NON INVERTIBLE SYMMETRIES FROM DISCRETE GAUGING AND COMPLETENESS OF THE SPECTRUM Guillemo Arias Tamarop (University of Oviedo) MEETING ON DEFECTS AND SYMMETRY - KING'S COLLEGE LONDON 24th June 2022

Based on 2204.07523 with Diego Rodriguez Gómez

GENERALIZED SYMMETRIES

· Modern p.o.v. on symmetries: topological operators

GENERALIZED SYMMETRIES

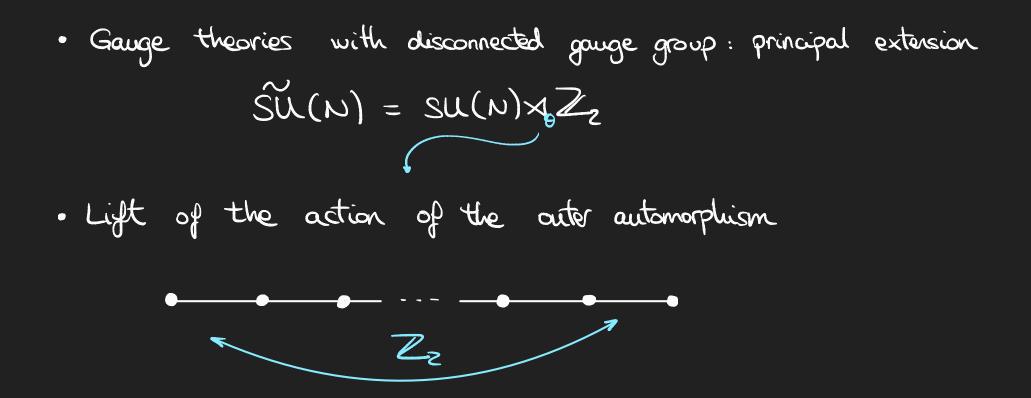
- · Modern p.o.v. on symmetries: topological operators
- · Allows several generalizations:
 - Higher-form symmetries
 - Higher-group symmetries
 - -Non-invertible symmetries

GENERALIZED SYMMETRIES

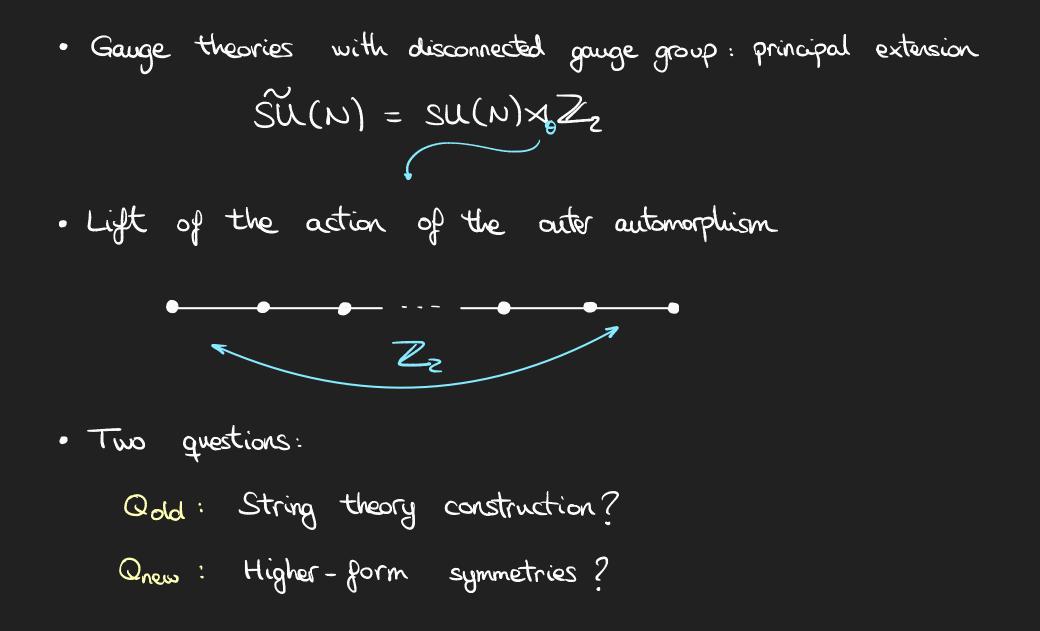
- · Modern p.o.v. on symmetries: topological operators
- · Allows several generalizations:
 - Higher-form symmetries
 - Higher-group symmetries
 - -Non-invertible symmetries <---
- Fusion of topological operators ~ Operator Product Expansion $U_{a}(M) \cdot U_{b}(M) = \sum coef_{ab}^{c} U_{c}(M)$

PRINCIPAL EXTENSIONS

• Gauge theories with disconnected gauge group: principal extension $SU(N) = SU(N) \times \mathbb{Z}_{2}$ PRINCIPAL EXTENSIONS



PRINCIPAL EXTENSIONS



OUTLINE

- 1. Introduction
- 2. The (electric) 1-form symmetry
- 3. The (dual) (d-2)-form symmetry
- 4. Brane constructions and Alice strings
- 5. Conclusion

- 1-FORM SYMMETRY
- Operators:

- Topological: Gukov-Witter operators Ta a: conjugacy class of G

- Charged: Wilson lines We p: irrep of G

- 1-FORM SYMMETRY
- Operators:
 - Topological: Gukov-Witter operators Ta a: conjugacy class of G
 - Charged: Wilson lines we le: irrep of G
- Linking coefficient ~ non-abelian Abaronov-Bohm effect

$$B_{e}([a]) = \frac{\chi_{e}([a])}{\dim e} s_{2}([a])$$

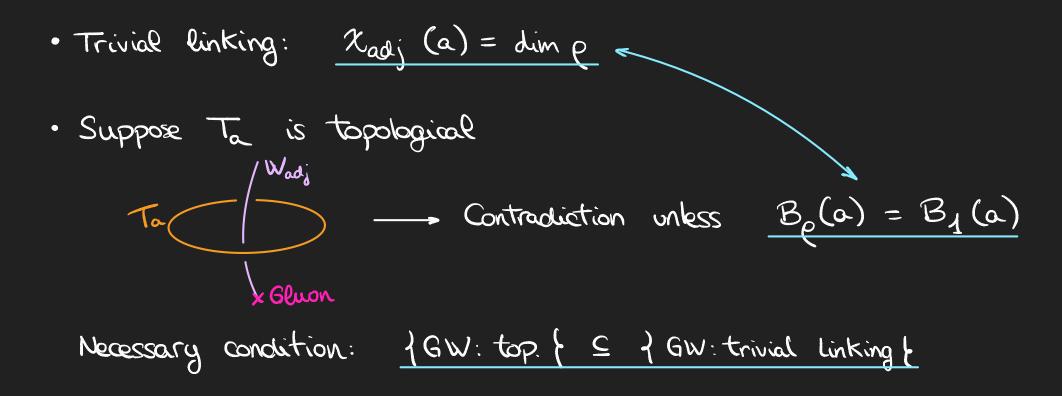
- 1-FORM SYMMETRY
- Operators:
 - Topological: Gukov-Witter operators Ta a: conjugacy class of G
 - Charged: Wilson lines we le: irrep of G
- Linking coefficient ~ non-abelian Abaronov-Bohm effect $B_{e}(tal) = \frac{\chi_{e}(tal)}{dim e} s_{2}(tal)$
- Strategy

 Write down all GW operators
 Connected component
 Vite down all GW operators
 disconnected component

 2. Topological nature from trivial linking with Wadj

- 1-FORM SYMMETRY (CONT.)
 - Trivial linking: Xadj (a) = dim p
 - Suppose Ta is topological
 Wadj
 Ta
 K Gluon

1-FORM SYMMETRY (CONT.)



1-FORM SYMMETRY (CONT.)

THE CASE OF PRINCIPAL EXTENSIONS

- · Solutions to trivial linking equation
 - GW in connected component: Tk k=0,1,.., N-1
 - GW in disconnected component: eq. never has solutions

THE CASE OF PRINCIPAL EXTENSIONS

- · Solutions to trivial linking equation
 - GW in connected component: Tk k=0,1,.., N-1
 - GW in disconnected component: eq. never has solutions
- Gauge invariance: conjugacy class also taking into account $(1, -1) \in SU(N) \rtimes \mathbb{Z}_2$: $T_k \longrightarrow T_{-k}$
- Topological GW operators in SU(N): $T_{k}^{SU} = T_{k}^{SU} + T_{-k}^{SU}$

THE CASE OF PRINCIPAL EXTENSIONS

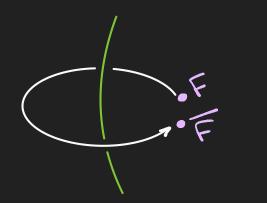
- · Solutions to trivial linking equation
 - GW in connected component: Tk k=0,1,.., N-1
 - GW in disconnected component: eq. never has solutions
- Gauge invariance: conjugacy class also taking into account $(1,-1) \in SU(N) \times \mathbb{Z}_{2}$: $T_{k} \longrightarrow T_{-k}$
- Topological GW operators in SU(N): $T_{k}^{SU} = T_{k}^{SU} + T_{-k}^{SU}$
- Fusion rule $T_k^{SS} \cdot T_q^{SS} = T_{k+q}^{SS} + T_{k-q}^{SS}$
- Argument doesn't depend on spacetime dimension

(d-2) - FORM SYMMETRY AND ALICE STRINGS

- Dual to the 1-form symmetry:
 - GW operators are charged
 - Symmetry generators are topological WL
- Topological Wilson lines ~ reps of $T_{0}(G)$ $SU(N) \longrightarrow \mathbb{Z}_{2}$ (d-2)-fs

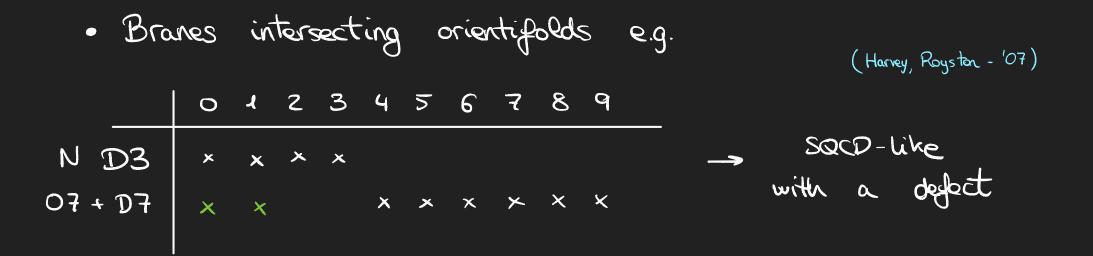
(d-2) - FORM SYMMETRY AND ALICE STRINGS

- GW operators are charged
- Symmetry generators are topological WL
- Topological Wilson lines ~ reps of $T_{G}(G)$ $SU(N) \longrightarrow \mathbb{Z}_{Z}$ (d-2)-fs
- (d-2) form symmetry is broken if we add Alice strings



 \rightarrow Action with the element $(1, -1) \in \widetilde{SU}(N)$

BRANE CONSTRUCTIONS



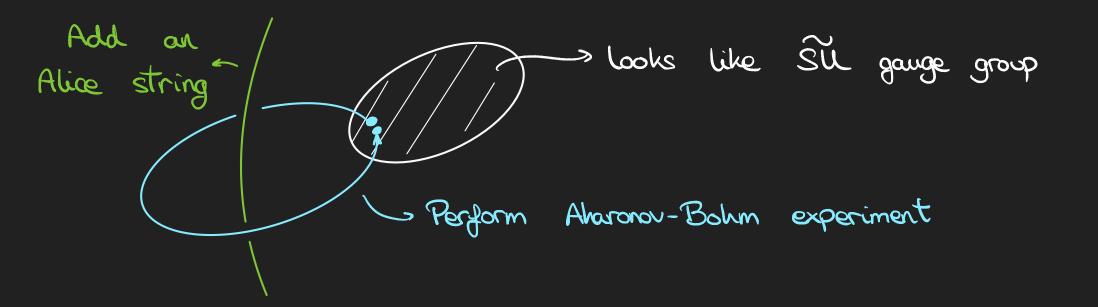
BRANE CONSTRUCTIONS

· Alice strings reduce the globally well defined gauge group

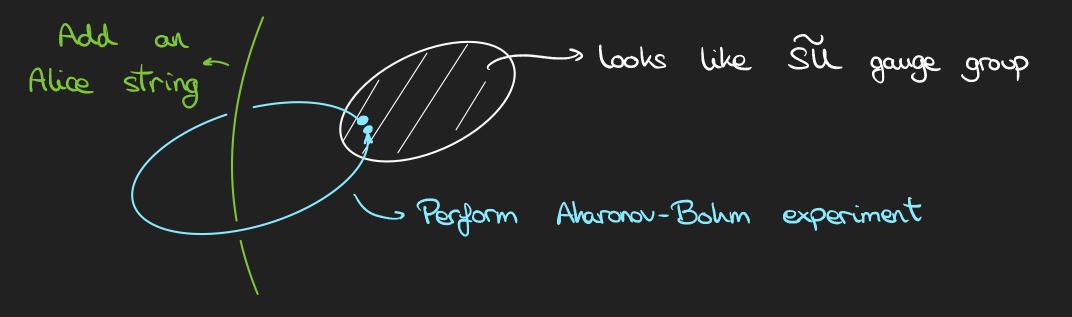
· Alice strings reduce the globally well defined gauge group

Add an Alice string looks like SU gauge group

· Alice strings reduce the globally well defined gauge group



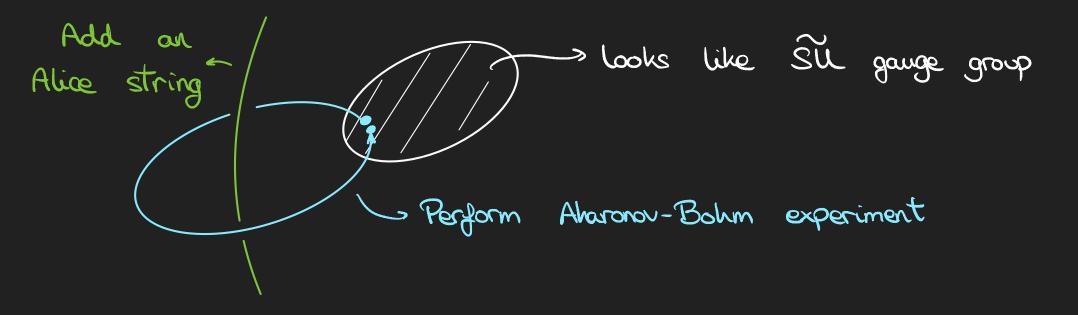
· Alice strings reduce the globally well defined gauge group



Since (1,-1) doesn't commute with (g,1)

- different AB phases for gauge equivalent states

· Alice strings reduce the globally well defined gauge group



• Since (1, -1) doesn't commute with (g, 1) \rightarrow different AB phases for gauge equivalent states [CONTRADICTION] BACK TO GENERALIZED SYMMETRIES

• Well defined gauge group is the centraliser of (1,-1)

BACK TO GENERALIZED SYMMETRIES

Well defined gauge group is the centraliser of (1,-1)
INCLSE: I two inequivalent principal extensions
SU(N)_{1,11} = SU(N) ×_{0,02} Z₂
Choice of semidirect product <> type of orientifold
O7⁺ - SU(N)₁ broken to USp(N)
O7⁻ - SU(N)₁ broken to SO(N)

BACK TO GENERALIZED SYMMETRIES

- Guhov-Witter operators labelled by conjugacy classes
 of the gauge group
 - Invertible defects remain (but are further broken)
 - Non-invertible defects disappear

CONCLUSIONS AND OUTLOOK

- Pure SU(N),,, has non-invertible 1-form symmetry (see also Lahsha's talk)
- Brane constructions (preserving 8 supercharges) automatically
 break the higher-form symmetries
- Reminiscent of "No Global Symmetries" except for the fact that gravity is decoupled
- Can one find a stringy construction without the
 Alice string? ft. full SU(N) & non-invertible symmetries

THANK YOU FOR YOUR ATTENTION ?

