
Chapter 1

Kinetic Theory of Gas

In your study of classical thermodynamics so far, you have been taught the macrophysics of thermody-

namic sysytems, by which I mean the system is described by macrostate properties like temperature T ,

pressure p, entropy S etc. On the other hand, a system is made up of a lot of little things, e.g. oxygen

gas is made up of many tiny di-atomic oxygen molecules. Suppose we know the physics that govern the

behaviour of oxygen molecules, i.e. we know its microphysics, then in principle we can try to derive the

macroscopic properties of the gas from solving all the equations of the gas molecules. Given that a mole

of gas has 6.23⇥ 1023 molecules, this is obviously a dauntingly nigh impossible task.

All is not hopeless however. Even if we cannot solve all the equations to precision, in most cases, we

don’t really need to. Indeed, all we need to do is to understand the statistical properties of the gas, and

from there, we can derive its macroscopic properties. This endeavour is known as statistical mechanics,

and will be the subject of your 3rd year module 6CCP3212 Statistical Mechanics.

1.1 Billiard ball model of gas

In this last section of your Thermal Physics module, we will study a pre-cursor model of the microphysics

of gas in which the gas particles are treated as tiny little billiard balls. This theory is called the Kinetic

Theory of Gas, which was originated by Daniel Bernoulli in the late 18th century, but refined over the

centuries. While much of its utility as microphysical description of thermal systems has been superseded

by statistical mechanics, it is still an extremely useful tool in the modern context (e.g. as a way to

understand non-equilibrium thermodynamics).

For the moment, we will make the following assumptions about the gas

• The particles’ sizes are much smaller than the average separation. This means that the gas rarely

collide into each other. Note that in real life, molecules can and do interact with each other without

having to bump with each other (e.g. through Van de Waals’ forces).

• When they do collide with each other, they can exchange energy, but in such a way that the whole

system remain in equilibrium.

• We will ignore all other forms of energies of the particles, including rotation and vibration. So all

the internal energy of the gas is held up in the kinetic energy of all the particles, such that

U =
i=NX

i=1

1

2
mv

2
i , (1.1)

where m is the mass of the particles and i labels each individual particle.

5



1.1.1 The Maxwell-Boltzmann Distribution

Obviously N is a very big number of (e.g. ⇠ 1023 for a mole), so literally calculating the sum Eq. (1.1)

is a fool’s errand. However, when the gas is in equilibrium at some temperature T , its distribution

can be exactly calculated as it turns out. What we mean by that is that while we do not know exactly

the velocities (and hence energies) of each particle, we know the probabilities. We define the velocity

distribution g(vx)dvx to be the fraction of particles with their velocity in the x direction between vx
and vx + dvx . This is given by the formula

g(vx) =

r
m

2⇡kbT
e�mv2

x/2kbT , (1.2)

where kb is the Boltzmann constant as usual. The factor e�E/kbT (here E is simply the kinetic energy of

the particle in the x direction) is often called the Boltzmann Factor, who first derived this distribution.

Unfortunately, you will have to wait until your 3rd year module Statistical Mechanics to learn how this

is derived.

The distribution is normalized to unity, i.e.

Z 1

�1
g(vx)dvx = 1 , (1.3)

which makes sense since the sum over all the probabilities must be 1. To do the integral Eq. (1.3), we

note that it has the form of a Gaussian integral

Z 1

�1
e�ax2

dx =

r
⇡

a
, (1.4)

for real a 6= 0. Using Eq. (1.4), Eq. (1.3) is immediately obtained.

Notice that g(vx) ! 0 when vx approaches either 1 or �1 : intuitively, we expect that for any

gas in equilibrium, high speed particles are an exception instead of a norm. The eagle eye amongst you

will protest that particles cannot travel faster than the speed of light c, and you will be right. But the

argument holds as long as |E| � kbT , in other words as long as the absolute value of the kinetic energy

of the particle is much more than a characteristic energy determined by the temperature T of the system

– the higher the temperature T , the more likely we can find a very fast particle (unsurprisingly).

In the other limit, when vx ! 0, g(vx) will be maximum. This suggests that, at least in 1 dimension,

the most likely velocity of a particle of a gas in equilibrium is basically 0, lazy bums them 1.

However, we don’t live in a 1D world, we live in a 3D world. For each direction, there exist an

identical distribution g(vy) and g(vz). The probability of finding a particle between the “velocity volume”

(vx + dvx, vy + dvy, vz + dvz) is then

g(vx)dvxg(vy)dvyg(vz)dvz =

✓
m

2⇡kbT

◆3/2

e�m(v2
x+v2

y+v2
z)/2kbT dvxdvydvz . (1.5)

But v2x + v2y + v2z = v
2 ⌘ v2, is simply the square of the speed of each particle, so we can define

F (v) ⌘
✓

m

2⇡kbT

◆3/2

e�mv2/2kbT . (1.6)

This distribution is normalized via
R1
�1 F (v)dvxdvydvz = 1. You can chec : since the exponentials

factor, i.e. exp[�mv2/(2kbT )] = exp[�mv2x/(2kbT )] exp[�mv2y/(2kbT )] exp[�mv2z/(2kbT )], this integral

is actually very easy to do – it is just 3 separate Gaussian integrals. (Try it!)

1While this is a joke, it is not actually farfetched – dynamics tell us that things want to be at their lowest energy state,

all things being equal.
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However, in general we are interested in the speed v instead of individual velocites. So, instead of

doing 3 integrals, we “change coordinates” (akin to how we change Cartesian to spherical coordinates)

via

v =
q
v2x + v2y + v2z , vz = v cos ✓ , vx = v sin ✓ cos� , vy = v sin ✓ sin� , (1.7)

with the domain v = [0,1), ✓ = [0,⇡), and � = [0, 2⇡). In these coordinates, the integral becomes

Z 1

�1
dvx

Z 1

�1
dvy

Z 1

�1
dvz F (v) =

Z 1

0
v2F (v)dv

Z ⇡

0
sin ✓d✓

Z 2⇡

0
d� . (1.8)

Since F (v) does not depend on � and ✓, the angle integrals can be immediately completed
R
d� sin ✓d✓ =

4⇡, leaving us with Z 1

0

r
2

⇡

✓
m

kbT

◆3/2

v2e�mv2/2kbT dv = 1 . (1.9)

This defines a speed distribution

f(v)dv ⌘
r

2

⇡

✓
m

kbT

◆3/2

v2e�mv2/2kbT dv , (1.10)

which is now known as the Maxwell-Boltzmann Distribution. Don’t be alarmed by the presence of

dv on both sides of the equation – it is simply there to remind you that f(v) is a distribution and to

compute actual probabilities, one need to do an integration.

Figure 1.1: The Maxwell-Boltzmann distribution.

Figure 1.2: A speed selector. Gas particles are channeled into a rotating helical grooved drum. By varying

the rotation speed, we can selectively extract particles of fixed speed. The particle detector count the

number of particles. Figures stolen from tecscience.com.
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Notice that since v > 0 is now semi-positive definite (unlike e.g. vx), the peak of the distribution is

no longer at 0. To find vmax, simply take derivative df/dv = 0, and we get

vmax =
2kbT

m
. (1.11)

This means that if you make a random drawing of a particle from the gas, the most likely speed is vmax.

Here it is worth looking at how one might do the integral Eq. (1.9) to check that it does result in unity.

As you will soon see below, integrals of the kind
R1
0 xne�ax2

dx for some integer n � 0 occurs frequently

in thermal physics and statistical mechanics, so let’s get some practice in. Defining a ⌘ �m/2kbT , Eq.

(1.9) then has the form Z 1

0
v2e�av2

dv =

r
⇡

2

✓
kbT

m

◆
. (1.12)

We want integrate the LHS to prove that it is equal to the RHS. When confronted with integrals like

these, the key goal is to integrate by parts until you get the integrand to be of the form ve�av2

or e�av2

.

For the former, Z 1

0
ve�av2

dv = � 1

2a
e�av2

+ const , (1.13)

so that’s clear, which we have again used the Gaussian integral Eq. (1.4). The eagle eye amongst you will

point out that the integral Eq. (1.8) has the limits (0,1) instead of (�1,1). But since the argument

in the integral is x2, hence
Z 1

�1
e�ax2

dx =

Z 0

�1
e�ax2

dx+

Z 1

0
e�ax2

dx = 2

Z 1

0
e�ax2

dx , (1.14)

so Z 1

0
e�ax2

dx =
1

2

r
⇡

a
. (1.15)

You should commit both Eq. (1.4) and Eq. (1.15) to memory.

Given these, then integrating by part Eq. (1.12)
Z 1

0
v2e�av2

dv =

Z v=1

v=0
d
⇣
� v

2a
e�av2

⌘
+

Z 1

0

1

2a
e�av2

dv

= 0 +
1

4a

r
⇡

a

=

r
⇡

2

✓
kbT

m

◆3/2

, (1.16)

as required. Note that the first (“boundary”) term vanishes in the limits of the integral 0 and 1.

The power of a distribution comes from it enabling us to compute expectation values of any quantity

X

hXi ⌘
Z 1

0
Xf(v)dv . (1.17)

For example, the expectation value of the velocity hvi is

hvi ⌘
Z 1

0
vf(v)dv =

r
8kbT

⇡m
, (1.18)

which you will be asked to demonstrate in a homework problem. hvi of course, is also known as the

mean or average of the distribution – this is what you get when you make a large number of random

drawings from the distribution, and then compute the average.

What is the expectation value some other quantities which are not functions of v, say hv2xi? To do

that, we need to “unpack” Eq. (1.17) where we have integrated away the angle information

4⇡ =

Z ⇡

0

Z 2⇡

0
sin ✓ d✓d� , (1.19)
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so restoring the angles integration

hXi = 1

4⇡

Z ⇡

0
sin ✓d✓

Z 2⇡

0
d�

Z 1

0
Xf(v)dv . (1.20)

Using Eq. (1.20), you can show that hvxi = 0 (as you will in a homework problem). This is completely

expected – the gas on its own is not moving, so one would expect its mean to be zero hvxi = hvyi =

hvzi = 0.

1.1.2 Equipartition Theorem

In another homework problem, you can also use the distribution to compute the expectation value of the

energy per particle hUi

hUi =
1

2
mhv2i

=
1

2
m

Z 1

0
dv v2f(v)e�mv2/2kbT

=
3kbT

2
. (1.21)

This calculation also gives us
p
hv2i ⌘ vrms =

p
3kbT/m which is the root mean squared of the

velocity. Note that vmax < hvi < vrms. To “see” the distribution, we can do this using a “speed selector”

(Fig. (1.2.)).

Notice that the Maxwell-Boltzmann distribution is a function of speed v, not velocities – this means

that the particles in the distribution has no preferred direction. In other words, if we randomly draw a

particle from the distribution, its velocity is equally likely in all the directions. This suggest that the

energy E is “carried equally” by the kinetic energy of the particles in the 3 spatial dimensions vx, vy and

vz, i.e.

U
?
=

1

2
mhv2xi+

1

2
mhv2yi+

1

2
mhv2zi , (1.22)

i.e. the kinetic energy is in equipartition in the 3 possible directions. Turns out that Eq. (1.22) is

actually true, i.e. that each translational degree of freedom carry on average an energy kbT/2 per

particle. This is called the Equipartition Theorem. To explicitly prove that hmv2x/2i = hmv2y/2i =
hmv2z/2 =ikbT/2, we substitute vx (or vy or vz) into the expectation value formula Eq. (1.20)

hv2xi =
1

4⇡

Z ⇡

0
sin ✓d✓

Z 2⇡

0
d�

Z 1

0
(v cos ✓ sin�)2f(v)dv (1.23)

and brute force compute (which you will do in a homework problem). More elegantly, one can simply

argue that since there is no preferred direction in the distribution, the energy U = 3kbT/2 must be

divided equally between all 3 directions.

Indeed, this is a very general theorem that goes beyond translational degrees of freedom. In a point

particle, rotation and vibration degrees of freedom do not exist. However, if one consider a di-atomic

particle, then it has both rotational and vibrational degrees of freedom, and it can be shown that each

such degree of freedom carry an average of kbT/2 energy per particle. So a diatomic particle has 7 degrees

of freedom (3 translation, 3 rotations and 1 vibration), would have 7kbT/2 energy per particle2.

Can this be measured? Turns out that you can! Recall that the heat capacity for fixed volume is given

by CV = (@U/@T )V , then for a diatomic gas with particle number N , one would expect CV /N = 7kb/2.

When we does this measurement however, we see something weird in Fig. 1.3. The reason for this is that

2As it turns out, not all degrees of freedom has kbT/2 energy – and the equipartition theorem does not hold always.

We will discuss this more general theorem when we derive the general formula for partitions of energy in your next module

6CCP3212 Statistical Mechanics.
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quantum e↵ects must be taken account of – you will study this, and the derivation of the Equipartition

theorem when you take the next module 6CCP3212 Statistical Mechanics.

Figure 1.3: The heat capacity CV of a diatomic gas as a function of temperature. Instead of the classically

predicted CV = (7/2)kb, CV stays constant at (3/2)kb at low temperatures, until some fixed temperature

Trot where it jumps to (5/2)kb. It stay at that value until Tvib is reached, where it then jumps to the

predicted value of (7/2)kb. (Figure stolen from Wikipedia.)

1.2 Collisions

Particles zipping around in a box will undergo two kind of collisions : with one another and with the

walls of the box. In general, collisions can be elastic (no loss of energy) or inelastic – as we discussed

earlier, for now we will assume that all collisions are elastic and thus both energy and momentum are

conserved in the collision.

1.2.1 Pressure and the Ideal Gas Law

What is pressure? Consider a gas in equilibrium at temperature T in a box, but with door held in place

by a spring. Intuitively, one can imagine the particles of the gas hitting the door, pushing it open only

to be held back by the tension in the spring. If one heats up the gas, the on average according to the

Maxwell-Boltzmann distribution, the mean speed of the particles would increase, and at some point the

gas will be so hot as to push the door open and escape. Thus, an operational definition of “pressure”

would be momentum imparted on the container by particles colliding on it. Let’s see how we can derive

a term for the pressure of a gas given its temperature T .

To compute this momentum exchange, consider a small area A of the box. We want to know the rate

of particles collide with the area A as a function of collision angle – the latter is important since the

momentum change on the wall due to the collision of a particle of mass m and velocity v at angle ✓ is

given by

�p = 2mv cos ✓ , (1.24)

where the 2 comes from the fact that collision is elastic – in the limit when ✓ = 0 (i.e. head on collision),
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the velocity of the particle goes from v to �v (see Fig. 1.4.) The total pressure is then the sum over all

the collisions.

Figure 1.4: A particle bounces o↵ elastically o↵ the wall imparts a momentum of 2mv cos ✓.

To take into account angles, let’s review some basic facts about angles and solid angles. Recall that

an angle ✓ is defined by the ratio of the arc length s with its radius r, i.e. ✓ ⌘ s/r. Here, ✓ is measured

in radians as you will recall, such that if s is the entire circle, i.e. s = 2⇡, then ✓ = 2⇡r/r = 2⇡, which

is to say that ✓ = [0, 2⇡).

Equivalently, one can ask what if instead of arc length s, one has an “arc area” A. We can define a

solid angle

⌦ ⌘ A

r2
, (1.25)

where we have used r2 instead of r to ensure that ⌦ is dimensionless. The (dimensionless) name for the

“unit” of ⌦ is called steradians (although like radians, it is simply a matter of definition). Equally, if A

is the entire spherical surface, i.e. A = 4⇡r2, then ⌦ = 4⇡, and thus ⌦ = [0, 4⇡).

Figure 1.5: Angles and Solid Angles.

Consider an infinitisimal solid angle element d⌦, we want to ask how many particles are colliding with

d⌦ at any time t. Now particles in a gas in general do not have a preferred direction – there is equal

likelihood for each particle to move in any of the 4⇡ solid angle directions. (Otherwise, the bulk of the

gas will be in motion.) Hence, the fraction of particles that will collide with d⌦ must be

d⌦

4⇡
=

r2d⌦

4⇡r2
, (1.26)

where we have multiplied both the numerator and denominator by r2 to make explicit the fact that r2d⌦

is the infinitisimal area on the sphere of radius r subtended by a solid angle d⌦. From your first year
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math class, this must be equal to (see Fig 1.6)

r2d⌦ = 2⇡r2 sin ✓d✓ , . (1.27)

or
d⌦

4⇡
=

1

2
sin ✓d✓ . (1.28)

Since the particles have no preferred direction, the fraction of particles between v and v + dv moving

through the solid angle d⌦ must then be the Maxwell-Boltzmann distribution multiply by d⌦, i.e.

fraction = f(v)dv
d⌦

4⇡
= f(v)dv

1

2
sin ✓d✓ . (1.29)

You can check that Eq. (1.29) makes sense by integrating it over ✓ and v to get 1 as expected (i.e.

all the particles pass through the surface at some point.)

Figure 1.6: An infinitisimal element of solid angle d⌦ defined.

Next, we want to find the rate of particles colliding with some area dA of the wall, at an angle ✓ to

it. In an infinitisimal amount of time dt, the volume swept out by particles of velocity v at angle ✓ is

v cos ✓dAdt. Hence, the number of particles between v and v + dv hitting the wall area dA per unit time

dt at angle ✓ is given by

n⇥ v cos ✓f(v)dv ⇥ fraction = n⇥ v cos ✓f(v)dv ⇥ 1

2
sin ✓d✓dAdt , (1.30)

where n = N/V is the number density. The rate per unit area per unit angle between v and v + dv is

then

�(v, ✓) = nv cos ✓f(v)dv
1

2
sin ✓d✓ . (1.31)

With this equation Eq. (1.31) in hand, the momemtum exchange, which we call Pressure p, is then

the sum over all the particles colliding on all the angles, i.e.

p =

Z 1

0
dv

Z ⇡/2

0
d✓ �p|{z}

mom exchange per coll

⇥�(v, ✓)| {z }
rate

= n

Z 1

0
dv

Z ⇡/2

0
d✓(2mv cos ✓)⇥ v cos ✓f(v)

1

2
sin ✓

= n

Z ⇡/2

0
d✓ cos2 ✓ sin ✓

| {z }
1/3

✓Z 1

0
dvv2f(v)

◆

| {z }
hv2i

(1.32)

which is, using n = N/V where V is the total volume and N is the total number of particles

P =
1

3

N

V
mhv2i . (1.33)
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But from Eq. (1.21), we replace hv2i = 3kbT/m, to finally get

PV = NkbT , (1.34)

which is the famous Ideal Gas Equation of State.

Notice that in Eq. (1.34), the mass of the particles does not appear – it doesn’t matter how massive

the particles is, the pressure only depends on the number density N/V and the temperature T . This

might seem counter-intuitive – if the particle is more massive, surely this means for fixed v it carries more

momentum mv? The key to resolving this paradox is to realize that the pressure depends not just on T ,

but on kbT , i.e. it depends on the energy of the particle, not on the velocity nor mass. Hence a more

massive particle would require more energy to bring it to a higher temperature. So for a given T , the

momentum exchange is the same.

1.2.2 Dalton’s Law

Suppose we have a mixture, i.e. a gas containing two or more di↵erent species of particles, in the same

box with volume V and at the same temperature T . Labeling the species by i, then the number of

particles per species is N1, N2, . . . , Ni. Supposing that the species do not interact with each other, then

as far as each species is concerned, they individually behave like a gas of Ni particles in a volume V .

Assuming that each of them obey the Ideal Gas Law, then the pressure for each species is

Pi =
Ni

V
kbT . (1.35)

The total pressure on the box is then the sum

P =
X

i

Pi =
X

i

Ni

V
kbT . (1.36)

Eq. (1.36) is known as Dalton’s Law, and each individual pressure Pi is called a partial pressure.

This linearity in pressure was discovered empirically by Dalton, which you would have spend studying in

your Matter module year one. As you can see now, this law is only valid for ideal gasses – it is due to

the linearity of P as a function of density N/V for the ideal gas law. In general, this is not obeyed and

hence Dalton’s Law is only an approximation valid for ideal gasses.

1.2.3 Mean Free Path and Relaxation Time

We will now consider collisions between particles. In general, collision rates will depend on the geometry of

the particles, but for simplicity (and without losing much physics), let’s assume the particles as spheres

with diameter d. Suppose with have a systems of N particles occupying the volume V , we want to

calculate the mean free path l of a particle, which is defined to be the average distance travelled by

a particle between collisions. Now, viewed head on, each particle has an area ⇡(d/2)2. However, since

every other particle also has diameter d, the “space” in which a particle can occupy before colliding with

another particle is a cylinder ⇡d2l (see Fig. 1.7). This volume must be equal to the total volume available

per particle, i.e. V/N , so ⇡d2l = V/N , or

l =
V

N

1

⇡d2
. (1.37)

Suppose now the mean time between collisions, or the relaxation time is ⌧ , then by dimensional

analysis, one expect

l
?
= vcol⌧ , (1.38)

where vcol is a variable with the dimensions of velocity. The question is, what v should we use? A naive

guess would be the mean velocity vcol
?
= hvi, but this would be wrong since the velocities of the target
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Figure 1.7: On average, a particle (red) of radius 2d has “elbow room” of ⇡d2l before colliding with

another particle (blue), where l is defined as the mean free path.

particles is as important as the velocity of the protoganist particle. What we want is the mean relative

velocity

hv2reli ⌘ h|v1 � v2|2i

= hv21 + v22 � 2v1 · v2i

= hv21i+ hv22i � 2hv1v2 cos ✓i , (1.39)

where we have defined v1 = |v1| and v2 = |v2| respectively.
Now the last term hv1v2 cos ✓i = 0 vanishes, which can be brute force computed by substituting the

term into the expectation value formula Eq. (1.20), and noticing that the ✓ integral
R ⇡
0 sin ✓ cos ✓d✓ = 0

(regardless of what v1v2 integrates to). A more elegant argument is to notice that since the distribution

has no perferred direction (each particle is equally likely to travel in any direction), then its mean should

be zero.

Meanwhile, hv2i = 3kbT/m as we have previously computed, and since v1 and v2 are both drawn from

the same distribution, hv21i+ hv21i = 6kbT/m. Thus the mean free path is then

l =
q
hv2reli⌧ =

r
6kbT

m
⌧ (1.40)

Using Eq. (1.37), we can express the relaxation time as

⌧ =
1

n⇡d2

r
m

6kbT
, (1.41)

where we have defined the number density

n ⌘ N

V
. (1.42)

The area variable in Eq. (1.41) ⇡d2 is called the e↵ective cross-sectional area (or just cross-

sectional area) – it denotes “how big” the particle is as a target. Defining it as

� ⌘ ⇡d2 , (1.43)

Eq. (1.41) can the be written as

⌧ =
1

n�

r
m

6kbT
, (1.44)

Taking stock, the relaxation time depends inversely on number density n (the more dense it is, the

shorter the time), inversely on the e↵ective cross-sectional area (the bigger the target, the shorter the

time) and the square root of the temperture T (the hotter it is, the more likely it will collide since things

generally move faster).

In these variables, the mean free path can also be written as

l =
1

n�
. (1.45)
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1.3 Transport

Now we will turn to how things move. A gas in equilibrium clearly is not static – particles zip about and

collide with each other, carrying energy, heat and itself around. This motion, which is called transport,

leads to physical properties which can then be measured as follows:

• Viscosity : The transport of momentum.

• Conductivity : The transport of heat.

• Di↵usion : The transport of particles.

We will study this in turn in the following.

1.3.1 Viscosity

While not recommended, if you try to swim in a pool of honey, you will find that it is much more di�cult

than trying to swim in a pool of water. Honey is in general much more “stick” than water. You would

have studied in your first year mechanics that viscosity exerts a friction force that is proportional the the

velocity Fvis / ⌘v where ⌘ is the viscosity of the liquid.

As it turns out, gasses also possess viscosity. The Kinetic theory of gas provides a nice way of deriving

vicosity as we will now discuss.

Figure 1.8: Two parallel plates of area A are held between a gas. The bottom plate is held firm while we

slide the top plate in the x direction by applying a force F . The particles in the gas reacts and “fights

back”, generating a viscous force against the motion. Newton’s 3rd law imply that the gas’ particles must

also feel the force, and hence experience a mean momentum transfer mhuxi.

Consider the system in Fig. 1.8. We set up two parallel plates of area A between a gas (or a liquid).

Holding the bottom plate fixed, we try to slide the top plate in the positive x direction. But the particles

in the gas fights back, hence to slide the plate requires the application of a force F . Newton’s 3rd law

imply that the particles of the gas must also feel the force, hence experience a momentum transfer. We

want to compute this force.

Before we beginning sliding the top plate, the gas on the whole is not moving (even if the individual

particles are), so the mean velocity huxi = 0. As we begin to slide the top plate, the particles feel a force

in the x direction, and hence we expect a momentum change in this direction. Since the bottom plate

is still not moving, we expect hux(z = 0)i = 0. On the other hand, the top plate is moving so must

experience the maximum motion hux(z = z0)i = umax
x . This sets up a mean velocity gradient

dhuxi
dz

> 0 , (1.46)

in the z direction. Notice that ux is still within the expectation value brackets hi sign – it is an average.

Physically this is not hard to understand : near the top plate, the particles are in direct contact with
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the plate, so experience maximum change in momentum. These then collide with particles in the next

“layer” further down in z transfering momentum, but since collisions are not guaranteed – it depends on

the relaxation time – the net change in huxi then would be less etc.

Turns out that deriving a formula of the viscous force from particle collisions from first principle is

rather hard. However, we can rely experiments and some intuition. First, we expect that if we apply a

bigger force, the velocity gradient will be bigger, so we |F | / dhuxi/dz. However, if the area of the plate

A increases, more of the plate is in contact with the particles, so we expect the velocity gradient to be

inversely proportional to A, so we guess that

Fvis

A
= ⌘

dhuxi
dz

, (1.47)

where Fvis is the viscous force. ⌘ is a constant of proportionality, and as you have guessed, defines the

viscosity. Using the ansatz Eq. (1.47), all we need to is compute the velocity gradient which we can do

as it is just the expectation value of a distribution which in our studies today is the Maxwell-Boltzmann

distribution. Let’s derive the viscosity ⌘ in the following.

We begin by computing the velocity gradient hux(z)i, i.e. ux as a function of z. Let’s consider a

thin dz layer of particles. Particles will pass through this layer in the z direction – the rate which of

course depends on the velocity distribution in the z direction, which happily we know since we have the

Maxwell-Boltzmann distribution. Recalling that n = N/V is the number density, then using vz = v cos ✓,

rate of particles passing through layer per unit area = nv cos ✓ ⇥ f(v)

4⇡
sin ✓ d✓d�dv , (1.48)

Now consider a particle in a layer at position z. It gets hit from another particle passing through

this layer (the rate which we have computed above in Eq. (1.48), experience a momentum transfer of per

particle in the x direction

�px = m(ux(z +�z)� ux(z)) ⇡ m
dux

dz
�z . (1.49)

Apologies for the reuse of px as momentum when we have used it for pressure p – another reason why in

your next year module on stat mech we will use P for pressure instead like sensible people.

We have calculated the rate of particles passing through the layer – what is the collision rate of these

particles passing through? In other words, how many of these passing through particles actually collide

with a particle in the layer? On average, this occurs when a particle has travelled the mean free path l,

or

�z = l cos ✓, (1.50)

where the cos ✓ is the direction where the particle is traveling from. In other words, if �z is set to Eq.

(1.50), then all the particles passing through the layer are expected to collide with a particle in the layer.

The force imparted by this particle is then given by �px/�t . Since this is the force per collision,

the mean force is then a product of �px/�t and the rate per particle per unit area Eq. (1.48). Plugging

these in we get

F

A
=

Z 2⇡

0
d�

Z ⇡

0
d✓

Z 1

0
dv mnvl cos2 ✓ sin ✓

f(v)

4⇡

dux(z)

dz
,

⇡ dhux(z)i
dz

⇥mnl

Z 2⇡

0
d�

Z ⇡

0
d✓ cos2 ✓ sin ✓d✓

vf(v)

4⇡
dv . (1.51)

In the 2nd line, we have cheated (hence the ⇡ sign) by extracting the dux(z)/dz term from inside the

integral, and putting them outside the integral, while callously slapping a hi symbol on it. Why are we

allowed to do that? Morally speaking, what we should do is to replace dux(z)/dz with d(v cos ✓ sin�)dz,

and then compute, keeping the v inside the integral. Indeed, while each individual particle ux can be
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big, its mean is huxi = 0, so how are we to reconcile this fact? The “word calculus” answer is that since

we have applied a force F in the x direction, the symmetry of the gas velocity distribution is broken –

in other words, the gas is no longer a Maxwell-Boltzmann distribution. However, as long as the mean

change huxi ⌧ hvi, this is a very small deviation from the Maxwell-Boltzmann distribution, so we are

allowed3. For now we assume that this approximation holds (experimentally it does). The v integral

gives us hvi, leaving us with

F

A
= mnlhvidhux(z)i

dz
⇥ 1

4⇡

Z ⇡

0
d✓ cos2 ✓ sin ✓d✓

Z 2⇡

0
d� ,

=
1

3
mnlhvidhux(z)i

dz
. (1.52)

Comparing this result to our ansatz Eq. (1.47), we see that the viscosity is

⌘ =
mnl

3
hvi . (1.53)

Remarkably, the viscosity is independent of number density n. Wait! There is an n right there you

say. Yes, but note that the mean free path l / 1/n (see Eq. (1.45)), so ⌘ ⇠ mhvi. For fixed T , the ideal

gas law then imply that the viscosity also doesn’t depend on pressure P . This also means that since

hvi / T 1/2 via Eq. (1.18), the hotter the gas, the more viscous it is – this is opposite to what you expect

from liquids.

Indeed, the fact that ⌘ is independent of density so startled Maxwell, who first derived the Eq. (1.53),

he thought he had made a mistake at first especially when the data at the time showed otherwise.

Maxwell, being Maxwell, decided that he’d build his own experiment. So he did, and verified that indeed,

he was correct.

1.3.2 Conduction

Next up, we return to something that you have studied previously, which is thermal conduction. As you

have learned, the total heat flow (with Q being the total heat energy)

@Q

@t
= �rT ⇥Area (1.54)

where  is called the conductivity. Note that Q is a vector as direction of heat flow depends on the

(negative of) the thermal gradient rT . In one dimension (say z) this equation is

@Q

@t
= �A

@T

@z
, (1.55)

which is sometimes known as the Newton’s Law of Cooling. As it turns out, instead of total heat

flow, we define the heat flux, which is the heat flow per unit area

J⇥Area =
@Q

@t
. (1.56)

In this notation, Eq. (1.54) becomes

J = �rT . (1.57)

The kinetic theory of gas again provide a way to derive Eq. (1.55) – indeed the derivation follows

that of viscosity in the previous section very similarly. Instead of momentum exchange Eq. (1.49), we

want a heat exchange. How does a particle carry heat? We know from the equipartition theorem that the

energy of a particle U = 3kbT/2. Suppose set up a gas where two ends are fixed at di↵erent temperature

T1 and T2 such that there is a temperature gradient T1 > T2, see Fig. 1.9. This means that T (z), so

3A more detailed calculation will show that we need to replace the 1/3 in the final answer Eq. (1.53) by 5⇡/32.
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U(z) =
3kbT (z)

2
. (1.58)

Here, you should raise an objection – since a temperature gradient imply that the gas is no longer has a

fixed T , how are we to know that the equipartition theorem still holds? The answer is (again) we have

cheated, but we have cheated in a small way – as long as the gradient is su�ciently small then we can

assume then the di↵erence is su�ciently small we can ignore it.

Figure 1.9: The heat flow J is opposite to the temperture gradient @T/@z.

Again consider a layer of particles at z. The rate of particles passing through it per unit area is as

given by Eq. (1.48) which we have calculated before. However, instead of imparting momentum changes,

we consider the heat absorbed by the layer as particles come in and out. A particle coming from a hotter

place U(z + �z/2) will increase its total heat, while a particle from a colder place U(z � �z/2) will

decrease is total energy. The change in energy is then

�U = U(z ��z/2)� U(z +�z/2) = �3kb
2

dT

dz
�z . (1.59)

Note the negative sign – we want to calculate transfer of energy in the �z direction. Similarly to the

viscosity case, �z depends on the mean free path and the direction of particle travel i.e. , �z = l cos ✓

as in Eq. (1.50). The rate of energy change is then �E/�t.

Combining Eq. (1.59) with Eq. (1.48), we get the same integral as before, with the simple replacement

mdhuxi/dz ! (3/2)kbdT/dz, with the final answer

J = �3

2
kbnlhvi

dT

dz
⇥ 1

4⇡

Z ⇡

0
d✓ cos2 ✓ sin ✓d✓

Z 2⇡

0
d� ,

=
1

2
kbnlhvi

dT

dz
. (1.60)

Comparing Eq. (1.60) to Eq. (1.57), we see that the conductivity is

 =
1

2
kbnlhvi . (1.61)

Recalling that CV = (3/2)kbn,  can then (usually) be expressed as

 =
1

3
CV lhvi . (1.62)

Again, if we look at Eq. (1.61), the same argument applies that since l / n�1,  is independent of

number density and hence pressure. Similarly,  / T 1/2 – the hotter the gas, the better the conduction.

In fact, Eq. (1.61) is so similar to Eq. (1.53), one might be tempted equate the two, to obtain



⌘
=

3kb
2m

= cV , (1.63)
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where cV ⌘ CV /m is the specific heat capacity. This seems amazing – , ⌘ and cV are experimentally

measurable properties, are they equal like this in real life? Sadly, this viscosity-conductivity relationship

does not hold up too well in experiments – the root cause as you might have expected is the two “cheats”

we have made in deriving viscosity and conductivity. However, as we will see in section 1.4.3, such ratios

can be used to compare the e�ciencies of heat transfers of conduction and convection.

1.3.3 Di↵usion

Finally, we discuss how particles get transported – if you drop some milk into a cup of tea, the milk will

spread into the tea. This process is called di↵usion. Consider again the system of gas with two plates

as before, but this time we set it up such that the top plate has a number density n1 while the bottom

plate has n2, such that n1 > n2 (see Fig. 1.10). Intuitively, since there are more particles on average at

the top, the particles will di↵use towards the �z direction.

Figure 1.10: The number densities at the top place is n1 and at the bottom plate is n2 such that n1 > n2.

The flux �z flows towards points of lower densities.

At any layer z, the flux �z is defined to be the total number of particles flowing through it in

the z direction per unit area per unit time. In a gas, there are of course some particles moving

upwards and some moving downwards, but one might expect that since the density is higher at the

top, there will be more particles moving downwards. This means that �z must depend on the density

gradient @n(z)/@z, i.e.

�z = �D
@n(z)

@z
, (1.64)

where D is called the di↵usion constant. We will now derive Eq. (1.64). Fortunately, most of the work

for this derivation is already done in the previous section. Recall Eq. (1.48) defines the rate of particles

passing through the layer at z per unit area

rate of particles passing through layer per unit area = nv cos ✓ ⇥ f(v)

4⇡
sin ✓ d✓d�dv , (1.65)

but now n in this equation depends on z. Indeed, what we want is an equation which describe rate of

particles passing through layer per unit area per per unit di↵erence in density �n, i.e.

rate of particles passing through layer per unit area per unit di↵erence in n = �nv cos ✓⇥f(v)

4⇡
sin ✓ d✓d�dv .

(1.66)

You can see that as a sanity check, if there is no di↵erence in densities �n = 0 there is no di↵usion. �n

itself is simply,

�n =
@n

@z
�z , (1.67)
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where again z = l cos ✓. The rate is then �n/�t, which we can then combine with Eq. (1.66) to obtain

the equation for the flux �z

�z =

Z 2⇡

0
d�

Z ⇡

0
d✓

Z 1

0
dv vl cos2 ✓ sin ✓

f(v)

4⇡

dn(z)

dz
,

⇡ dhn(z)i
dz

⇥ l

Z 2⇡

0
d�

Z ⇡

0
d✓ cos2 ✓ sin ✓d✓

vf(v)

4⇡
dv . (1.68)

which again we have cheated by extracting dn/dz out of the integral and slapping hi around it. The

argument is again the same as we have discussed previously in the derivation of the viscosity. The v

integral gets us hvi as usual, and the angles integral give us 1/3, giving us the final answer

�z = �1

3
lhvi@hni

@z
, (1.69)

which when compared with Eq. (1.64) we see that the di↵usion constant is

D =
1

3
lhvi . (1.70)

Unlike viscosity and conductivity, since there is no n in the di↵usion constant, but there is an l / 1/n,

di↵usion depends on density. Using the ideal gas law P = nkbT , this means that D / 1/P also depends

on pressure. Subtituting l with T using the ideal gas law again, we get D / T 3/2 as hvi / T 1/2.

1.3.4 The Di↵usion and the Heat Equations

Suppose instead of wanting to know what is the flux �z at any layer, we want to know how n change as

a function of time at layer z, e.g. we want to know @n(z)/@t? We can derive this as follows.

Consider a layer with thickness�z. The flux at the top is given by �z(z+�z) = �z�(@�z/@z)�z+. . .

via Taylor expanding to first order. Meanwhile at the bottom4 it is �(z). So per unit time, the rate of

particles traveling through z is the di↵erence, which is �(@�z/@z)�z. If A is the area of the layer, then

the volume of a layer is A�z. By considering the conservation of particles, the rate of particles going

in/out of the layer must be equal the change in the number of particles in the layer, i.e.

@nA�z

@t
= �@�z

@z
A�z , (1.71)

and using Eq. (1.69), we get the Di↵usion equation

@n(t, z)

@t
= D

@2n(t, z)

@z2
. (1.72)

It is easy to generalize the derivation to 3D – Eq. (1.71) in words mean “the rate of change of density

of particles in any small volume is equal to the gradient of the fluxes through all the surface area of the

volume”, or
@n

@t
= �r�z , (1.73)

which is sometimes known as the continuity equation which enforces particle conservation.

The di↵usion equation Eq. (1.72) in 3D is then

@n(t,x)

@t
= Dr2n(t,x) , (1.74)

with the continuity equation
@n

@t
= �r ·� , (1.75)

4You can do the same calculation by considering the fluxes of the top and bottome layers to be �(z � �z/2) and

�z(z +�z/2) if you like and get the same answer.
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where � = (�x,�y,�z) is the flux vector. We will derive this exactly in a later Section 1.4.1

The di↵usion equation is a 1st order (in time) linear partial di↵erential equation. You probably have

solved equations like these in your 1st year math modules (if not you should probably ask for your money

back). You can check that the solution in 1D has the form

n(t, z) = const⇥ t�1/2e�z2/4Dt . (1.76)

Recall that the Gaussian distribution P (z) / e�z2/� where � is its variance that tells us how “spreaded”

out it is. Comparing this to Eq. (1.76) and ignoring the factor t�1/2 for the moment, we see that the

distribution n as a Gaussian form, with a time dependent variance � = 4Dt which grows with time.

That’s it, the distribution spreads out exactly what we expect from di↵usion. The t�1/2 factor tells us

that it is also losing overall amplitude, to conserve particles.

The rate of “spreading” is determined by how fast the variance � grow with time, which here depends

linearly on the di↵usion constant D – the bigger the di↵usion the faster the growth.

As should be clear to you, the di↵usion equation is simply a restatement of the conservation of

particles. What about the conservation of energy? It won’t surprise you that we can derive a similar

equation. Consider the heat flux J , and using the transport of heat equation Eq. (1.60)

J = �
dT

dz
, (1.77)

which in 3d is

J = �rT , (1.78)

where J = (Jx, Jy, Jz).

Following the exact same argument as above, but replacing the flux �z with the heat flux Jz, and the

density gradient n(z) with the temperature gradient T , we obtain the Heat equation

@T

@t
=



CV

@2T

@z2
, (1.79)

or in 3D
@T

@t
=



CV
r2T. (1.80)

The equivalent continuity equation (as you will show in a homework problem) is

@U

@t
= �r · J . (1.81)

The Heat equation has exactly the same form as the di↵usion equation, and hence has the same

solution – concentrated heat wants to spread out. Here the “heat di↵usion constant” is /CV = D,

which is actually just the di↵usion constant!

Now you must be waiting with baited breath – what about viscosity? You will be right – there is a

conservation law associated with it, and its the conservation of momentum as you would expect. The

derivation is slightly more di�cult (but not overly so), and I will leave it to the enterprising student to

work it out. The final anser is
@p

@t
=

⌘

mn
r2

p , (1.82)

where p is the 3-momentum. This equation, which sadly doesn’t have a name, is exactly of the same

form as the Heat and Di↵usion equations, and have the same behaviour. Again the “momentum di↵usion

constant” ⌘/mn = D is just the di↵usion constant.

21



1.3.5 Random Walk

Why is the di↵usion constant D so important? As per usual in physics, when something pops up again

and again, it probably tells you something very fundamental about the physics of the system. In this

case, this is the physics of random walk. The idea of a random walk is very simple. Let’s consider a

1 dimensional lattice (see Fig. 1.11, where a single particle can “hop” either forward or backward by

one step at every time step �t. The probability of either is 50% and uncorrelated (i.e. every hop is not

related to the previous hop).

Figure 1.11: A 1D lattice with sites labeled by k, with distance �x between sites.

We want to know what is the probability P (x, t) that the particle is at some site k, or distance x = k�x,

after time N steps or t = N�t. For this to occur, the particle must hop forward (N + k)/2 times and

backward (N � k)/2 times – for simplicity we have assumed that N � k and N is an even number. The

probability is then the total number of ways we can do this, which is N !/[((N � k)/2)!((N + k)/2)!],

divided by the total number of combinations, 2N , thus

P (x, t) =
N !

2N ((N � k)/2)!((N + k)/2)!
⇡

r
2

⇡N
e�k2/2N =

r
2�t

⇡t
e�x2�t/2�x2t , (1.83)

where we have used Stirling’s Approximation N ! ⇡ exp[N logN�N ], and then Taylor expand around

the small number k/N (homework). Notice the solution Eq. (1.83) has exactly the same solution as the

di↵usion equation Eq. (1.76) where the “di↵usion constant”

D ⇠ �x2

�t
. (1.84)

Comparing this to D = (1/3)lhvi ⇠ l(�l/�t) ⇠ l2/�t, we see that the dimensions checked out.

The main moral of the story is that transport processes in gasses (and indeed in general) are random

walk processes - particles wander around like a drunk, taking each step at random. The collective motion

of microscopic random walks leads to the macroscopic properties of di↵usion, conduction and viscosity.

This is a very general principle, and indeed is called Fluctuation theory, and is the starting point for

many investigations into statistical physics and fluids dynamics (e.g. it describes Brownian motion).

Sadly, we will have to postpone its study until your 4th year.

1.4 Heat Transfer

How does heat get from one point to another? In the previous section, we have studied transport, which

is the physics of how things move. In this section, we will focus on how those transport processes translate

to how heat itself move.

In previous lectures, you have briefly studied that there are three primary ways: Conduction, Convec-

tion and Radiation. Using our knowledge of kinetic theory of gas and heat transport, we will now make

the connection on how transport leads to heat transfer in more detail.
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1.4.1 Heat transfer via Conduction : Heat Di↵usion

You have learned the Newton’s Law of Cooling,

@Q

@t
= �A

dT

dx
, (1.85)

which the eagle-eyed amount you would have spotted that is the 1-D version of our heat flux derived in

Eq. (1.57), with Q̇ = J ⇥ A. We will use the more general heat flux equation, and the generalization to

3D Eq. (1.78)

J = �rT . (1.86)

Instead of calculating the rate of heat exchange via the flux equation Eq. (1.78), we will instead focus

on solving the Heat Equation Eq. (1.80)

@T

@t
= Dr2T , D =



CV
, (1.87)

where D is the di↵usion constant as usual. Thus, sometimes conduction is called heat di↵usion.

Figure 1.12: Positive Heat flux J means heat is flowing out of the volume V through the boundary ⌃.

We will begin by rederiving the 3D Heat equation Eq. (1.80) in a slicker way. Consider a gas in a

compact 3D volume V , with boundary ⌃. The heat flux J flowing through the boundary is given by the

surface integral (see Fig. 1.12) Z

⌃
J · d⌃ =

Z

V
r · JdV , (1.88)

where we have used the divergence theorem.

Meanwhile, suppose the heat capacity at constant volume of the gas is CV , then the rate of change

of the energy due to the heat flow is
@

@t

Z

V
CV T dV . (1.89)

Conserving of energy means that the two terms Eq. (1.88) and Eq. (1.89) must be equal

r · J = �CV
@T

@t
, (1.90)

which is the continuity equation. Substituting in Eq. (1.86) yields the Heat equation Eq. (1.87) as

desired. Replacing the heat flux with the particle flux � and considering the conservation of particles

yields the di↵usion equation Eq. (1.74).
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Let’s consider the 1D heat equation.
@T

@t
= D

@2T

@2x
, (1.91)

The form Eq. (1.91) looks suspiciously like the Schrodinger’s wave equation, except for a missing i.

So one can write the following ansatz for a solution which looks like a wave

T (x, t) = A exp[i(kx� !t)] , (1.92)

where A is some constant which is determined by the boundary and initial conditions. As usual, one

shouldn’t worry about the imaginary component for T as we will take only the Real component as the

final answer as usual Tactual = Re(T ) – the exponential form is simply book keeping. If you like, you can

write down T (x, t) = A cos(kx� !t) +B sin(kx� !t) but that is a lot more algebra.

Plugging Eq. (1.92) into the Heat equation Eq. (1.91) yields a relationship between the wave vector

k and frequency !

� i! = Dk2 . (1.93)

Solving for k, we get two solution

k = ±(1 + i)

r
!

2D
. (1.94)

Recalling that the spatial part of the wave solution Eq. (1.92) looks like exp(ikx), so the presence of a

an imaginary component in the wavevector Eq. (1.94) means that there will be either an exponentially

growing exp(
p
!/2Dx) or exponential decaying exp(�

p
!/2Dx) solution for x ! 1 and vice versa for

x ! �1. Which solution is “picked out” depends on the boundary conditions. For simplicity in the

following, we will consider x � 0 which of course can be made without loss of generality since it is a

coordinate choice.

Now ! (or k) labels the solutions – and since the Heat equation is a linear equation, a general solution

for the Heat equation is a sum of waves

T (x, t) =
X

!

A(!) exp


�i(!t�

r
!

2D
x)

�
exp


�
r

!

2D
x

�
, (1.95)

where A(!) is the coe�cient for each linear wave of frequency !. Note that the x dependence has an

oscillatory term exp[�i
p
!/2Dx] and a decaying term exp[�

p
!/2Dx]. We will see this in action later.

Let’s now consider several cases.

Steady State

Consider a stick of length L such that x = (0, L]. The simplest case is when the temperature of the

system is not changing, such as
@T

@t
= 0 . (1.96)

This means that the system is in equilibrium and T is not a function of time t. What is T as a function of

space x then depends on the boundary conditions at x = 0 and x = L, which must satisfies the following

Laplace equation

@2T

@x2
= 0 , (1.97)

or its 3D generalisation r2T = 0, which immediately follows from the Heat equation with @T/@t = 0.

An equation like Eq. (1.97) is called a boundary value problem – it depends on the boundary

values T (x = 0) and T (x = L). A particularly simple case is when T (x = 0) = T (x = L) = T0, and

@T/@x(x = 0) = @T/@x(x = L) = 0 (remember that it’s a 2nd order PDE in x so requires both zero and

1st order derivatives as boundary conditions). Intuitively, you might guess that the solution is T (x) = T0,
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i.e. the stick is in constant temperature, and you would be right. In 1D, this equation has the simple

solution

T = Ax+B , (1.98)

where A and B are integration constants. Setting T (x = 0) = T (x = L) = T0, we find B = T0 and A = 0,

and we get T (x) = T0.

What about in 3D? I.e. suppose we immerse a ball inside a pot of hot water held at T0 – does this

imply that the ball will be evenly distributed in T0 at steady state? The answer is yes, though the proof

is quite cute though and actually uses quite an important trick in solving boundary value problem, let’s

show it :

Consider the following term

r · (TrT ) = |rT |2 + Tr2T = |rT |2 , (1.99)

where we have used the Laplace equation in the 2nd equality.

Integrating both sides over the volume V
Z

V
r · (TrT )dV =

Z

V
|rT |2dV ,

Z

⌃
(TrT ) · nd⌃ =

Z

V
|rT |2dV , (1.100)

where in the 2nd line above we have used Stokes’ theorem on the LHS to convert the volume integral

into an integral over the boundary ⌃ with n being the normal vector through the boundary. Applying

the boundary condition T (⌃) = rT (⌃) = 0, we get

Z

V
|rT |2dV = 0 . (1.101)

However, since |rT |2 > 0 unless rT = 0 everywhere, this means that T must be a constant, and the

boundary condition fixes T = T0 everywhere. ⇤.

The case where T (x = 0) = TL and T (x = L) = TR with TL 6= TR is discussed by Stefano using

the Newton’s Cooling equation. In our language, from the general solution T = Ax + B, applying the

boundary conditions we get B = TL and A = (TR � TL)/L as he has shown.

Non steady-state

But wait, these solutions have no waves, so why did we start by looking for wave solutions? The general

solution Eq. (1.92) comes into play when we consider non steady state solutions, i.e. where @T/@t 6= 0.

Consider a stick of length L again. We will fix the Temperature at the ends x = 0 and x = L at

T0 (this is the boundary condition) as usual, so T (t, 0) = T (t, L) = T0. On the other hand, the initial

temperature of the stick is at Ti, i.e. T (t = 0, x) = Ti – this is its initial condition. We will now solve

the 1D Heat equation using these conditions. One can use the general solution Eq. (1.95), plugging in

the boundary and initial conditions to find the spectrum A(!). However, we will use a simplying trick to

solve this more e�ciently here. Instead of T (x, t), let’s consider the function

F (x, t) ⌘ T (x, t)� T0 . (1.102)

At the boundary x = 0 and x = L, F (x, t) = 0, so this suggests that F (x, t) must be periodic in L, so

this suggests the following ansatz

F (x, t) = A(!) sin(kx)e�i!t . (1.103)
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It’s easy to see by plugging Eq. (1.103) into the heat equation, we get the following condition

i! = Dk2 , (1.104)

just like we did previously.

Now, to satisfy the boundary conditions the wavevector k must satisfy

kn =
n⇡

L
, n = 0, 1, 2, 3, . . . (1.105)

so for every value of n, we have its equivalent frequency

i!n = D
⇣n⇡
L

⌘2
. (1.106)

The Heat equation is a linear equation, so its general solution is a superposition of all possible solutions

i.e.

T (x, t) = T0 +
X

n

An sin
⇣n⇡x

L

⌘
exp

✓
�D

n2⇡2

L2
t

◆
, (1.107)

where An is the coe�cient for A for each possible frequency !n. Notice that the time dependence is

a decaying exponential – there is no oscillation of temperature at all. Indeed, as we take t ! 1, the

exponent kills o↵ all the An terms and we get the final steady state answer T (x, t) = T0 – the stick

equilibriates with the boundary.

To find An, we have to use the initial condition T (0, x) = Ti. Setting t = 0 in Eq. (1.107), we get

X

n

An sin
⇣n⇡x

L

⌘
= (Ti � T0) . (1.108)

If you have done Fourier Series, you would recognize the LHS – it is simply a sum of the sine modes for all

integer n. To find An, we use the completeness relationship of Fourier series by multiplying sin(m⇡x/L)

and integrating both sides, to get

Z L

0
An sin

⇣n⇡x
L

⌘
sin

⇣m⇡x

L

⌘
dx =

Z L

0
(Ti � T0) sin

⇣m⇡x

L

⌘
dx,

An
L

2
�mn =

2L

m⇡

h
1� cos

⇣m⇡x

L

⌘i
. (1.109)

Now the LHS says that m has to be an integer like n. If m is an odd integer, the RHS has the solution

2/m⇡ while if m is an even integer, the RHS is zero. So we have the solution

An =
4

m⇡
(Ti � T0) , m = 1, 3, 5, . . . (1.110)

Putting everything together, we have the final answer

T (x, t) = T0 + (Ti � T0)
X

n

sin
⇣n⇡x

L

⌘
exp

✓
�D

n2⇡2

L2
t

◆
, n = 1, 3, 5, . . . (1.111)

As we described earlier, the time dependence of all the modes An is an exponential decay – indeed

the higher the n, the faster the decay so there is no time oscillation. Thus when the time is large

t > L2/(D⇡2), the n = 1 mode dominates, so we have the approximate answer

T (x, t) = T0 + (Ti � T0) sin
⇣⇡x
L

⌘
exp

✓
�D

⇡2

L2
t

◆
, (1.112)

which looks like Fig. 1.13.
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Figure 1.13: The approximate temperature of a stick with its ends fixed at temperature T0 and its initial

temperature at Ti.

1.4.2 Heat transfer via Radiation : Stefan-Boltzmann Law

In previous lectures, you have learned about the Stefan-Boltzman Law of radiation, which states that

the radiative power P of a blackbody at temperature T per unit area is given by

P = �T 4 (1.113)

where � = 5.6703⇥ 10�8W m�2 K�4 is the Stefan-Boltzmann constant. Here, we have set the e�ciency

e = 1 (compared to Stefano’s lectures) for a blackbody.

The derivation of Eq. (1.113) is a subject of the next year’s module on Statistical Mechanics – indeed

you will find that

� ⌘ ⇡2k4b
60~3c2 . (1.114)

which you can check gives the right value. The presence of ~ tells you that this is a truly quantum

mechanical calulation.

Nevertheless, one can use the Kinetic Theory of Gas to produce a “semi-derivation” of the Stefan-

Boltzmann law, by assuming that radiation is simply a gas of photons. As Einstein told us, the energy

of a photon is given by

E = ~!, (1.115)

where ! is its frequency. Then suppose that U is the internal energy of the gas and V its volume, the

energy densityu is then

u =
U

V
=

N~!
V

= n~! , (1.116)

where N is the total number of photons and thus n = N/V is its number density.

Previously, we have derived in section 1.2.1 that the pressure of a particle with velocity v is given by

Eq. (1.33), with n = N/V , this is

p =
1

3
nmhv2i . (1.117)

We will now allow ourselves a cheat – we say that the pressure exerted by photons is exactly the same,

so we replace v ! c, and interprete the energy of the a photon by mhv2i ! mc2, such that the photon

pressure is given by

p� = (1/3)nmc2 = u/3 . (1.118)
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Why is this a cheat? It’s because the Eq. (1.33) is derived assuming the gas particles are non-

relativistic (since the Maxwell-Boltzmann distribution is derived assuming particles are non-relativistic).

Also, the kinetic energy of photons is not mc2 – photons are massless! The reason the derivation “works”

is that these two inaccuracies fortuitiously cancel each other out.

Moving ahead, recall that the rate per unit area per unit angle of particles between v and v + dv

hitting a wall is given by Eq. (1.31)

�(v, ✓) = v cos ✓f(v)dv
1

2
sin ✓d✓ , (1.119)

which means that the total rate is the integral over v and ✓, i.e.

 =

Z 1

0
dv

Z ⇡

0
d✓�(v, ✓) =

1

4
nhvi , (1.120)

which you will show in a homework set.

The total power incident on the wall per unit area is then simply

P� = ~!|{z}
energy per photon

⇥  |{z}
rate

=
1

4
uc . (1.121)

Now, we want to derive a relationship for u in terms of thermodynamic state variables. From the 1st

law, we have dU = TdS � p�dV , then this means that if we take partial derivative with respect to V

while keeping T fixed, we get ✓
@U

@V

◆

T

= T

✓
@S

@V

◆

T

� p� . (1.122)

Using the Maxwell relation ✓
@S

@V

◆

T

=

✓
@p�
@T

◆

V

, (1.123)

and substituting in the photon pressure Eq. (1.118), and remembering that (@U/@V )T = u is simply the

energy density, we have

u =
1

3
T

✓
@u

@T

◆

V

� u

3
, (1.124)

or, rearranging
1

4

dT

T
=

du

u
, (1.125)

where we have glibly changed the partial derivatives into total derivatives – the reason is that here V is

fixed, so the only two state variables are T and u, which we assume to possess a relationship u(T ). We

can immediately integrate this equation, to get

u = CT 4 , (1.126)

where C is an integration constant. Using the power relation Eq. (1.121), we finally get

P =
1

4
uc ⌘ �T 4 , (1.127)

which is the Stefan-Boltzmann law. Our “derivation”, as mentioned above, is a cheat, and even so we

didn’t manage to calculate � which actually is just a bunch of fundamental constants as we seen in

Eq. (1.114). Historically, Stefan was the one who made this “fake” derivation and the obtained � from

experiments. Boltzmann then derived the relationship including � using modern statistical mechanics

(as you will see next year), and hence the equation now bears both their names.
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1.4.3 Heat transfer via Convection

Finally, we will briefly discuss convection, which you might have guessed is the transfer of heat via

momentum transport. In general, convection is an extremely complicated process – one would need to

disentangle fluid motion from heat transfer. Indeed, in practice there is no “nice” analytic expressions –

one often resorts to brute force numerical simulations to make predictions.

Nevertheless, given a gas, one can ask “when is convection a more important heat transport process

than conduction”. Or conversely, when does conduction dominate and one can ignore convection? Recall

that the viscosity ⌘ and the conductivity  are di↵usion coe�cients for momentum and heat transfer

respectively, then one can construct the so-called Prandtl number by taking its ratio, and then dividing

by the specific heat capacity per unit mass for constant pressure cp, i.e.

Pr ⌘ ⌘


cp . (1.128)

When particle di↵usion dominates and hence convection is the primary mode of heat transfer , then

Pr� 1, and vice versa. Water is around 7, and engine oil is around 10000. For an ideal gas, using Eq.

(1.63), we can write

Pr =
cp
cV

=
5

3
. (1.129)
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