT: an exact formula

8.1 Liouville theory

The standard parametrisation of c and h is

c = 1 + 6Q2 , h = α(Q− α) , Q = b+ 1/b .

Let b be real. Show that c ≥ 25. Suppose that α = Q/2 + iP with P real. Show that h is real and
h ≥ (c− 1)/24.

Let b = i
√
t with t real. Show that c ≤ 1. Suppose that α = Q/2 + iP with P real. Show that h is

real and h ≥ (c− 1)/24.

What relation does this have to the picture of vanishing Kac determinants in lecture 5?

9. “Old” Conformal Bootstrap

Ising model

Using the fact that

|ψ〉 = (L−2 −
4

3
L−1L−1)|σ〉 = 0 ,

show that
〈σ|σ(1)|σ〉 = 0 .

(one could just use symmetry under σ → −σ but not this assumption is not necessary).

For which values of h is 〈h|σ(1)|σ〉 allowwed to be non-zero?

Lee-Yang

Calculate the structure constant Cφφφ in the Lee-Yang model using the knowledge that φ is the
only non-trivial primary field and that conformal blocks are given as in the lecture.

10. “New” Conformal Bootstrap

How do you think numerical results obtained this way compare to other results in physics?

i.e. are strict numerical bounds obtained from inequalities “better” or “worse” than approximate
results or results with statistical errors?


