Symmetry in Physics

Lecturer: Dr. Eugene A. Lim 2013-2014 Year 2 Semester 2 Theoretical Physics Office : S7.32 King's College London http://www.damtp.cam.ac.uk/user/eal40/teach/symmetry2014/symroot.html

• Introduction to Symmetries

The idea of a Symmetry. Symmetries of the square.

• Mathematical Preliminaries

Sets. Maps. Equivalence. Algebras.

• Discrete Groups

Finite groups – Dihedral, Cyclic, Permutation, Symmetric groups. Lagrange's Theorem. Cayley's Theorem.

• Matrix Groups and Representation Theory

Continuous Groups. Matrix groups. Vector Spaces. Representation Theory. Orthogonality Theorem. Schur's Lemmas. Characters.

• Lie Groups and Lie Algebras

Analyticity. Infinitisimal generators of Lie Groups. $\mathfrak{so}(3)$ Lie Algebra.

• Application : Rotation Symmetry in Quantum Mechanics Representations of SO(3) and SU(2). Ladder Operators. Hydrogen Atom.

Recommended Books

- H. F. Jones, Groups, Representations and Physics, Taylor and Francis 1998.
- C. Isham, Lectures on Groups and Vector Spaces: For Physicists, World Scientific 1989.
- B. Schutz, Geometrical Methods of Mathematical Physics, Cambridge University Press 1989.
- S. Sternberg, Group Theory and Physics, Cambridge University Press 1994.
- R. Gilmore, *Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists*, Cambridge University Press 2008.

Some online resources

- G. t'Hoof, http://www.staff.science.uu.nl/~hooft101/lectures/lieg07.pdf Very good and clear sets of lecture notes, for advanced undergraduates and beginning PhD. Chapter 6 of these lecture notes is based on it.
- P. Woit, http://www.math.columbia.edu/~woit/QM/fall2012.html For those who has finished this class, and wants to know how to look at QM from a group theory perspective.
- R. Earl, http://www.maths.ox.ac.uk/courses/course/22895/material The Oxford University class on group theory has lots of concise notes and problems which are suited for this class.

Acknowledgments

I would like to thank the KCL CP2332 class students who took this course in 2012, and had to suffer through the pain of my lectures. Their input has been incorporated into this set of lecture notes. I would like to thank especially Christoph Eigen who read through a previous incarnation of this set of lecture notes and pointed out a huge number of typos. I do not claim originality in any of these notes – I freely steal from amazing lecture notes from Chris Isham (Imperial), Nick Manton (Cambridge), Tim Evans (Imperial) and Gerard t'Hooft (Utrecht).

1 Introduction to Symmetries

...but it only works in the case of spherical cows in a vacuum.

Symmetries are our friends.

When you were learning dynamics of a particle of mass m moving under the influence of a central mass M located at the origin O at $\mathbf{x} = 0$, you wrote down a formula using Newton's Law of Gravity which looks like the following

$$\ddot{\mathbf{x}} = -\frac{GM}{r^2} \frac{\mathbf{x}}{|\mathbf{x}|} \tag{1}$$

where the radial coordinate r

$$Y = \sqrt{x^2 + y^2 + z^2} = \sqrt{|\mathbf{x}^2|}.$$
 (2)

We say that the Gravitational force, and hence its **potential** $U(\mathbf{x})$, is **spherically symmetric** around $\mathbf{x} = r = 0$, and this allows us to simplify the equation that we want to solve as you might recall. In this simple example, the **symmetry** in "spherically symmetric" refers to the fact that it doesn't matter which angle we are looking at the central mass. One way to think about it is that we can rotate the point mass in any of the two elevation and azimuthal angles, and the dynamical problem remains exactly the same. In the viewpoint of the particle which is orbiting around the central mass, it means that the gravitational force that it feels only depends on the radial distance r and nothing else.

γ

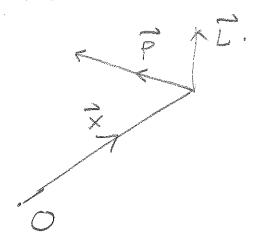


Figure 1: Classical Angular Momentum.

While we like the fact that this symmetry makes equations easier to solve, more importantly it actually buys us something crucial. Consider the Angular Momentum of a particle around O

$$\mathbf{L} = \mathbf{x} \times \mathbf{p}, \ \mathbf{p} = m\dot{\mathbf{x}} = m\mathbf{v}. \tag{3}$$

Taking the time derivative of \mathbf{L} , we get

$$\frac{d\mathbf{L}}{dt} = m\frac{d\mathbf{x}}{dt} \times \mathbf{v} + m\mathbf{x} \times \frac{d\mathbf{v}}{dt}
= 0 + m\mathbf{x} \times \frac{\mathbf{F}}{m}.$$
(4)

But $\mathbf{F} \parallel \mathbf{x}$ for spherically symmetric potential about O since the force must be pointing the same direction as the position vector, so the last term vanishes

$$\frac{d\mathbf{L}}{dt} = 0. \tag{5}$$

We can immediately integrate Eq. (5) to obtain $\mathbf{L} = \mathbf{C}$ where \mathbf{C} is some constant vector. We call this constant a **constant of motion** and we say that angular momentum is a **conserved quantity** in the presence of a spherically symmetric potential. In other words, given a spherically symmetric potential like the Gravitational potential, the angular momentum of any particle cannot change without additional (non-spherically symmetric) external forces.

This notion that symmetries lead to the existence of conserved quantities is the most important thing you will learn in these lectures (although not the only thing). The laws of conservations that you have studied – conservation of momentum, conservation of energy, conservation of electric charges, indeed conservation of X, are consequences of one or more existing symmetries that underlie the dynamical equations which describe them¹. Indeed, you will find that the quantum mechanical notion of a particle and its charge – be it the electric charge or something more complicated like the color charges of quarks, arises from the fact that the equations that describe them² can be cast in the language of symmetries; Nature organizes herself using the language of symmetries. Hence if you want to study Nature, you'd better study the language of symmetries.

The mathematical structure that underlies the study of symmetries is known as **Group Theory**, and in this class we will be spending a lot of time studying it. As an introduction, in this chapter we will give you a broad picture of the concepts without going into too much mathematical details. Instead, we will rely on your innate intuition (I hope) to motivate the ideas, so don't worry if there seems to be a lot of holes in our study or when we make assertions without proofs. After this, we will come back and cover the same material in much greater detail, and perhaps reorganize your intuition a bit.

Finally, for many of you, this will be the first class that you will encounter what some people will term "formal mathematics" or "pure mathematics", at least in a diluted semi-serious manner. Indeed, the presentation is deliberately designed to be more formal than your usual physics class. Personally, I find the most difficult aspect of learning anything is to understand the *notation*, and formal math have a lot of those. In these lectures, you will sometimes find a bewildering amount of new mathematical notation that can look very intimidating. There is indeed a learning curve, perhaps even a steep one. The upshot is that there is *no* long tedious "turn the crank" calculations in this course – almost every calculation and homework you will learn has a short answer that you can obtained in a few lines. The hard part is to figure out which short steps you need to take, and therein lies the challenge.

1.1 Symmetries of the Square

What is a **symmetry**? Roughly speaking, a symmetry is a property of some **object** which remains **invariant** under some **operations**. Note that the notion of symmetry requires both an object, and the operation which **acts** or **operates** on the object. **Invariance** means that the property of the object "remains the same" before and after the operation has been acted upon it. In the example of the spherically symmetric potential, the object is the "ampitude of the force or potential U" and the operation is "rotation" around the elevation and azimuthal angles. The proper term for the action is **operator** and for the object is **target**. All these are very abstract – and indeed I encourage you to start thinking abstractly immediately.

As a concrete example, let's consider the square. We will label the four corners of the square A, B, C, D. Intuitively, if we rotate the square by 90° clockwise, the square remains the same with the original orientation. What do we mean by "the same" – it means that *if we drop the labels* A, B, C, D, *then you*

¹It is important to remark that conservation laws do *not* follow the invariance of the potential of some hypothetical surface. In other words, a potential which possess an ellipsoidal equipotential surface do not necessary possess a conserved quantity associated with it.

 $^{^{2}}$ For the electric charge, the equations of electrodynamics, and for the color charges of quarks, Quantum Chromodynamics.

won't be able to tell whether or not the square have been rotated by 90° or not. We say that the square is invariant under the operation R, and we say that R is an operator, see Fig. 2. Another operation

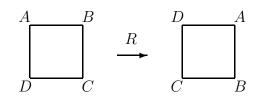


Figure 2: Rotation operation R: rotating the square by 90° clockwise.

which leaves the square invariant is the **reflection** about a vertical axis that goes through the geometric center of the square, let's call this operation m_1

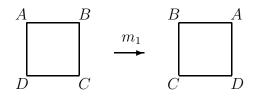


Figure 3: Reflection operation m_1 : reflecting the square about a vertical axis which goes through the geometric center.

Now rotation about 180° also leaves the square invariant, let's call this operation T. But now if we allow ourselves to **compose** operations, by introducing the notion of "multiplication", i.e. for any two operations X, Y we can create the new operator Z, i.e.

$$X \cdot Y = Z \text{ or simply } XY = Z \tag{6}$$

where the "XY" means "operate Y and then X". We are very careful in defining the *order* of the operation as it is important as we will see below. Then it is intuitively clear that

$$T = RR = R^2. ag{7}$$

And hence it follows that clockwise rotation by 270° would then be R^3 . You can also check that the composition rule is **associative**, i.e.

$$X(YZ) = (XY)Z, (8)$$

which you should convince yourself is true.

Of course, we are not restricted to rotating clockwise, but it's clear that rotating counterclockwise by 90° would be the same operation as R^3 . If we now denote R^{-1} as rotation by 90° counterclockwise, then

$$R^{-1} = R^3 (9)$$

and hence $R^{-1}R = e$ where e is the "do nothing" operator, which we also call the **identity**. R^{-1} is the **inverse** of R – let's formalize this notation by saying that X^{-1} is the inverse of X.

For reflections, in addition to m_1 , there exist 3 other **axes of symmetries** about the geometric center which we will call m_2, m_3 and m_4 , see Fig. 4 below. If we act on the square successively with the same reflection operator, we have effectively done nothing. Mathematically

$$m_i m_i = m_i^2 = e \tag{10}$$

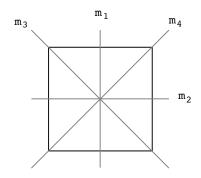


Figure 4: The axes of reflection symmetry of the square.

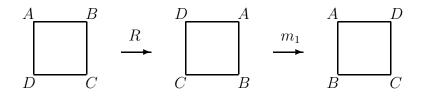
or we can also write, using

$$m_i m_i^{-1} = e \tag{11}$$

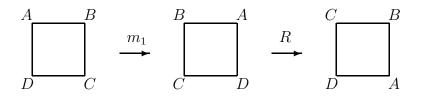
where $m_i = m_i^{-1}$. In other words, reflections operators m_i are their own inverses.

It turns out (which you can and should check) that the set of operations $D_4 = \{e, R, R^2, R^3, m_1, m_2, m_3, m_4\}$ is the all the operations which will leave the square invariant; let's give this set a name D_4 . Notice that the inverses are already part of the set, e.g. $R^{-1} = R^3$, $(R^2)^{-1} = R^2$ and of course the reflections are their own inverses.

When we discuss composition of operators Eq. (6), we note the importance of the ordering. Let's consider two operations m_1 and R. First we act on the square with R then m_1 to get which we can



compare to acting with m_1 first and then R which results in Notice that the labels of the corners for the



two compositions are different (even though both are squares). This imply that

$$m_1 R \neq R m_1. \tag{12}$$

We say that " m_1 and R do not commute". On the other hand, rotation operators R clearly commute with each other. Exercise: do reflection operators commute with one another?

Also, you can check that composition of two operators from the set $\{e, R, R^2, R^3, m_1, m_2, m_3, m_4\}$ will result in an operator which also belongs to the set. You already have seen $RR = R^2$, $m_1^2 = e$, etc. You can also check that $m_2m_4 = m_4m_1 = m_1m_3 = m_3m_2$ and $m_3m_4 = m_4m_3 = R^2$, etc. We say that the "algebra is **closed** under the composition rule". Roughly speaking, an **algebra** is a set of objects (here this is the set of operators) equipped with a composition rule. We will formally define algebras and **closure** in the next Chapter 2.

Let's take stock. We have showed that for a square, there exists 8 operations $D_4 = \{e, R, R^2, R^3, m_1, m_2, m_3, m_4\}$ which leaves the square invariant. We also note that we can define a composition rule XY = Z, which give us the following results

- The result of composition of two operators is also an operator in D₄, i.e. it is closed.
- Each element in D_4 has an **inverse** which is also belongs to D_4 . The inverse for each element is unique.
- The composition rule is **associative** (XY)Z = X(YZ).
- There is an identity e, where eX = Xe = X for all elements X which belong to D_4 . Furthermore, the identity is unique.

Any set of objects with a composition rule which obeys all the above **axioms** is called a **Group**. D_4 is called the **Dihedral-4 Group** – the 4 means that it is the symmetry group of the 4-gon. i.e. the square. It won't be a surprise to you that the symmetries of the triangle also forms a group called D_3 . The symmetry group of the N-gon is D_N .

Remark: We have asserted above that the identity *e* and the inverses are unique, but has not proven it. We will come back to proofs when we study Groups in a more systematic way.

Since the number of elements of the group D_4 is 8, it is a **finite group**, and the number of elements is called its **order** and denoted $|D_4|$. Don't confuse the term order here with the "order" in "ordering" (i.e. which one goes first) – unfortunately sometimes mathematicians overused the same word and in fact this won't be the last thing we call order (sadly). On the other hand, the symmetry group of a circle is of infinite order, and forms a **continuous group** – can you guess what are the operations which leave the circle invariant? We will study both discrete and continuous groups in this class.

For a finite group whose order is small, sometimes it can be illuminating to construct a **multiplication** table or Cayley Table which tells us what are the results of the multiplication of two elements in the group. For D_4 , it is the following:

e	R^2	R	R^3	m_1	m_2	m_3	m_4
R^2	e	R^3	R	m_2	m_1	m_4	m_3
R	R^3	R^2	e	m_4	m_3	m_1	m_2
\mathbb{R}^3	R	e	R^2	m_3	m_4	m_2	m_1
m_1	m_2	m_3	m_4	$m_2 \\ m_4 \\ m_3 \\ e \\ R^2 \\ R^3$	R^2	R	\mathbb{R}^3
m_2	m_1	m_4	m_3	R^2	e	R^3	R
m_3	m_4	m_2	m_1	R^3	R	e	R^2
m_4	m_3	m_1	m_2	R	\mathbb{R}^3	R^2	e

The study of the algebra of groups, as written above, is known as Group Theory.

Finally, before we end this section on the symmetries of the square, let's introduce a new concept. You might have noticed by now that while the set of the 8 operators are distinct, some of them are compositions of other operators. We can then ask the question: what is the minimal number of operators we need to generate the entire set of D_4 ?

For example, we have already being using $R^2 = RR$ to denote rotation about 180° – in words we **generate** R^2 from composing RR. We can also generate m_4 by first rotating by R and then reflecting with m_1 , i.e. $m_4 = Rm_1$. Indeed we can generate the entire set of operators in D_4 using only two operators $\{R, m_1\}$ – which you can easily convince yourself. This minimal subset of operators are called **generators**, and we say that "the group D_4 is generated by the subset of generators $\{R, m_1\}$ ". Generators will play a crucial role in understanding the symmetries of physics.

1.2 Action of Operators on Vector Spaces

At this stage, we want to make an important remark. While we have motivated the study of groups using the symmetries of the square, this is not necessary to study groups. In other words, we can drop the square, and then study the properties of a set of 8 objects D_4 which possesses the algebraic properties as described above. This **abstraction** is a crucial part of our study of group theory, and it is the reason why group theory so powerful in describing symmetries – since once we know all the properties of a group, then any physical system that possess the same symmetries will obey exactly the same underlying group-theoretic properties. This paragraph is a bit mysterious, but keep it at the back of your mind, and come back and read it again in the future.

In the lectures so far, we have used the words "rotate" and "reflect", and intuitively we understand that we are describing the **action** of some **operators** on an object – here we this object is the square and we have drawn pictures (or visualize it in our heads) to describe the actions. However, drawing pictures while illustrative, is not very efficient nor very precise. What we want is a way to describe the square and the operations on it in a much more mathematical way. One possible way is the following

$$result = operator \times object \tag{14}$$

where the "action" **acts** or **operates** on the object *from the left*, i.e. left multiplication. As you have seen before, one can also define right multiplication as the action

$$result = object \times operator , (not used)$$
(15)

but we will follow convention and use left multiplication.

Now, how do we describe the "object" mathematically? To be specific, how do we describe the square? It turns out that there are many ways, and not all of them will be useful to us. In these lectures, we will instead of interested in the case when the "object lives" in a **vector space**. For this reason, sometimes we call the objects being acted upon the **Target Space**. We will get to vector space in great detail in Chapter 4, but for now let's motivate it.

Consider the square again, and imagine we lay down a coordinate system with the usual x-axis and y-axis on it, with the origin (0,0) in the geometric center of the square. Any point (x,y) can then be described by a vector **A** as you have studied in high school

$$\mathbf{A} = x\mathbf{i} + y\mathbf{j} \tag{16}$$

where **i** and **j** are the unit vectors pointing in the +x and +y directions respectively. This notation, while well loved, is actually quite cumbersome for our purposes. It will be more convenient to introduce the **matrix notation**, so the unit vectors can be written as

$$\mathbf{i} = \begin{pmatrix} 1\\0 \end{pmatrix} , \ \mathbf{j} = \begin{pmatrix} 0\\1 \end{pmatrix}$$
(17)

so the vector \mathbf{A} is

$$\mathbf{A} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$
(18)

We have used your familiarity with **vector addition** rules, i.e. any pair of vectors can be added together to yield a third vector, and the fact that a vector \mathbf{A} can be multiplied by a number r to get a new vector $r\mathbf{A}$ linearly in the following sense $r(\mathbf{A} + \mathbf{B}) = r\mathbf{A} + r\mathbf{B}$. This is what we mean by the object living, or belonging to a **vector space**. We will be a lot more formal in Chapter 4 – you might be getting the idea that in these lectures one of our goals is to make you think about your preconceived notions you learned in high school – but let's plow on for now. From Eq. (14), then it is clear that the symbol \times denotes **matrix multiplication**. Furthermore, we *insist* that the "result" *must* also be a vector of the same form as **A**, i.e.

$$\mathbf{A}' = x' \begin{pmatrix} 1\\ 0 \end{pmatrix} + y' \begin{pmatrix} 0\\ 1 \end{pmatrix} = \text{operator} \times \mathbf{A}, \tag{19}$$

then for a valid matrix multiplication requires that the "operator" (let's call it M) be a 2 × 2 matrix of the following form

operator
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, (20)

where a, b, c, d are real numbers.

If we now want the answer to the question "what happens when we act on the vector **A** with one of the elements of the set D_4 ", we then have to **represent** the elements of D_4 by 2×2 matrices. The identity *e* element leaves the square invariant, so if

$$\mathbf{A} = \begin{pmatrix} -1\\ 1 \end{pmatrix} \tag{21}$$

represents the top left corner of the square, this means that e in matrix representation is simply

$$e = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \tag{22}$$

which is of course the identity matrix. For the element R, we know that the resulting vector is

$$\mathbf{B} = R \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
(23)

or

$$R = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}.$$
 (24)

The rest of the elements can be similarly calculated and they are

$$R^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, R^{3} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, m_{1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
(25)

$$m_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ m_3 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \ m_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
 (26)

It will not be surprising to you that the composition law of the group can be described by matrix multiplication too. For example, from the multiplication table we know that $Rm_1 = m_4$, which we can check

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 (27)

and so on.

Since these are the elements of the group D_4 being represented by matrices, we say that these set of 8 matrices and their target space form a **Group Representation**, and more specifically we say that they "form a Linear Group Representation on a 2 dimensional real vector space". Of course, although the corners of the square clearly belong to this vector space, they are but a small subset of points of the (infinitely) many points on this vector space. Our operators D_4 are democratic – not only will they act on the corners of the square, they will also act on any vector in this space e.g.

$$R\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}y\\-x\end{array}\right), \ \forall \ x, y \in \mathbb{R}.$$
(28)

We have introduced the notation \in , which means "in" or "belonging to", and \mathbb{R} which denotes the set of all real numbers. In words we say "x and y in 'R'." We will come back and talk about sets and mathematical structure in the next Chapter 2.

1.3 Summary

We have introduced the idea of **symmetries** which are properties of some object which remain "the same" under some operation. Relying on your mathematical intuition, we showed that the set of operations which leave the object invariant naturally form an algebraic structure called a **Group**. Stripping away the object from the discussion, we assert that this algebraic structure can "lives on its own" and once we figure out all the algebraic properties this structure can be applied to any physical system or any object which possesses the same symmetry.

For example, we will show that the set of operations known as "rotation about an axis" will form a **continuous abelian group** called U(1). Clearly, there are many physical systems which are invariant under rotation about an axis – e.g. the Coulomb potential, or more interestingly, the *gauge field* of the electromagnetic field. Indeed, for half our lectures, we will cast away the "extra" baggage of the "object" and study Groups on their own right.

However, since we are physicists, we ultimately want to study actual physical systems – the "objects" such as the square. In this chapter, we show that if these objects can be **represented** by vector spaces, then the group elements can be represented by matrices. Collectively, the vector spaces of the objects and the matrices representation of the group elements are called **Group Representations**.

Finally, focusing on particle physics, we wade into the study of **Lie Groups** and **Lie Algebras** – one of the key pillars of modern physics. You might have heard the words "The Standard Model of Particle Physics is $SU(3) \times SU(2) \times U(1)$ ". What this means is that the particles can be represented by vector spaces (think of them as column matrices) which are operated upon by the group elements of $SU(3) \times SU(2) \times U(1)$. This may look mysterious to you – what do we mean by SU(3) and by "×"?

The goal of this set of lectures is to demystify that statement. Of course, we will not be studying particle physics. However, as a first course in symmetries, we aim to build up your mathematical vocabulary of the language of symmetries which you can bring into your more advanced classes.

2 Mathematical Preliminaries

I speak from some sort of protection of learning, Even tho' I make it up as I go on.

Yes, New Language

In this section we will review some basic mathematics. The goal of this section is to (re)-introduce you to some mathematical language so that you become comfortable with thinking abstractly, and on the flipside, to challenge you into rethinking some things which you might have gotten "comfortable" with. We will not be rigorous in our treatment of the mathematics as this is a course in physics. Having said that, we will be very deliberate in using faux math language, and sound a bit pretentious along the way.

2.1 Sets

A set is a collection of objects. For example

$$S = \{a, b, c\} \tag{29}$$

is a set named S. The objects are called its **elements** or its **members**. If element a belongs to S, we write $a \in S$ and say "a in S". The simplest set is the **empty set** and is denoted by

$$\emptyset$$
 (30)

The number of elements in a set is called its **cardinality** or **order**, and denoted |S|, so in the above |S| = 3. You are probably familiar with common sets like the set of all integers³

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$
(31)

or the set of real numbers \mathbb{R} . We won't go into the details of the rigorous *construction* of sets which is a thorny subject. Instead, we will play hard and loose, and endow sets with **properties**. For example, we can make the set of Natural numbers by

$$\mathbb{N} = \{ x | x \in \mathbb{Z}, x > 0 \}.$$

$$(32)$$

In words, you can read | as "such that", and what follows are termed loosely "properties" – rules which tell us what elements belong to the set. Intuitively, specifying properties like this seems like a perfectly good way to construct a set, and in this case it is. However, using properties alone to construct sets can lead to all sorts of paradoxes (the most famous of which is **Russell's Paradox**), so mathematicians spend much angst in developing a whole new way of constructing sets. Having said that, we will not worry too much about this and use properties with wild abandon.

While you must be familiar with sets of numbers, the elements in principle can be made out of anything like letters, points in space, cats, or even other sets. There is a big advantage in not forcing sets to contain just numbers or letters – since if we prove a theorem then it will apply to a greater number of situations. This notion of "keeping things as general as possible" is called **abstraction**. Numbers themselves are abstractions of things – for example, there is no need to develop a theory of counting apples and a theory of counting oranges, we can just develop a general theory of counting and use it where applicable.

Notice that in the specification of \mathbb{Z} above, we have used the dot-dot-dots, and intuitively you have assumed that the first set of dots mean -3, -4, -5 etc, and the second set of dots mean 3, 4, 5 etc. Your

 $^{{}^3\}mathbb{Z}$ is for Zahlen, German for "integers".

brain has automatically assumed an **ordering**. Of course, we don't have to, and we can equally well specify

$$\mathbb{Z} = \{\dots, -4123, 69, 794, 0, 66, -23, \dots\}.$$
(33)

but now the dots-dots are confusing. To have a notion of ordering, we would need to invent the ideas of \langle , \rangle and =. These ideas seems "self-evident", but let's see how we can cast them in set-theoretic⁴ language. So clear your head about any pre-conceived notions you have learned from high school in what follows.

Let's begin with some definitions.

(Definition) Subsets: Suppose A and B are sets, and we say that A is a *subset* of B whenever $x \in A$ then $x \in B$. We write

$$A \subseteq B \tag{34}$$

Note that if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$ (which you should try to show by drawing a **Venn Diagram**). We say that \subseteq is **transitive**.

Let's define something seemingly completely obvious: what do we mean by two sets are "equal".

(Definition) Equality: Suppose $A \subseteq B$ and $B \subseteq A$, then we say that A and B are equal and write A = B.

This definition has the obvious consequence that if $A = \{a, b\}$ and $B = \{b, a\}$ then A = B (note that the ordering does not matter). The not so obvious consequence is that

$$\{a, b, c\} = \{a, a, a, a, b, c, c, a\} = \{a, b, c, c\}$$
(35)

and so on. So even if two sets do not "look" the same, they can still be equal. If A and B are not equal, we write $A \neq B$.

Now we are ready to, literally, make numbers out of nothing. What follows is an arcane way of making up sets of numbers which was invented by the great physicist/information theorist/mathematician John Von Neumann.

Natural Numbers (Neumann) \mathbb{N} : Start with nothing, i.e. the empty set \emptyset , and then we can put this empty set into a set, i.e. we construct $\{\emptyset\}$. We can put *that* into another set $\{\emptyset, \{\emptyset\}\}$, and iterate this to make $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}$ etc. We then *name* these sets

$$0 = \emptyset , 1 = \{\emptyset\} , 2 = \{\emptyset, \{\emptyset\}\} , 3 = \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$$
(36)

and so on. Notice that we have abstracted numbers themselves as sets!

In this construction, notice that since \emptyset is in $\{\emptyset\}$ this implies that $\emptyset \subseteq \{\emptyset\}$, and also $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}$ etc. Or in everyday language $0 \le 1 \le 2...$, or you can also write 0 < 1 < 2... by replacing \subseteq with \subset (which keeps the proposition still true), and the transitivity property of \subseteq gets imported in to become the ordering. So, like magic, we have pulled rabbits out of thin air and constructed numbers with a natural ordering out of some set-theoretic **axioms** (or definitions). This set of numbers is called **Natural Numbers** and given the mathematical symbol \mathbb{N} .

Now is a good time point out a pedantic (but important) difference between $A \subseteq B$ and $A \subset B$ – which one deserves to be the mathematical symbol for "subset"? The way out of this is to invent a new term, **proper**. For $A \subset B$, we say that A is a **proper subset** of B, i.e. A is a subset of B but that $A \neq B$. So every time when you see the word "proper" attached to any definition, think of the difference between \subseteq and \subset . You will see a lot of these in our lectures.

⁴You may hear some high-brow people often say "set-theoretic", "field-theoretic" etc, this simply means that we want to discuss something in the language of sets and fields. One of the things that you should start learning early is to look for abstractions – the same set of physical systems can often be recast in different forms. One unstated goal of this course is to encourage you to think of "obvious" ideas in not so obvious ways. Ok, now we have stated it.

14

A word on jargon: things like $\langle , \geq , \subseteq , =$ which allow us to determine the *relationships* between two different sets are called **relations** – we will study this later. This is to distinguish another thing which actually "does stuff" to sets, as we will study next.

2.1.1 Operations on Sets

We can use properties to make new sets, by "doing stuff" to them. Mathematically, "doing stuff" is called "operating" or "acting". We can invent operations which act on sets.

(Definition) Union: Suppose A and B are sets, the union of two sets is defined to be

$$A \cup B = \{x | x \in A \text{ or } x \in B\}.$$
(37)

Notice the English word "or" in the property. So if you have done some logic, you can think of \cup as an "or" operator.

(Definition) Intersection: Suppose A and B are sets, the intersection of two sets is defined to be

$$A \cap B = \{x | x \in A , x \in B\}.$$
(38)

You can replace the comma "," with "and", so \cap is an "and" operator.

If $A \cap B = \emptyset$ then we say that A and B are **disjoint** or **not connected**. Furthermore, the operations are **commutative**

$$A \cup B = B \cup A , \ A \cap B = B \cap A.$$
(39)

This looks like the commutativity of the algebra you have seen before x + y = y + x in high school⁵. Can you prove this?

Also, in high school you learned to rewrite commutativity as a "minus" sign -

$$(x+y) - (y+x) = 0.$$
 (40)

But remember we are doing sets, and we have not invented the notion of the operation of "subtraction". Let's invent it now using properties

(Definition) Quotient: Suppose A and B are sets, then the quotient of two sets is

$$A \setminus B = \{ x | x \in A, x \notin B \}.$$

$$\tag{41}$$

Note that \setminus is not the divide sign /! We say $A \setminus B$ "A quotient B". \notin means "not in", i.e. it is the **negation** of \in .

We can say the property in words: " $A \setminus B$ " is a set which contains elements x which are in A and not in B, i.e. it is a **subtraction**, so you can also call it A - B. To see this, consider two sets $A = \{a, b, c\}$ and $B = \{a\}$. We start with the elements in A, and keep only those that are *not* in B, i.e. b and c. So $A - B = \{b, c\}$. Question: what if $A = \{a, b, c\}$ and $B = \{a, d\}$?

(Definition) Complement: Suppose U is the set of everything in the Universe and A is a set, then the complement $\overline{A} = U \setminus A = U - A$ is the set of everything not in A.

You are also familiar with the **associativity law** (x+y)+z = x+(y+z). The set theoretic associative laws are

$$(A \cup B) \cup C = A \cup (B \cup C) , \ (A \cap B) \cap C = A \cap (B \cap C).$$

$$(42)$$

And the **distributive law** $x \cdot (y + z) = x \cdot y + x \cdot z$ (where \cdot means multiplication in the usual sense)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) , \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

$$(43)$$

⁵Question: what is an algebra?

Power Set: A more complicated operation is to make sets out of a set is to do the following "Given a set A, form all possible subsets of A, and put these subsets into a new set call the **Power set** $\mathcal{P}(A)$ ". In mathematical language, this is simply

$$\mathcal{P}(A) = \{x | x \subseteq A\}. \tag{44}$$

So if $A = \{a, b\}$, then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$

2.1.2 Cartesian Product and Coordinate Systems

Finally, intuitively, we know that pairs of objects exist – say for example a coordinate system (x, y) or (*Justin, Selena*) etc. We can form these objects by the operation call "taking the **Cartesian product**".

(Definition) Cartesian Product: Suppose A and B are sets, then the Cartesian product of A and B is given by

$$A \times B = \{(a,b) | a \in A, b \in B\}$$

$$\tag{45}$$

and we call (a, b) an **ordered pair**. If we have two ordered pairs (a, b) and (c, d) then we say that (a, b) = (c, d) when a = b and c = d (this may look pedantic, but we have secretly *defined* a new notion of equality, one which is intuitive but still new.)

So if you want to make a 2-dimensional continuous coordinate system (x, y), then you can define

$$\{(x,y)|x\in\mathbb{R},y\in\mathbb{R}\}.$$
(46)

Since x and y are both in \mathbb{R} , we often write such a coordinate system in shorthand as

$$(x,y) \in \mathbb{R} \times \mathbb{R} \tag{47}$$

or even shorter hand by

$$(x,y) \in \mathbb{R}^2. \tag{48}$$

You can keep making ordered "triplets". For example, suppose A, B and C are three sets

$$B \times C \times A = \{(b, c, a) | b \in B, c \in C, a \in A\}.$$
(49)

We can also make ordered pairs from ordered paris. For example, if $B \times C$ is an ordered pair, and A is another set, then

$$(B \times C) \times A = \{((b, c), a) | b \in B, c \in C, a \in A\}.$$
(50)

In general, $(B \times C) \times A$ is not the same as $B \times (C \times A)$, and both will not the same as $A \times B \times C$ because the bracket structure will be different.

A three dimensional coordinate system is then \mathbb{R}^3 etc. These are known as **Cartesian Coordinate** Systems.

2.2 Maps and Functions

Given two sets A and B, we can define a link between them. Mathematically, we say that we want to find a **mapping** between two sets. The thing we use to do this is called a (doh) **map** or a **function**. If you have not thought about functions as maps, now is a time to take a private quiet moment to yourself and think about it. Again there is a very rigorous way of defining maps in mathematics, but we will simply think of them as a set of *rules*. A rule is something that takes in an element of one set, and give you back an element of another set. Let's define it properly:

(Definition) Map: Suppose A and B are sets, then a map f defines a link between A and B as follows

$$f: A \to B;$$
 (Rules). (51)

Example: Suppose $A = \mathbb{R}$ and $B = \mathbb{R}$, so

$$f: A \to B; \ f: x \mapsto x^2 \ \forall \ x \in \mathbb{R}$$

$$\tag{52}$$

where we have distinguished the arrows \rightarrow to mean "maps to" while \mapsto means "the rule is as follows" (or its **recipe**). Having said that, we will be careless about such arrows from now on and use \rightarrow . The above described, in language you are familiar with, $f(x) = x^2$. (If you have not seen \forall before, it is called "for all".) So sometimes we write

$$f: A \to B; \ f(x) = x^2 \ \forall \ x \in \mathbb{R}.$$
(53)

Here A and B are morally speaking, in general, different sets, even though they are equal to \mathbb{R} – one can imagine them to be two different worlds that look like \mathbb{R} . Of course one can also imagine them to be the special case where they are the same world. Notice however, for any $x \in A$, since $x^2 > 0$, f(x) maps only to the positive definite part of B, plus zero. In addition, both x = -4 and x = 4 maps to the same point f(4) = f(-4) = 16 etc.

The set of inputs A is called the **domain** of the map, while the set where the outputs live B is called the **codomain**. We call them dom(f) and cod(f) respectively. We can define also the **image** of f in the following way

(**Definition**) Image: Suppose $f : A \to B$ is a map, then the image of f is

$$\operatorname{im}(f) = \{x | x \in B, x = f(a) \text{ for some } a \in A\},\tag{54}$$

or even shorter form

$$im(f) = \{f(a) | a \in A\}.$$
 (55)

In words, the image of f is the part of the codomain which is the domain is mapped to. So if you pick a point in the codomain which is *not* in im(f) then you are out of luck as you have no partner in the domain.

One can also construct a very special map, which maps every element of a set into the same element. This is called the **Identity Map** and is defined as follows.

Identity Map: Given any set A,

$$\mathrm{Id}: A \to A; \ \mathrm{Id}(a) = a \ \forall \ a \in A.$$
(56)

It's clear that an identity map always exists for all sets.

Note that A and B do not have to be "different" sets, they could be (and often is) the "same" set (although mathematically it doesn't matter if it is the "same" or not – one can always say B is a copy of A for example, A won't mind).

2.2.1 Surjective, Injective and Bijective

In the map $f(x) = x^2$ we described above, there exists points in cod(f) that has no "partner" in dom(f), i.e. colloquially, no points in A is mapped to negative values. A map which *does* map to the entire codomain, i.e.

$$\operatorname{im}(f) = \operatorname{cod}(f) \tag{57}$$

is called a **surjective** (Latin) or **onto** (English) or **epic** (Hellenic) map. I personally prefer "onto" but epic is quite epic. If im(f) is continuous⁶ then such a map is also called a **covering**. We will encounter covering maps when we discuss Lie groups in the future.

 $^{^{6}}$ We have not defined continuous, but now we are going to accelerate and rely on your intuition.

Also, in the $f(x) = x^2$ map, two points in the domain is mapped to a single point in the co-domain. On the other hand, one can imagine a map which gives different outputs for different inputs, i.e. consider a map g

$$g: A \to B; a, a' \in A \text{ and if } a \neq a' \text{ then } f(a) \neq f(a').$$
 (58)

Such a map is called an **injective** (Latin) or **one-to-one** (English) or **monic** (Hellenic) map. I personally prefer one-to-one, since it is rather descriptive.

Finally if a map is both onto and one-to-one, then it is **bijective**.

Eqaulity of maps: Given these, we say that two maps f and g are equal and write f = g iff (if and only if)

$$dom(f) = dom(g),$$

$$cod(f) = cod(g),$$

$$\forall x \in dom(f), f(x) = g(x).$$
(59)

The first two conditions tells us that the domains and codomains must be the same, while the third condition ensures that both f and g maps to the same points in the (same) codomain. Note that specifying the 3rd condition alone is not enough! For example, the maps f(x) = x and g(x) = x might look the same but if dom $(f) = \mathbb{Z}$ while dom $(g) = \mathbb{R}$, $f \neq g$.

2.2.2 Composition of maps

One way to think about a map is that it is like a vending machine or a blackbox : you feed it something, and something else comes out. You can then take this something else, and feed it into some other blackbox, and some other thing will come out. This series of events is called a **composition**; we have taken two "leaps" across two different codomains.

Suppose we have two maps $f: A \to B$ and $g: B \to C$, then the composition map $g \circ f$ is described by

$$g \circ f : A \to C; \ g(f(x)) \ \forall x \in A.$$
 (60)

So you take x from A, give it to f who will spit out f(x), and then you feed this output to g who will give you back g(f(x)).

You can string maps together. For example, given a third map $h: C \to D$ we can construct

$$h \circ g \circ f : A \to D; \ h(g(f(x))) \ \forall x \in A.$$
 (61)

We will now state three theorems.

Theorem: The composition of two injective maps is injective.

Proof: Suppose $f : A \to B$ and $g : B \to C$ are injective maps. Suppose further $a, a' \in A$ and $a \neq a'$. f is injective so $f(a) \neq f(a')$. But since g is also injective this means that $g(f(a)) \neq g(f(a'))$. \Box .

(This may be "obvious" to you, but it is good to practice thinking like a mathematician once in a while. Anyhow the little square \Box is to denote "as to be demonstrated", and we like to slap in on the end of any proofs as it is very satisfying. Try it.)

Theorem: The composition of two surjective maps is surjective.

Proof: Suppose $f : A \to B$ and $g : B \to C$ are surjective maps. We will now work backwards from C. Choose any $c \in C$. g is surjective, so $\exists b \in B$ such that g(b) = c. Now f is also surjective, so $\exists a \in A$ such that f(a) = b, hence g(f(a)) = c, i.e. there exist a map from a to every element in C hence $g \circ f$ is surjective. \Box .

(We have sneaked in the symbol \exists , which means "there exists".)

Corollary: The composition of two bijective maps is bijective.

The last theorem is a corollary – i.e. it is an "obvious" result so we won't prove it. Obviousness is subjective, and corollaries are nice dodges for people who are too lazy to write out proofs (like me).

Inverse: Consider a map $f: X \to Y$. Now, we want to ask the question: can we construct a map g from Y back to X such that g(f(x)) is the *unique* element x. If f is onto, but not one-to-one, then $\exists y \in Y$ which was originally mapped from more than 1 element in X. On the other hand, if f is one-to-one, but not onto, then $\exists y \in Y$ which was not mapped from any point $x \in X$.

It turns out the crucial property of f that allows the construction of such an **inverse** map g is that f is bijective. In fact it is more than that: the statement that f is a bijective is **equivalent** to the statement that there exists an inverse such that $g(f(x)) = \text{Id}_X$ (where we have appended the subscript X to indicate that it is the identity map in X). Formally,

Let $f: X \to Y$ be a map. Then the following two statements are equivalent:

f is bijective \Leftrightarrow There exists an inverse map $g: Y \to X$ such that $f \circ g = \mathrm{Id}_Y$ and $g \circ f = \mathrm{Id}_X$.

Notice that g is also the inverse of f, i.e. inverses "go both ways". One thing we have been a bit careful here to state is the notion of *equivalence*, which we have used the symbol \Leftrightarrow . Roughly speaking, equivalence means that both statements *has the same content*, so stating one is sufficient. Compare equivalence with **implication** with the symbol \Rightarrow , e.g. f is bijective $\Rightarrow f$ is onto, whose reverse is of course not necessarily true.

While there are plenty of mathematical constructs which do not require inverses, inverses are crucial in most mathematics which describe the physical world. In fact, inverses and identities often go hand-inhand, like ying and yang.

2.2.3 Sets of Maps/Functions

By now we are comfortable with the idea of sets as containers of objects, and maps as devices which allow us to build links between the objects inside sets. However, *maps are objects too*, so we can build sets out of maps. This leap of abstraction will underlie much of our future discussion on groups.

Suppose A and B are sets, then we can define a *set* of maps formally by the following

$$\operatorname{map}_{A,B} = \{f | f : A \to B\}$$

$$(62)$$

so $\operatorname{map}_{A,B}$ is a set of maps from A to B. This set is very general – any map from A to B is in it. There exist some interesting subsets, say the subset of all bijective maps

$$\operatorname{bij}_{A,B} = \{g | g \in \operatorname{map}_{A,B}, g \text{ is bijective}\}.$$
(63)

We can also construct the set of all onto maps $\sup_{A,B}$ and all one-to-one maps $\inf_{A,B}$. Can you now see why $\lim_{A,B} = \sup_{A,B} \cap \inf_{A,B}$?

2.3 Relations, Equivalence Relationships

We will now discuss a concept that is super important, but for some completely strange reason is not widely taught or even understood. This concept is the notion of an "equivalence between objects" (as opposed to equivalence between statements) – in vulgar language we want to define "what is equal". Let's start with something simple that you have grasped a long time ago, and work our way up the abstraction ladder.

When we are given a set of objects, they are nothing but a bunch of objects, for example, you are given a set of students in the Symmetry in Physics class, or a set of Natural numbers \mathbb{N} . To give "structure" to the sets so we can do more interesting things with them, we can *define* relations between the objects. Let's be pedantic for the moment.

(Definition) Relation: Suppose S is a set, then we say $p, q \in S$ are related by relation \bowtie and we write $p \bowtie q$. We call \bowtie a relation on S.

We have not *specified* what \bowtie means of course, but you have already learned some relations. For $S = \mathbb{N}$ then you already have learned relations =, <, > on \mathbb{N} . So, obviously, 1 = 1, 2 < 5, 9 > 5 etc. However, who says we are stuck with those relations? How do you define relations between members of the set of Symmetry in Physics class?

Surprisingly, it turns out that relations themselves can be divided into *only* a few major properties! Here are three of them which we will be concerned about; suppose \bowtie is a relation on set S, then it is

- **Reflexive**: if $a \bowtie a$ for every $a \in S$
- Symmetric: if $a \bowtie b$ then $b \bowtie a$ for $a, b \in S$
- **Transitive**: if $a \bowtie b$, and $b \bowtie c$ then $a \bowtie c$ for $a, b, c \in S$.

Whatever relation we specify, they may have *none*, *some or all* of above properties. Consider the relation = on \mathbb{N} – it is reflexive, symmetric and transitive since 1 = 1, 2 = 2 etc (can you see why it is transitive?). On the other hand, < on \mathbb{N} is not reflexive nor symmetric, but it is clearly transitive since if 1 < 3 and 3 < 6 then 1 < 6 is true.

Relations allow us to put extra structure on sets. Now consider again our set of Symmetry in Physics students, let's call it P. Let's say we want to define an **equivalence relationship**, let's call it \sim , based on the gender of the students. For example, we want to be able to say things like "Janice is equivalent to Ellie" because both Janice and Ellie are females so Janice~Ellie . Naturally, Ellie~Janice (symmetric), and furthermore Anna~Ellie and hence Janice~Anna (transitive).

(Definition) Equivalence Relation: A relation \bowtie on set S is an *equivalence relation* if it is reflexive, symmetric and transitive. We usually use the symbol \sim for equivalence.

Why go through all this bother? Broadly speaking, equivalence relationships give us a notion of "sameness" within some (to be specified) criteria. A set can, of course, have more than one equivalence relationship (think "long hair" and "short hair" members in the Symmetry of Physics students set).

In addition, it turns out that equivalence relations can **partition** a set into *disjoint* subsets of objects which are equivalent to each other (it is obvious if you spend a minute thinking about it), which we can agree is a useful concept. You have seen "disjoint" before, but what do we mean by *partition*? For example, the "all members of one gender relation" partitions the class into "boys" subset M and "girls" subset F, and it's clear that $M \cap F = \emptyset$. Let's now define partitions.

(Definition) Partition: A partition of S is a collection C of subsets of S such that $(a)X \neq \emptyset$ whenever $X \in C$, (b) if $X, Y \in C$ and $X \neq Y$ then $X \cap Y = \emptyset$, and (c) the union of all of the elements of the partition is S.

The subsets that are partitioned by equivalence relations must be disjoint – again think about boys and girls. These disjoint subsets are called **equivalent classes**. Equivalence classes will play an extremely important role in group theory and the study of symmetries in physics.

2.4 Algebras

We have studied sets, relations on the sets which tell us how the objects in a set are related to each other, and maps between sets. The final piece of mathematical structure we need to study is its **algebra**.

What is an algebra? In your school days, "algebra" refers to the study of things like a + a = 2a, $a \cdot (b + c) = a \cdot b + c \cdot b$ etc. You were taught how to manipulate the addition **operators** + and also the multiplication operators \cdot . However, more abstractly, an **algebra** is a set of elements equipped with rules that tell us how to combine two elements in the set to produce another element of the set. Such rules are called **binary operators**.

Example: Suppose you are given a set $\mathbb{Z}_2 = \{s_1, s_2\}$. We want to invent a set of rule for "multiplication" of two objects in the set, which we write by

or
$$s_1 \star s_2$$
 or $s_1 \cdot s_2$ or simply $s_1 s_2$. (64)

We say that we want a **product** or **composition** rule⁷.

To invent a rule, we just specify the result of such a composition. There are only two elements, so we need 4 rules for all possible permutations. A possible (by no means unique) set of rules is

$$s_1 s_1 = s_1 , \ s_1 s_2 = s_2 , \ s_2 s_1 = s_2 , \ s_2 s_2 = s_1.$$
 (65)

Notice that we have specified $s_1s_2 = s_2$ and $s_2s_1 = s_2$ separately. In this very simple example, the composition gives the same element s_2 but in general they don't have to be the same and in fact often are not the same, i.e. they are **non-commutative**.

In words, we say that "set S with rules Eq. (65) form an algebra."

Of course, if we have a set with infinite order, for example the set of all real numbers \mathbb{R} , then it will be tedious (or crazy) to specify all the rules for each possible pair of elements. (This is the kind of thing they make you do when you die and go to mathematician hell.) More efficiently, if we invent a rule, we would like it to apply to *all* pairs of elements in the set. This is exactly what we will do, and it turns out that we can classify the type of rules by the specifying certain **algebraic axioms**. There are several well known algebras, and we will discuss two of them in the following.

2.4.1 Fields and its Algebra

Instead of exact rules, there are some general classification of rules which we can list down. As a specific example, consider something you learned in high school: the algebra of a set S equipped with two binary operators **addition** + and multiplication \cdot which have the following rules (for any $a, b, c, \dots \in S$).

Field Axioms:

- Closure: $a \star b \in S$ for $\star = \{\cdot, +\}$.
- Commutative if $a \star b = b \star a$ for $\star = \{\cdot, +\}$.
- Associative if $a \star (b \star c) = (a \star b) \star c$ for $\star = \{\cdot, +\}$.
- **Distributive** if $a \cdot (b+c) = a \cdot b + a \cdot c$.
- Identities: a + 0 = a = 0 + a (addition) and $a \cdot 1 = a = 1 \cdot a$ (multiplication).
- Inverses: a + (-a) = 0 = (-a) + a (addition) and $a \cdot a^{-1} = 1 = a^{-1} \cdot a$ (multiplication).

Notice that the Identities for + and \cdot are written down as different elements called 0 and 1 – and in general they are different (think of $S = \mathbb{R}$ the set of real numbers) but they can be the same.

Now you may legitimately ask (and if you do, pat yourself at the back for thinking abstractly): what are these new symbols $^{-1}$ and - that has crept in? One way to think about them is that they are simply

 $^{^{7}}$ You have seen the word "composition" before when we discuss maps – this is of course not coincidental, as the elements in a set can be maps.

labels, so -a can be simply a "different" element which, when added to a give us the element 0. We say that -a is the **additive inverse** of a, and a^{-1} is the **multiplicative inverse** of a.

A set S which possesses the binary operators which obey the above rules is called a **Field** by mathematicians. You are no doubt familiar with it when $S = \mathbb{R}$, i.e. the set of real numbers, and $S = \mathbb{C}$ the field of complex numbers.

2.4.2 Groups and its Algebra

As you can see above, Fields have a fair amount of algebraic structure built into it. It turns out that we can perfectly invent an algebra with less rules. One such algebra is that of a **Group**, which we now state as follows.

(Definition) Groups: A group G is a set of elements $G = \{a, b, c, ...\}$ with a composition law (multiplication) which obeys the following rules

- Closure: $ab \in G \ \forall a, b, \in G$.
- Associative $a(bc) = (ab)c \ \forall a, b, c \in G$.
- Identity: $\exists e \text{ such that } ae = ea = a. e \text{ is called the identity element and is unique}^8$.
- Inverses: For every element $a \in G \exists a^{-1}$ such that $a^{-1}a = aa^{-1} = e$.

Notice that by this set of rules, the identity element e must be its own inverse, i.e. $e = e^{-1}$ – can you prove this? Also, an important formula is

$$(ab)^{-1} = b^{-1}a^{-1} \ \forall \ a, b \in G \ .$$
(66)

Proof: Since $ab \in G$, there is an inverse $(ab)^{-1}$ such that $(ab)^{-1}(ab) = e$. Multiplying from the right by b^{-1} we get $(ab)^{-1}a(bb^{-1}) = b^{-1}$, and then multiplying from the right again by a^{-1} we obtain Eq. (66) \Box .

Comparing this to Fields, we have chugged away one of the binary operator, and dropped the Commutativity and Distributive axioms. If we restore commutativity, we get a very special kind of group called **Abelian Groups**.

We will be spending the rest of the lectures studying Groups, and why they are so important in describing symmetries in physics. But let us end with an example. Recall the set $S = \{s_1, s_2\}$ which we wrote down above with the composition rules Eq. (65). Let's give it a special name $Z_2 = \{s_1, s_2\}$, which forms a group as we can now prove.

Proposition: Z_2 with composition rules Eq. (65) forms a group. *Proof*:

- Closure: it's clear that Eq. (65) imply that the group is close under the composition rule.
- Associative: You can show element by element that $(s_i s_j)s_k = s_i(s_j s_k)$ for i, j, k = 1, 2. Example: $(s_1 s_2)s_1 = s_2 s_1 = s_2$ and $s_1(s_2 s_1) = s_1 s_2 = s_2$ etc.
- Identity: Since $s_1s_2 = s_2$ and $s_1s_1 = s_1$, and we have no other elements, we identify $s_1 = e$ as the Identity element.
- Inverse: s_1 is the identity hence is its own inverse i.e. $s_1s_1 = s_1$. Now we need to find an element a the inverse for s_2 , i.e. $s_2a = as_2 = s_1$, which by eye we can see that's $a = s_2$, i.e. s_2 is its own inverse.

 $^{^{8}}$ Uniqueness is usually not stated as part of the axioms, but actually proven if you want to be completely hardcore about things.

and since the set with the multiplicative rule obey all the Group axioms, it forms a group algebra. $\Box.$

Can you see that \mathbb{Z}_2 is also an Abelian group?

3 Discrete Groups

Five bananas. Six bananas. SEVEN BANANAS!

Count von Count, Sing yourself Silly

In this Chapter, we will begin our proper study of Group Theory. Groups can roughly be divided into whether they are **discrete** or **continuous**. Roughly speaking, discrete groups have finite number of elements or infinite but **countable** number of elements, while continuous groups are "continuously infinite" (which is at the moment are just words). We will focus on discrete groups in this Chapter, focusing on getting the definitions and jargon right. And then we will study several important discrete groups to get the basic ideas on how to manipulate them.

Let's now get back to the notion of *countability* we mentioned.

(Definition) Countability: A set S is said to be *countable* if there exists a bijective map $f: S \to \mathbb{N}$, i.e. a bijective map from S to the set of Natural Number \mathbb{N} (which we constructed early in Chapter 2).

Hence a countable set is something you can "count", by ticking off the elements of \mathbb{N} i.e. $0, 1, 2, 3, \ldots$ and you will be sure that you have not missed any numbers in between⁹. After all, we are taught to count in terms of the Natural numbers!

Figure 5: The Count of Sesame Street likes to count the natural numbers, which is countably infinite.

Continuity vs Infinity: We make a remark here that although S can be infinite, it is not *continuous* so don't mix up the two concepts! Briefly, even though S can be countably infinite, this doesn't mean that there exist a well defined notion that two elements in S is "arbitrarily close together". Indeed, to talk about "close together" require a notion of "distance between points" – your teacher might not have told you but Calculus is secretly the study of a mathematical structure which possess such a notion of *infinitisimal distances*. In fact, since \mathbb{N} does not possess such a structure, it does not make sense to talk about continuity. To discuss it, we need additional mathematical structure, and so we'll postpone the discussion until Chapter 4.

Let's begin by restating the group axioms and clean up on some loose threads from the last Chapter.

(Definition) Groups: A group G is a set of elements $G = \{a, b, c, ...\}$ with a group composition law (or simply group law for short) which obeys the following rules

 $^{^9\}mathrm{Try}$ "counting" the real numbers and you will see what I mean.

- Closure: $ab \in G \ \forall a, b, \in G$.
- Associative $a(bc) = (ab)c \ \forall a, b, c \in G$.
- Identity: $\exists e$ such that ae = ea = a. e is called the *identity element* and is unique¹⁰.
- Inverses: For every element $a \in G \exists a^{-1}$ such that $a^{-1}a = aa^{-1} = 1$.

We will prove the two statements cited above.

Uniqueness of identity e. Suppose there exist two elements e and e' with the property of the identity, i.e.

$$ae = ea = a , \ ae' = e'a = a.$$

$$(67)$$

Let a = e', for the first equation we get e'e = ee' = e'. Let a = e, for the second equation we get ee' = ee' = e. Since the LHS of both equations are the same, e = e' and hence the identity is unique \Box .

Uniqueness of inverses. Suppose that h and k are inverses of the element g, then by the axioms

$$gh = e , \ kg = e \tag{68}$$

but now k(gh) = k and by the associativity axiom we shift the brackets to get (kg)h = k or using the 2nd equation above eh = k, we obtain $h = k \square$.

Now that we have come clean on our assertions, we are ready to discuss some groups.

3.1 A Few Easy Finite Order Discrete Groups

(Definition) Order (of Group): The *order* of a group G is the total number of elements in the group, and is denoted |G|.

The order of a group can range from zero to infinity. Finite order groups are groups which possess a finite number of elements $|G| < \infty$.

3.1.1 Order 2 Group Z_2

We have seen this group in Chapter 1 before. As it turns out, it is the *only* possible order two group.

Theorem (Uniquenes of order 2 group): The only possible order two group is Z_2 .

Proof: Let $G = \{a, b\}$ be an order 2 group. A group possess a binary operator, so we want to find the result for the compositions aa, ab, ba, bb. By the identity axiom, we must have an identity. Let a = ebe the identity, then the first three compositions yield e, b, b respectively. The last composition bb must be e or b by the closure axiom. Suppose now that bb = b then $bb = b = be = b(bb^{-1}) = b^2b^{-1}$, the last equality be associativity. But using our supposition, $b^2b^{-1} = bb^{-1} = e$ which means that b = e. From our proof previously that the identity has to be unique, this is a contradiction, so the only other possibility is bb = e. Since simply by using the group axioms, we have completely determined all the composition laws and recover Z_2 , this means that it is the unique order 2 group \Box .

Parity: Despite its completely innocuous nature, Z_2 is in fact one of the most important groups in physics! Suppose we have a function $\psi(x)$ where x is the space coordinate with domain $-\infty < x < \infty$ (remember our map language). Now consider the **Parity Operator** P whose action is to flip the sign of the argument of $\psi(x)$, i.e.

$$P\psi(x) = \psi(-x). \tag{69}$$

 $^{^{10}}$ Uniqueness is usually not stated as part of the axioms, but actually proven if you want to be completely hardcore about things.

We can also consider the "do nothing operator", let's call it e,

$$e\psi(x) = \psi(x). \tag{70}$$

Acting on $\psi(x)$ twice with P we get

$$P(P\psi(x)) = P\psi(-x) = \psi(x) \tag{71}$$

or $P^2 = e$ since the operation is clearly associative. Furthermore, this means that P is its own inverse. And it's clear that Pe = eP = P. Hence the set of two operators $\{P, e\}$ form a group, and by our theorem above it is Z_2 as you can check that the composition laws are the correct one.

Note that we have not said anything about the symmetry of $\psi(x)$ – i.e. the symmetry of the object being operated on by the group operators is irrelevant to the group operators. On the other hand, if $\psi(x) = \psi(-x)$, i.e. it is symmetric under reflection around x = 0, then the value of $P\psi(x) = \psi(-x) = \psi(x)$ and we say that $\psi(x)$ is invariant under parity around x = 0.

But as we discussed in Chapter 1, once we have the group operators, we do not need the underlying vector space (here it is $\psi(x)$ – it might be hard for you think of a function as a vector space for the moment, technically it is an infinite dimensional vector space) to possess any symmetry. Let's consider such a case explicitly.

Consider the ubiquitous bit you know and love from computing, which can have two possible states 1 and 0, or \uparrow and \downarrow . The action of a "NOT" operator P operator flips the \uparrow to a \downarrow and vice versa i.e.

$$P \uparrow = \downarrow , P \downarrow = \uparrow$$
 (72)

and of course the do nothing operator exists and it leaves the bit as it is

$$e \downarrow = \downarrow , e \uparrow = \uparrow .$$
 (73)

You can check that flipping the bit twice with PP = e gets you back the original bit, and hence P is its own inverse, and associativity is easily checked. So again the set of operators $\{P, e\}$ forms a group and it is Z_2 .

We can represent the two possible states of the bit by a 2 by 1 column matrix

$$\uparrow = \left(\begin{array}{c} 1\\0\end{array}\right) , \quad \downarrow = \left(\begin{array}{c} 0\\1\end{array}\right) \tag{74}$$

then the operators P and e can be represented by 2×2 column matrices

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(75)

and you can check that Eq. (72) and Eq. (73) are obeyed. We say that the matrices Eq. (74) and Eq. (75) form a Linear Group Representation of Z_2 . We threw in "linear" because it is clear that $P(\uparrow + \downarrow) = P \uparrow + P \downarrow$ etc. Notice that the matrices \uparrow and \downarrow form a Vector Space. We will have a bit more to say about Vector Spaces when we study representation theory in Chapter 4, but in the meantime it shouldn't be hard to convince yourself that it obeys the usual rules you know and love from thinking in terms of a 2-dimensional vector $\mathbf{A} = x\mathbf{i} + y\mathbf{j} = x \uparrow + y \downarrow$ etc.

Of course, now that we have represented P in terms of 2×2 matrices, there is nothing to stop us from operating it on some other 2×1 column matrix e.g.

$$P\left(\begin{array}{c}5\\-3\end{array}\right) = \left(\begin{array}{c}-3\\5\end{array}\right) \tag{76}$$

and so on, just like in the case of the D_4 group we studied in Chapter 1. The take home message is that groups exists on its own without the requirement of a symmetry (or symmetries) in the underlying space. Having said that, it is when the underlying space possess symmetries, its power become magnified.

3.1.2 Order 3 Group

Consider the order 3 group $Z_3 = \{e, a, b\}$. We now want to show that, like the Z_2 group, the group axioms alone is sufficient to determine all the composition rules and hence the order 3 group is unique. We will now prove this statement and derive the algebra.

(Theorem) Uniqueness of Order 3 Group Z_3 : Z_3 is the unique order 3 group.

Proof: From the identity axiom, ae = ea = a, be = eb = b. Now we want to derive the compositions ab, ba, bb, aa.

Consider ab, closure means that it can be a, b or e. Suppose ab = b, then $(ab)b^{-1} = bb^{-1}$ where we have used the fact that inverses for a, b exist (which we denote as a^{-1}, b^{-1} for the moment and we'll find out what they are later). Then by associativity $abb^{-1} = e$ and this implies a = e which cannot be right since the identity is unique, so $ab \neq b$. The assumption of ab = a leads to b = e so $ab \neq a$, and hence we have found ab = e.

Replacing a with b and vice versa in the last paragraph, we obtain ba = e. (I.e. the argument is symmetric under the interchange of a and b.). This means that a and b are inverses of each other.

Let's now turn to a^2 and b^2 . Consider a^2 , closure implies that it has to be a, b, e. Suppose that $a^2 = e$, then $a^2b = eb = b$, and by associativity a(ab) = b or using our previous results ab = e we get a = b. But we need a and b to be distinct, and hence $a^2 \neq e$. Suppose $a^2 = a$, but then $a^2a^{-1} = aa^{-1} = e$, and we get a = e which by uniqueness of identity cannot be true. Hence we find that $a^2 = b$. Using this, we can calculate $b^2 = a^4 = a(a^3) = a(a(a^2)) = a(ab) = a(e) = a$, i.e. $b^2 = a$. Note that for the last composition, you can also invoke the symmetricity of the argument under the interchange of a and b.

We have thus found the all the composition laws for the group. The multiplication table looks like

$$\begin{array}{c|cccc}
e & a & b \\
\hline
a & b & e \\
b & e & a
\end{array}$$
(77)

Since we have derived the group algebra from the axioms alone, this group must be unique \Box .

3.1.3 Cyclic Group Z_n , Isomorphism

Now you must be wondering about the names we have given to the unique order 2 and 3 groups Z_2 and Z_3 . It turns out that they are members of a large class of groups called the **Cyclic Group**. Let's start with some definitions.

(Definition) Generating Sets and Generators: Suppose G is a group. A generator $g \in G$ is an element of G where by repeated application of the group composition with itself or other generators of G, makes (or generates) other elements of G. The minimal number of elements in G which are required to generate all the elements of G is a subset $B \subseteq G$. We call B the generating subset of G.

Generating sets are not unique in general.

Example: Recall the dihedral-4 group D_4 in Chapter 1. We have shown that the generating set $\{R, m_1\}$ generates all the other elements of the group. The group written in terms of generators would be

$$D_4 = \{e, R, R^2, R^3, m_1, R^2 m_1, R^3 m_1, R m_1\}.$$
(78)

Example: Consider the Z_3 group. We can see that $a^2 = b$, so we can generate b from a, and hence the generating set of Z_3 is $\{a\}$.

The second example above can be generalized to n number of elements.

(Definition) Cyclic Groups Z_n : The Cyclic group Z_n is an order *n* group generated by a single generator *a*

$$Z_n = \{e, a, a^2, a^3, \dots, a^{n-1}\}, \ a^n = e.$$
(79)

Since the group is generated by a single elements, the composition law between two elements a^m and a^p for $m, p \in \mathbb{N}$ is simply $a^m a^p = a^k$ where k = p + m modulo n – the group "cycles" back to e. Hence the inverse for any element a^k is then a^{n-k} since $a^k a^{n-k} = e$.

Technically when $n = \infty$, Z_n is an infinite order group.

 Z_n is trivially **Abelian**. Let's define Abelian properly:

(Definition) Abelian and non-Abelian: Suppose G is a group then for any two elements $g, f \in G$, the group is Abelian if

$$gf = fg \tag{80}$$

otherwise it is non-Abelian.

Previously when we discuss the Z_2 group, we say that Z_2 is the unique order 2 group. We then show that the parity operators P and the identity form an order 2 group, and the NOT operator and the identity also form an order two group. Furthermore, in your homework set, you will show that the group $G = \{-1, 1\}$ is a group under the usual rule of multiplication of numbers. All these order two groups have the same composition laws of course but they are in a sense "different" from each other because their elements looks different. So what do we mean by "unique"? Intuitively, although the elements are the different, they are "the same" because their composition laws have the same structure. Let's formalize this notion.

(Definition) Isomorphism: Suppose we have two groups G_1 and G_2 with composition laws denoted by \cdot and \star . They are said to be *isomorphic*, and written $G_1 \cong G_2$, if there exist a bijective map $i: G_1 \to G_2$ such that it preserves the group composition law in the following way

$$i(g_1 \cdot g_1') = i(g_1) \star i(g_1') , \ \forall \ g_1, g_1' \in G_1.$$
(81)

Since i is a bijection, the following relation follows

$$i^{-1}(g_2 \star g_2') = i^{-1}(g_2) \cdot i^{-1}(g_2') , \ \forall \ g_2, g_2' \in G_2.$$
(82)

In this language, we say that all order 2 groups are *isomorphic* to Z_2 .

The idea is that the bijection i maps the elements from G_1 to G_2 , but the group composition law in G_2 has the same shape as that of G_1 , and hence it "doesn't matter" which set of elements you choose to work with. This is clearer with an example.

Example: Let $N_n = \{0, 1, 2, 3, ..., n-1\}$ be a set of integers. We equip it with a composition law "addition modulo n", and then one can show that this forms a group with the identity 0 (homework). This group is isomorphic to Z_n in the following way which we can prove by finding the bijective map i

$$i: N_n \to Z_n \; ; \; i(k) = a^k. \tag{83}$$

We can check that

- The identity in N_n is mapped to the identity in Z_n : $i(0) = a^0 = e$.
- For $p, k \in N_n$, the group composition law is $p + k \mod n$. The map $i(p+k) = i(p)i(k) = a^p a^k = a^{p+k \mod n}$.

hence $N_n \cong Z_n$.

Before we finish with the Cyclic group, let's talk about (yet another) definition of "order".

(Definition) Order of an element: Suppose G is a group and $g \in G$. Then the *smallest* value of n such that $g^n = e$ is called its *order*. The identity element has order 1.

Example: Consider the group $Z_2 = \{e, a\}$. *e* is trivially of order 1. While $a^2 = e$, so *a* is of order 2. *Example*: Consider the dihedral group D_4 . $R^4 = e$, so *R* is of order 4. (What is the order of R^2 ?).

Unfortunately, the word "order" is overused in mathematics, like the word "finger", can mean very different things to different people. So you have to be careful when you use it, lest you upset people with a careless application. For example, we say that the order of the group Z_6 is 6, while the order of the element a^3 in Z_6 is 2.

3.1.4 Klein four-group, Product Groups

We have shown that Z_2 and Z_3 are unique in the sense that every order 2 or 3 groups must be isomorphic to them. What about order 4 groups? It is clear that Z_4 is an order 4 group, but (fortunately) the cardinality of the set of elements have reached sufficient size that the group axioms no longer fully determine its structure, so Z_4 is not the unique order 4 group.

As you will be asked to prove in the Homework, there is only *one* other order 4 group other than Z_4 – it is the **Klein four-group** or the *Vierergruppe*¹¹.

Klein four-group V_4 : The Klein four $V_4 = \{e, a, b, c\}$ has the following group composition laws

$$a^{2} = b^{2} = c^{2} = e$$
, $ab = ba = c$, $bc = cb = a$, $ca = ac = b$ (84)

i.e. it is an Abelian group. It is the also the lowest possible order non-cyclic group. The generators of this group is $\{a, b\}$ (can you see why?)

One thing you might notice is that 4 is also the lowest natural number which is *not a prime number* i.e. $4 = 2 \times 2$. This gives us a way to construct the four-group in a slick way. First we extend the notion of the **Cartesian Product** we studied in Chapter 2 to groups.

(Definition) Products of Groups: Let G_1 and G_2 be groups with composition laws \cdot and \star . The product (or sometimes *Cartesian product*) of G_1 and G_2 is defined to be the set

$$G_1 \times G_2$$
 = The set of all possible pairs (g_1, g_2) where $g_1 \in G_1$, $g_2 \in G_2$ (85)

with the new group composition law

$$(g_1, g_2)(g_1', g_2') = (g_1 \cdot g_1', g_2 \star g_2') \tag{86}$$

and the identity element defined to be (e_1, e_2) where e_1 and e_2 are the identities for G_1 and G_2 respectively. The order of the group is then equal to the all the possible pairings, i.e. $|G_1 \times G_2| = |G_1||G_2|$.

Now we know that order 2 and 3 groups are uniquely Z_2 and Z_3 (Z_1 technically is also a group, but it is a trivial as it consists only of the identity element) – using the above methodology, we can construct groups of any order (which is in general not unique). For an order 4 group, we can product two Z_2 groups together since $|Z_2 \times Z_2| = |Z_2||Z_2| = 4$. We now assert that

$$Z_2 \times Z_2 \cong V_4. \tag{87}$$

2

 $^{^{11}}$ Literally, German for "four-group", and it seems that calling things in German make you sound more high-class, maybe except to the Germans.

Let's prove this statement by explicitly constructing the bijective map. On the left of Eq. (87), suppose the first Z_2 has elements (e_1, μ_1) and the second Z_2 has elements (e_2, μ_2) , then the product group $Z_2 \times Z_2$ possess all the possible pairings

$$Z_2 \times Z_2 = \{(e_1, e_2), (e_1, \mu_2), (\mu_1, e_2), (\mu_1, \mu_2)\}.$$
(88)

The group composition law is given by the rule Eq. (86), which depends on the composition laws of the individual component group Z_2 i.e. $\mu_i^2 = e_i$ for i = 1, 2 etc. There are a lot of terms, so for convenient, let's construct a multiplication table

which you should check that is correct. Now consider the bijective map i

$$i: Z_2 \times Z_2 \to V_4 \; ; \; (e_1, e_1) \mapsto e \; , \; (e_1, \mu_2) \mapsto a \; , \; (\mu_1, e_2) \mapsto b \; , \; (\mu_1, \mu_2) \mapsto c \tag{90}$$

then you can check that the group composition of the elements in Eq. (90) is the same as the V_4 composition laws Eq. (84), e.g. $(e_1, \mu_2)(\mu_1, e_2) = (\mu_1, \mu_2) \Leftrightarrow ab = c$ etc. Thus $Z_2 \times Z_2 \cong V_4 \square$.

You can have fun constructing groups of higher order than 4 by making product groups. In fact, there is nothing to stop you from making product groups with more than 2 groups. For example, one can make a triple product group $G_1 \times G_2 \times G_3$, where the group laws will have the form $(g_1, g_2, g_3)(g'_1, g'_2, g'_3) = (g_1g'_1, g_2g'_2, g_3g'_3)$ etc. We have thus taken the first steps in parsing the statement "The Standard Model is described by the group $SU(3) \times SU(2) \times U(1)$ ".

3.1.5 Subgroups

Suppose G is a group, and $H \subseteq G$ is a subset of G. Let $h_1, h_2 \in H$ be elements that belong to H (and also G of course). We can use the group composition law to calculate $h_1h_2 = g$ where $g \in G$. In general g does not have to belong to H. However, suppose that we can find a subset H where $h_1h_2 \in H \forall h_1, h_2 \in H$, then H is a group which "lives" in G, and we call H a **subgroup** of G.

In other words, if we take all possible pairs of the elements of a subset $H \subseteq G$, the composition of them results in another element in H, then H is a **subgroup**¹² of G. A subgroup is a group, hence it obeys all the group axioms as usual. Let's now be precise.

(**Definition**) Subgroup: Let G be a group. A subset $H \subseteq G$ is a subgroup of G if

- The identity of G is in H. (Can you see why?)
- For every $h_1, h_2 \in H$, $h_1h_2 \in H$. We say that H is *closed* under the group law of G.
- If h is in H, then its inverse $h^{-1} \in H$. We say that H is *closed* under inversion. This is actually *not* a redundant requirement since closure under group law does not cover this possibility.

For any group G, there is always the trivial subgroup consisting of nothing but the identity of G, $\{e\}$. Also, since $G \subseteq G$, G is a subgroup of itself. So since mathematicians are a prickly precise bunch, when you ask one of them "what are all the subgroups if G", they have to grumpily state the trivial subgroup, G (and then all the other subgroups besides that). To bypass this annoyance, mathematicians define a

 $^{^{12}}$ If you are high-brow mathematician, you can also say that H embeds in G. "Embeds" means, roughly, a subset of which "preserves the structure". In group theory, structure means the group laws, but you will see other applications of embedding when you study general relativity for example.

new term, **proper subgroups** of G, which is the set of all possible subgroups of G minus the trivial subgroup and G.

With this definition, Z_2 then has no proper subgroups (but two subgroups). How about Z_3 and Z_4 ? We can check by brute force in the following way.

Example: Given $Z_3 = \{e, a, a^2\}$, we want to see if we can find a proper subgroup $H \subseteq G$. We start by putting e in H. Now since H is a proper subgroup, |H| = 2, so there is only one other element which can either be a or a^2 . Suppose $H = \{e, a\}$, using the group laws ea = a but $aa = a^2 \notin H$, so $\{e, a\}$ cannot be a subgroup of G. Suppose $H = \{e, a^2\}$, then $ea^2 = a^2$ and $a^2a^2 = a(a^3) = ae = a \notin \{e, a^2\}$ hence Z_3 has no proper subgroups.

Example: Given $Z_4 = \{e, a, a^2, a^3\}$. Any proper subgroup of Z_4 must be of order 2 or 3. For order 3, $H = \{e, a, a^2\}$, $H = \{e, a, a^3\}$, $H = \{e, a^2, a^3\}$ – which you can quickly rule out using the requirement that all the elements must be closed under inversion. For order 2, we have $H = \{e, a\}$. $H = \{e, a^2\}$, $H = \{e, a^3\}$. But closure under inversion means that the element other than the identity must be its own inverse, and only a^2 has this property $a^2a^2 = e$, so the only proper subgroup of Z_4 is $H = \{e, a^2\}$.

You will be asked to find the proper subgroups of V_4 in the homework.

3.2 Properties and Actions of Groups

In this section, we continue our general trend of introducing properties of groups as we discuss new classes of groups. In addition we will further develop the important conceptual idea of "group operators doing stuff to objects". In the introduction Chapter 1, we started with the idea that the operators of groups act ("do stuff") to some other objects which abstractly have the mathematical structure of a vector space. We have not discussed it, but it turns out that vector spaces are also sets, hence we can define actions of group operators on sets. In fact, since the group elements themselves are contained in sets, we can define the action of group operators on themselves.

3.2.1 Action of Group Operators on Set

Let's begin by introducing the notion of action of group operators on some set. We already know that we can think of group operators as "doing stuff to objects", indeed we start our study of group theory with doing things to the square by rotating and reflecting it. So *actions are simply maps*. We now return to this notion.

Suppose $G = \{e, g_1, g_2, ...\}$ is a group and $X = \{x_1, x_2, x_3, ...\}$ is some set (which may or may not be a group for the moment). Suppose that each element of G maps X back to X, i.e.

$$e: X \to X$$
$$g_1: X \to X$$
$$g_2: X \to X$$
$$\vdots$$

Note that each of the maps g_i are in principle *different*, so if we want to completely define the **action** of G on X, we will have to individually specify what each element of g does to every element of X. But this is not as bad as it sounds, since G is a group, so the group elements must obey the group laws. Indeed, once we have specified the action of the *generators* of G on X, we can construct all the other actions of the elements of G on X. Finally, since inverses of g_i must exist according to the Group Axioms, and the inverse $g_i^{-1}: X \to X$ also, this mean that the maps $g_i: X \to X$ must be *bijective*.

Instead of the clunky $g_1: X \to X$ notation we used above, we are also familiar with writing the maps in the usual shorthand way $g_1(x), g_2(x)$ for $x \in X$, or even shorter hand simply $g_i(x), i = 0, 1, 2, ...,$ which is a perfectly fine notation. Instead of labeling with i, we write

Acting on single element $g_i(x) = L_{g_i}(x)$ or $g(x) = L_g(x)$ (91)

where we drop the redundant subscript i in the right hand side. We will see both kinds of notation in these lectures – often it will be clear in context.

Since G is a group, we can compose the two operators together in the usual way, dropping the x as this is always true regardless of the set X

$$g_1g_2 = L_{g_1}L_{g_2} = L_{g_1g_2}. (92)$$

Sometimes, instead of just an element of x, we can act "wholesale" on a set of elements. Let $Y = \{x_1, x_2\} \subseteq X$, then we can act on Y with L_g . The notation is then

Acting on Sets of elements
$$L_q(Y) = \{L_q(x_1), L_q(x_2)\}.$$
 (93)

The extra L seems to be a step back, since we have to write more stuff, there are two reasons why we attach this extra term. Firstly, sometimes a group can have *different actions on different sets* so we can distinguish them with L_g , P_g , R_g etc. Secondly, more importantly a group can act on other groups, in particular, it can act on itself since G is also a set, so gG can sometimes be confusing (although still used). The action of groups on itself is a very powerful idea, and we will devote the next section to study it.

We close this section with a useful definition.

(Definition) Orbit: Suppose G is a group and X is a set, and $x \in X$ is some point or element. Then the *orbit* of the action of G on x is the set of all points which can be reached by acting on x with G, i.e.

$$O_x = \{L_g(x), \forall \ g \in G\}$$
(94)

The name "orbit" brings into mind the Earth going around the Sun etc., and here you can think of the Sun as the action of x and the "orbit" being all the possible points that can be reached with a single action. Different actions have difference orbits.

3.2.2 Action of Group on Itself, Partitioning

Suppose G is a group and L_g is the action of the group on the group itself, so for each element g, this element can act on another element g' and we write

$$L_g(g'). (95)$$

Since the target of the action is the same group as the operators themselves, we can now define what L_q is explicitly. Let's do a few important ones.

Left Action/Multiplication: This is simply

$$L_g(g') = gg'. (96)$$

With left, there is right:

Right action/Multiplication: This is, giving it a new name just to be clear

$$R_g(g') = g'g$$
(97)

In particular, since the action of the group on itself are constructed using the group elements and the group law, the result of an action *is always another element of the group* by closure rules. Hence the group operators maps the group back to itself, i.e.

$$L_q: G \to G. \tag{98}$$

If we are given a subset of group elements (which may or may not be a subgroup) $H \subseteq G$, acting on H with a group operator g will create a new subset which is also a subset of G (by closure of G)

$$L_q(H) = H' \subseteq G,\tag{99}$$

where H' is some other subset of G. H' is also termed the **orbit** of the element g on H. As an explicit example, suppose $G = \{e, g_1, g_2, \ldots\}$ and $H = \{g_2, g_3\}$ then $L_{g_1}(H) = \{g_1g_2, g_1g_3\}$ and of course since by closure $g_1g_2, g_1g_3 \in G$, $H' \subseteq G$.

Now if H itself it not only a subset of G but is also a *subgroup* of G, then we can show that left (and also right) action of G on H partitions the group into **cosets** in the following important way.

(Definition) Cosets: Given a subgroup $H = \{e, h_1, h_2, ...\}$ of G, and then for any given element $g \in G$ (which may be also in H) we can construct a new set called a left coset by acting on the set H with left action of g, i.e.

$$L_g(H) = gH \equiv \{ge, gh_1, gh_2, \dots\}.$$
 (100)

Note that we have *defined* the name of the coset to be gH (we could have call it Bob too). Similarly we can define a **right coset** of g by acting from the *right* viz

$$R_g(H) = Hg \equiv \{eg, h_1g, h_2g, \dots\}.$$
 (101)

If G is Abelian, then gH = Hg (can you see why?)

Now let's make an assertion: the cosets partition G. Recall from Chapter 2, partitioning means that the cosets are **disjoint** from each other or they are the same coset. Let's make this more precise (we will discuss left cosets – the right cosets is similar)

- Suppose g_1H and g_2H are cosets, then $g_1H \cap g_2H = \emptyset$ or $g_1H \cap g_2H = g_1H = g_2H$, i.e. two cosets are either disjoint or identical. *Proof*: Suppose g_1H and g_2H have at least one element in common, let's call this element $g_1h_1 = g_2h_2$ respectively for $h_1, h_2 \in H$. Since from closure of H, $h_2h_1^{-1} \equiv h_3 \in H$, then $g_1H = g_2h_2h_1^{-1}H = g_2h_3H = g_2H$ since h_3H will result back in the same set H by closure of H. Hence if there exist a common element $g_1H = g_2H$ is the same coset \Box .
- $g_1H = g_2H$ iff $g_1^{-1}g_2 \in H$. Proof: Let $g_1^{-1}g_2 = h$, or $g_2 = g_1h$ then $g_2H = g_1hH = g_1H$. Conversely, if $g_1^{-1}g_2 \in H$ then $g_1H = g_2H$, or in words g_1 and g_2 are in the same orbit of $H \square$.
- Every element $g \in G$ belong to some coset. *Proof*: Since $e \in H$, and every g must be in a coset gH \Box .

In Chapter 2, we say that an **equivalence relation** ~ partitions a set. What is the equivalence relation that partitions G? The completely unhelpful (but correct) answer is "being in a coset". The better answer is to remember that elements which are "equivalent" share a property – and in this case the property is that belong to a coset gH associated with the element g. So if you like, an element in a coset g_1H share the property g_1 -ness.

We can collect all the cosets into a set (see how useful sets are), and such a set is called a **Coset Space**:

(Definition) Coset Space: G/H the set of all left¹³ cosets of the subgroup H of G. The number of cosets is called its index and written as |G/H|.

A note on notation and jargon: You may have remember we defined the "quotient" of two sets A and B as A/B back in Chapter 2. The notation here means a different thing (although we will come back

¹³The right coset space is, funnily, H/G, but we will not discuss it in these lectures.

and confuse you further later) – some mathematicians like to use (G : H) instead to distinguish the two but no physicists do that so we won't use it.

We can now state a very important and famous Theorem.

(Theorem) Lagrange: Let G be a finite order group, and H is a subgroup of G. Then

$$|G| = |G/H||H|.$$
 (102)

Proof: Since |G| is finite, |H| must also be finite. Since |G/H| is the number of disjoint sets (i.e. the left cosets), each with size |H|, then

$$|G| = \text{Total Disjoint cosets } |G/H| \times \text{Cardinality of each coset } |H|$$
 (103)

and we are done \Box .

Don't let this innocuous and simple result fool you: it puts a very strong restriction on the order of all possible subgroups since the order of any subgroup must be divisor of |G|. In other words, only subgroups of certain sizes are allowed.

Example: How many proper subgroups are there in an order 7 Cyclic group Z_7 ? Answer: since $|Z_7| = 7$, this is a prime number and the only integers that subdivide 7 is 1 or 7, which gives the trivial subgroup and Z_7 itself. These are not proper subgroups, so the total number of proper subgroups of Z_7 is zero.

We can immediately get two corollaries for free.

(Corollary): If |G| is a prime number n, then its has no proper subgroups.

(Corollary): The order of any element $g \in G$ divides G. (You will be asked to prove this in the homework).

Example: Recall the Dihedral D_4 group that we studied in Chapter 1. The elements of the group are $D_4 = \{e, R, R^2, R^3, m_1, m_2, m_3, m_4\}$, so $|D_4| = 8$. Now Lagrange's Theorem tells us that any subgroup of D_4 must be have an order that divides 8. The subgroups of D_4 are the cyclic group $Z_4 = \{e, R, R^2, R^3\}$, with $|Z_4| = 4$, and the Z_2 groups consisting of a reflection and the identity i.e. $Z_2 = \{e, m_i\}$, with $|Z_2| = 2$. Clearly, both 4 and 2 subdivides 8.

3.2.3 Conjugacy Classes and Normal Subgroups

There is another action of a group on itself which partitions the group, called **conjugation**, and is defined as follows.

(Definition) Conjugation: Suppose G is a group and $g, g' \in G$. The conjugation action of element g on element g' is defined to be

Conjugation
$$L_g(g') \equiv gg'g^{-1}$$
. (104)

(Definition) Conjugacy Equivalence Relation: Given two elements $g_1, g_2 \in G$. g_1 and g_2 are said to be conjugate to each if there exist any $g \in G$ such that

$$L_g(g_1) = g_2$$
, i.e. $g_2 = gg_1g^{-1}$ for any g (105)

and we write $g_1 \sim g_2$.

Colloquially speaking, a "conjugacy operation of g on g_1 , $L_g(g_1)$ " does the following: We take an element g_1 , and instead of doing the operation g_1 (say rotating like an element in D_4), we first "transform to a new location" by doing a g^{-1} operation, "do the g_1 operation there", and then transform back to the original location by undoing the g^{-1} operation.

We can quickly prove that conjugacy is an equivalent relationship in the following way

- Reflexive: if $g_1 \sim g_1$ always since we can choose g = e.
- Symmetric: if $g_1 \sim g_2 \Rightarrow g_2 \sim g_1$ we have inverses.
- Transitive: if $g_1 \sim g_2$ and $g_2 \sim g_3$ then $g_1 \sim g_3$. Check: given $g_1 = gg_2g^{-1}$ and $g_2 = g'g_3g'^{-1}$, then $g_1 = g(g'g_3g'^{-1})g^{-1} = g''g_3g''^{-1}$, where g, g', g'' are any elements of G.

Since conjugation is an equivalent relationship, it partitions the group into disjoint sets, called **Conjugacy Classes** – every element in each class is conjugate to each other. For Abelian groups, the conjugacy classes are particularly easy to understand – every element is its own conjugate classes since all the elements commute (you should work this out to convince yourself). Also, the identity element is its own conjugacy class for all groups.

Some *unions* of conjugacy classes themselves are also subgroups of G. These subgroups are called **Normal Subgroups**.

(Definition) Normal Subgroups: A normal subgroup H of G is a subgroup whose elements are conjugate to each other (not all unions form a subgroup though). To be specific, a group H is normal if for any pair of $h \in H$ and $g \in G$, there exist $h' \in H$ such that

$$L_g(h) = ghg^{-1} = h'. (106)$$

Another way of stating this condition is to say that the left and right cosets of g are equal, viz.

$$gH = Hg \tag{107}$$

A proper normal subgroup is a normal subgroup which is neither G or the trivial subgroup $\{e\}$.

If a group possess a proper normal subgroup, it is in a sense "not fundamental" as it means that the group can be "factored into smaller groups". We use quotations on "factor" because those are just words and it is not clear at this moment what we mean by that. An analogy is the notion of prime numbers – a prime number x cannot be "factored" into integers y and z i.e. x = yz unless either y or z is 1. Another way of saying is that there exist no **divisor** for a prime number except 1. To complete this analogy in group theory, we need to define a notion of what is a divisor – which is called **quotient**¹⁴

(Definition) Quotient Group: If H is a proper normal subgroup of G, then we can from the set of left cosets

$$G/H = \{gH; g \in G\}.$$
(108)

The left coset G/H is a group under the group laws of G. We call G/H the **Quotient Group** of G for H, and pronounce it "G quotient H".

Proof: Let $g_1, g_2 \in G$, so $g_1H, g_2H \in G/H$. Now, we can show that the coset obey all the group laws – note that we will make frequent use of the relation gH = Hg which is a property of normal subgroups H.

• (Closure): By cleverly using associativity (inherity from G), we can rewrite

$$(g_1H)(g_2H) = g_1(Hg_2)H$$

$$= g_1(g_2H)H$$

$$= (g_1g_2)\underbrace{HH}_H$$

$$= (g_1g_2)H$$

$$= g_3H \in G/H$$
(109)

 $^{^{14}}$ Unfortunately this is a reuse of both notation and terminology for subtraction from the set theory – however, if you think hard about it, it will actually eventually make sense.

- (Identity): (eH) is the identity. *Proof*: $(eH)(g_1H) = (Hg_1)H = g_1HH = g_1H$.
- (Inverse): The inverse for (g_1H) is $(g_1^{-1}H)$. Proof: $(g_1^{-1}H)(g_1H) = (Hg_1^{-1})(g_1H) = (eH)$.

Quotient groups are extremely important in particle physics and the idea of **spontaneously broken symmetries** which you will encounter when you study Quantum Field Theory and/or Particle Physics next term.

Now, like the fact that prime number occupy a very special place in number theory, groups which cannot be factored (i.e. has no proper normal subgroups hence possess no quotient groups) occupy a very special place in group theory. These groups are called **Finite Simple Groups**. The existence of simple groups, and full *classification* of them is one of the great achievements of modern mathematics – the program is completed only in the last 30-40 years. This means that we know of every single finite simple group exists – an amazing and remarkable fact. Indeed, there is a deep connection between Finite Simple groups and prime number – via Lagrange's Theorem, it is clear that all prime-ordered cyclic group Z_n with n prime is a Simple Group. Another crazy fact is that we also know of a special kind of finite simple group called **sporadic groups** with the biggest order, the so-called **Fisher-Griess Monster Group** M whose order is¹⁵

$$|M| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71.$$
(110)

3.3 Dihedral D_n Group

In the Introduction Chapter 1, we discussed the symmetries of the square in the context of the Dihedral-4 group D_4 . But obviously, there exist an entire class of polygons each with its own symmetry group. Indeed, the word "Dihedral" means "two-sided", referring to the fact that not only we can rotate the polygon, we can *flip* over it around an axis through the center – that's the reflection action of course. Dihedral groups are part of an ever larger class of groups called **Point Groups** since all the symmetry operations is pivoted around a single point (the geometrical center).

When we study D_4 , we showed that it is generated by two elements $\{R, m_1\}$. We could easily replace m_1 with any of the other reflection operators, so let's drop the subscript 1. Now given an *n*-gon, we can define a clockwise rotation about $2\pi/n$ by an operator R, and then we can generate all the possible rotations using this single generator. Given this, it is not hard to see that any D_n group are generated¹⁶ by just this operator and a reflection m, $\{R, m\}$, just like D_4 .

Let's consider the two generators separately.

• **Rotation**: Any dihedral group have a subset of operators consisting of the identity and the rotation operators,

$$\{e, R, R^2, R^3, \dots, R^{n-1}\} \subseteq D_n$$
 (111)

which looks like the cyclic group we studied in section 3.1.3, which indeed it is so the Cyclic group Z_n is a subgroup of D_n . As Z_n is generated by an element $\{a\}$ of order n, the cyclic subgroup of D_n is generated by the single rotation operator R of order n.

Since all rotations are generated by the single element R, it is clear that they all commute with each other so this subgroup is Abelian (as Z_n is also Abelian).

 $^{^{15}}$ A further amazing fact is that the dimensions of the irreducible representations of M turns out to be related to the coefficients of a fourier expansion of some obscure modular function, the proof which actually requires knowledge of string theory. A lot of exciting conjectures are spewing out of this curious fact – a fact so crazy that it is now known as "Monstrous Moonshine".

¹⁶It is an interesting exercise to show to yourself that there exist another set of generators $\{m, Rm\}$ for D_n . Notice that both generators in this case are reflections.

If n is even, then n/2 is an integer and hence the operator $\mathbb{R}^{n/2}$ exists. This is simply a rotation "half-way", or 180° . Despite its humble origins, this operator will play a crucial role in distinguishing the difference between odd and even groups as we will see.

• Reflection: It is clear that all the reflection operators are their own inverse, so it is of order 2, viz

$$m_i^2 = e, (112)$$

so it is clear that to generate all the reflection operators, we need help from the rotation generator R to "move the *n*-gon into the correct position" so to speak. Recall that from our study of D_4 , to generate the set of all the reflections $\{m_1, m_2, m_3, m_4\}$ requires both the R and m generators. It is clear that, in general, the rotation and reflection operators do not commute

$$m_i R^j \neq R^j m_i$$
, except for $j = -j$. (113)

Let's prove this, which we will also demonstrate the power of speaking in terms of generators. We choose $\{R, m_1\}$ to be the set of generators, then it is clear that we can generate rotations by $R^j = \prod_j R$, and reflections by

$$m_i = R^{i-1}m_1$$
, (114)

with $R^0 = e$. Then the LHS of Eq. (113) is

$$m_i R^j = R^{i-1} m_1 R^j (115)$$

while the RHS of Eq. (113) is

$$R^{j}m_{i} = R^{j}R^{i-1}m_{1} = R^{j+i-1}m_{1}$$
(116)

We now want to ask what value of j is needed such that the LHS = RHS, which we would require $m_1 R^j = R^j m_1$. What would be the required j? Obviously, if j = n/2, this relation is satisfied. Now $R^{n/2} = R^{-n/2}$ since $R^{n/2}$ is its own inverse as we discussed above. But wait! This is but a special case of the following general relation

$$\boxed{m_1 R^j m_1^{-1} = R^{-j} \text{ or } m_1 R^j = R^{-j} m_1}.$$
(117)

The easiest way to prove relation Eq. (117) is geometrically. Here is a sketch: to rotate counterclockwise R^{-j} , we first reflect with m_1 , then *rotate clockwise*, and this should be the same as rotating clockwise and then reflecting since $m_1 = m_1^{-1}$.

Using Eq. (117), Eq. (113) then follows \Box .

Indeed, since it doesn't matter which m we use in Eq. (117) (can you see why?), the following fundamental formula in computing operations in D_n is always true

$$\boxed{m_i R^j m_i^{-1} = R^{-j}}$$
(118)

and you should memorize it.

Recall now that two elements $g_1 \sim g_2$ (conjugate) if there exist any element g such that $gg_1g^{-1} = g_2$, Eq. (118) means that $R^j \sim R^{-j}$, i.e. R^j is conjugate to its inverse and both belong to the same conjugacy class. What other elements are in this conjugacy class?

The way to check this is to basically via bruteforce calculation: start with R^{j} , and act on it with the conjugation operator over all the elements of D_{n} . We have already saw the result g is a reflection operator; and then if g being the rotation operators:

$$L_{R^{i}}(R^{j}) = R^{i}R^{j}R^{-i} = R^{j} \text{ since all rotation operators commute}$$
(119)

and hence we get back the same element R^{j} , so the pair $\{R^{j}, R^{-j}\}$ forms a conjugacy class, i.e. there is no other elements in this class.

What about the reflection operators? Let's conjugate m_1 with the rotation operators R^j and see what we get:

$$L_{R^{j}}(m_{1}) = R^{j}m_{1}R^{-j}$$

= $R^{j}(R^{j}m_{1})$
= $R^{2j}m_{1}$ (120)

where we have used the fundamental relationship $m_1 R^j = R^{-j} m_1$ in the 2nd line. Conjugating it with the reflection operators we get, using $m_{j+1} = R^j m_1$, (using m_{j+1} instead of m_j simplifies our task)

$$L_{m_{j+1}}(m_1) = m_{j+1}m_1m_{j+1}^{-1}$$

= $(R^jm_1)m_1(R^jm_1)^{-1}$
= $(R^jm_1)m_1m_1^{-1}R^{-j}$
= $R^{2j}m_1$ (121)

where in the 3rd line we have used the identity Eq. (66) $(ab)^{-1} = b^{-1}a^{-1}$. So conjugating m_1 with both rotation and reflection operators gets us the same relation $R^{2j}m_1$. This defines a set of reflection operators, since it is of the form $R^k m_i$.

Given the set of possible values for $j = 0, 1, 2, 3 \dots, n-1$, we can calculate the reflection operators that are conjugate to m_1 . However since $R^{2j} = R^{2j \mod n}$, this means that what the set is depends on whether n is odd or even:

• If n is odd then every even integer $2j \mod n$ is a multiple of 1, and hence *all* the reflection operators are in the same conjugacy class

Reflection conjugacy class for
$$n \text{ odd} = \{m_1, m_2, \dots, m_n\}.$$
 (122)

For example: if n = 5, then $j = 0, 1, 2, 3, 4 \Rightarrow 2j \mod 5 = 0, 2, 4, 1, 3$.

• If *n* is even, we only get half the relection operators,

Odd Reflection conjugacy class for
$$n$$
 even = $\{m_1, m_3, \dots, m_{n-1}\}$. (123)

For example: if n = 6, then $j = 0, 1, 2, 3, 4, 5 \Rightarrow 2j \mod 6 = 0, 2, 4$. What about the m_2, m_4, \ldots in this case? You can (and should) show that by computing the conjugation of m_2 with the rotation and reflection operators that they form a conjugacy class by themselves

Even Reflection conjugacy class for
$$n$$
 even = $\{m_2, m_4, \dots, m_n\}$. (124)

Finally the identity element always is its own (and lonely) conjugacy class, and hence we have shown that the conjugacy partitions D_n into disjoint sets.

Now after all these abstract math, let's pause see how the conjugacy classes have picked up on a property of the reflection operators that you might have noticed. Geometrically we can see that there is a qualitative difference between the reflections of odd and even Dihedral-n groups. For n odd, one edge of the reflection axis goes through a vertex and the midpoint of an edge, while for n even there are two distinct reflections – reflection axes which go through two vertexes, and reflection axes which go through two midpoints. This is why for n even, there exist two distinct conjugacy classes for the reflection operators! Notice further that, the reflection conjugacy class(es) holds all the elements of reflections which are "equivalent". When we said the words "it doesn't matter which of the m's we choose to be the one

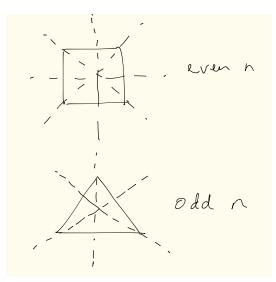


Figure 6: Reflection symmetries of the odd and even dihedral-n groups, illustrated by a square (D_4) and an equilateral triangle (D_3) . For even n, there are two distinct reflections, while for odd n there is only one kind of reflection. This "distinct"-ness is captured by the conjugacy classes of the group.

where the reflection is across the axis that runs from top to bottom", we are secretly using the fact that all these m's are in the same conjugacy class. For the rotation operators, the fact that R^j and R^{-j} are in the same class of course reflects the fact that it doesn't matter whether we call the rotation "clockwise" or "counterclockwise" which is a matter of convention. We will see other examples of "sameness" or "conjugacy" in other groups we will study – indeed one of the first thing you should do when confronted with a new group is to calculate its conjugacy classes since it immediately gives you an insight into some notion of "sameness".

3.3.1 The Permutation Group and the Symmetric Group

Suppose you are given 3 balls, and you are asked to put the 3 balls in three boxes. What is the number of possible ways you can do that? Suppose now you label the balls with numbers 1,2,3, then you can arrange the balls in the following ways

$$(1,2,3)$$
, $(1,3,2)$, $(3,1,2)$, $(3,2,1)$, $(2,3,1)$, $(2,1,3)$

for a total of 3! ("three factorial") ways.

Suppose that you have chosen to arrange it in the order (1, 2, 3), but your BFF comes along and asked you rearrange it to become (3, 1, 2). No problem you say, you just switch $1 \rightarrow 3$, $2 \rightarrow 1$, $3 \rightarrow 2$ and you are done. Saying the previous sentence is a mouthful, so let's invent some mathematical notation for "switching" in the following way

$$\left(\begin{array}{rrrr}
1 & 2 & 3\\
3 & 1 & 2
\end{array}\right)$$
(125)

where the top row indicites the original ordering, and the bottom row indicates the rearrangement. It is clear that, starting from (1, 2, 3) you have 6 different ways of rearranging the balls, counting the "do nothing rearrangement" where you just keep the balls where they are originally. They are

$$P_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} , P_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} , P_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
(126)

$$P_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} , P_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} , P_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
(127)

where we have given them names P_i and used the "=" sign indiscriminately. Mathematically, such a "rearrangement" when you swap the objects around is called a **permutation**, and we say that P_i 's

are **permutation operators**. Let's now imagine that you start with the balls in (1, 2, 3), do a P_3 permutation, and then immediately do a P_4 permutation. In box 1, the ball goes from $1 \rightarrow 3 \rightarrow 1$, in box 2, it goes from $2 \rightarrow 1 \rightarrow 3$, and finally in box 4 we have $3 \rightarrow 2 \rightarrow 2$. Hence the final configuration is (1,3,2).

We define the rule of successive permutation, or composition of operations, mathematically by writing $P_4 \star P_3$ where the **binary operator** \star (remember this?) is defined to act from the right to the left. So $P_i \star P_j$ means that we permute with P_j and then with P_i . Let's drop the \star from now to simplify our notation, i.e. $P_i \star P_j = P_i P_j$. Note that $P_4 P_3$ is

$$P_4 P_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = P_2 \tag{128}$$

i.e. it is simply the same operation as P_2 . Indeed, as you can check for yourself, any composition of two permutations will result in another permutation operator i.e. $P_iP_j = P_k$, where i, j, k = 1, 2, ..., 6. We say that permutations are *closed* under composition. You can also easily check that they are also *associative*

$$(P_i P_j) P_k = P_i (P_j P_k). \tag{129}$$

You can probably guess where we are headed – we are in the process of showing that the set of permutations $\{P_1, P_2, P_3, P_4, P_5, P_6\}$ forms a group. We have shown closure and associativity. Which leaves us to show the existence of the identity element and the inverses. The identity element is simply the "do nothing" operator P_1 . For inverses, it is not hard to see that $P_2P_2 = P_1$, $P_3P_5 = P_1$, $P_4P_4 = P_1$ and $P_6P_6 = P_1$, so each element possess an inverse. Hence we have proved that the set of permutations of 3 balls forms a group, called the **Permutation Group** of 3 balls. Note that however $P_2P_3 \neq P_3P_2$ – in general $P_iP_j \neq P_jP_i$ so it is not Abelian.

We don't have to stop with 3 balls of course, we can have as many balls as we want. Note that you can think of a permutation as a *map* from the set back to itself (with some swapping among its elements). With that in mind, let's now properly define **Permutation Group**.

(Definition) Permutation Group Perm(S): Suppose S is a set, and $P: S \to S$ is a bijective map from S back to itself, then the set of all possible bijective maps $Perm(S) = \{P_1, P_2, ...\}$ from S to S, with a composition operator defined as two successive permutations, forms a group in the following way:

- Closure: Since Perm(S) is defined to the set of *all* possible permutations, and any composition of two permutation is just another permutation, it is closed.
- Identity: the trivial map $P(s) = s \forall s \in S$.
- Inverse: since P is bijective, there exist an inverse for all s.
- Associative: Let F(s) = P(P(s)), but then P(F(s)) = F(P(s)) since P(s) is a injective.

If the order of Perm(S) is finite, we give it a special name.

(Definition) Symmetric Group \mathbb{S}_n : Suppose that S is finitely ordered, $|\operatorname{Perm}(S)| = n < \infty$, then $\operatorname{Perm}(S) = \mathbb{S}_n$ is called the *symmetric group*.

So in our case of the 3 balls above, $S = \{1, 2, 3\}$ is the set of 3 balls labeled by 1,2,3, and hence is known as either the permutation group of 3 balls or the symmetric group S_3 . The Permutation group is of crucial importance in group theory due to the theorem we will discuss next.

Let's introduce an even slicker notation, called the **cyclic notation**¹⁷. Suppose we have the following

¹⁷This has nothing to do with the Cyclic group, cyclic is yet another overused word.

permutation for an element of an S_5 symmetric group,

$$P = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5\\ 5 & 3 & 1 & 2 & 4 \end{array}\right).$$
(130)

The rules for writing it in the cyclic notation is as follows. Start with any number, conventionally we choose 1. Now we follow the trail of permutations from $1 \rightarrow 5 \rightarrow 4 \rightarrow 2 \rightarrow 3$, and we write

$$P = (15423). \tag{131}$$

If we "return" to the starting point without going through all the numbers, we start a new series. So

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$
(132)

becomes

$$P = (132)(45), \tag{133}$$

i.e. we have $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$, so we choose 4 to start a new series and it goes $4 \rightarrow 5$. And if there are elements not permuted, by convention we leave them out. I.e.

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}$$
(134)

becomes

$$P = (132).$$
 (135)

Note that any *cyclic* rearrangement of P does not change the elements, so (15423) = (42315) = (31542) etc. We can cycle the terms inside the brackets individually, so for (132)(45) = (132)(54) = (321)(54) etc.

You can, for fun, calculate the conjugacy classes for the Permutation Group. We won't do it here, as it will take us too far afield. So we will simply assert that elements with the same cyclic notation structure $(\ldots)(\ldots)(\ldots)(\ldots)$ belong to the same conjugacy class. So for example, for S_4 the conjugacy classes are

$$\{e\} \\ \{(ab)\} = \{(12), (13), (14), (23), (24), (34)\} \\ \{(ab)(cd)\} = \{(12)(34), (13)(24), (14)(23)\} \\ \{(abc)\} = \{(123), (124), (132), (134), (142), (143), (234), (243)\} \\ \{(abcd)\} = \{(1234), (1243), (1324), (1324), (1342), (1423), (1432)\}.$$

We won't spend too much time with the Permutation group, although it has very interesting applications, for example in the studies of the identical particle problem in Quantum Mechanics (it is a crucial ingredient in showing that half integer spin particles obey the Pauli Exclusion Principle).

However, it is even more crucial in the standpoint of the classification of finite groups (which, as physicists, we don't care that much but it is one of the great achievements of modern mathematics). Its power comes from a famous theorem we will study next.

3.3.2 Cayley's Theorem

We have discussed subgroups previously. It is an interesting question to now ask "is there a group in mathematics where all other groups are subgroups of?" The answer is yes, and it was proven by Cayley in 1854, in which will now discuss.

(Theorem) Cayley: Any group G is isomorphic to a subgroup of Permutation Group Perm(S) for some choice of S.

In other words, every single group you can think of is embedded in the Permutation Group, so in vulgar language it is the mother of all groups known to humans.

The proof of this theorem is long compared to the others in these lectures, so buckle you seat-belts and read slowly. I encourage you to fully understand the proof, as you will learn some of the abstract thinking and tricks that will serve you well in your future career as a physicist.

Proof: Consider a group G with elements $g_i \in G$ and group composition law $g_i g_j \in G$. To prove this theorem, let's start by constructing a one-to-one map j which maps G to $\mathbb{S}_n = \operatorname{Perm}(S)$, such that the group composition law of G is preserved (this is called a **Homomorphism**, which we will study in great detail in section 4.2.1). In equations, we want to construct

$$j: G \to \operatorname{Perm}(S)$$
 such that $j(g_1g_2) = j(g_1) \star j(g_2)$ (136)

where we have used \star to denote the group composition law of Perm(S) group (which at this stage is different). There are two things we need to show:

- We want to show that $j(g_1) \star j(g_2)$ does result in an element of Perm(S) for some S.
- For a given set $G = \{g_1, g_2, \dots, g_n\}$, its image set $\{j(g_1), j(g_2), \dots, j(g_n)\}$ forms a group under the group law of Perm(S).

If these two requirements are fulfilled, then j is an isomorphism into a subset of Perm(S) which is also a group (i.e. a subgroup of Perm(S)) then we are done. Let's begin with the first item.

Since we are free to choose S, let's choose S = G. The map j then becomes

$$j: G \to \operatorname{Perm}(G).$$
 (137)

Perm(G) is the set of all permutations on the elements of G. There are a total of |G|! = n!, this is (for n > 2) more than |G|, and since j is one-to-one, we get to choose which of Perm(G) gets mapped to. Let's choose the following, for each $g \in G$,

$$j(g) = P_g$$
, where $P_g(g') = gg' \ \forall g' \in G.$ (138)

The above Eq. (138) is quite dense. Let's parse it in human language. The first part $j(g) = P_g$ tells us that j maps each element of g to $P_g \in \text{Perm}(G)$, which at the moment we are free to choose. Each element of the Perm(G) permutes the entire set of G. We choose P_g to be the element that permutes Gby **left action** (or left multiplication) with g. To see this, remember that acting on every element $g' \in G$ by an element of g results in another element in G so it essentially permutes it, viz

$$gg' \equiv (gg_1, gg_2, gg_3, \dots, gg_n),$$
 (139)

recalling that by closure gg_1, gg_2, \ldots are also elements of G. So we have chosen j to map g into an element of Perm(G) whose action is to permute the entire set of G by left multiplication with g. Note that this map automatically maps the identity e of G into the trivial permutation P_e of Perm(G). (This is a lot of words to describe j, but it is crucial that you understand it as this is the key step in the proof.)

Now, we want to show that j preserves the group law, in the following way. There is some trickery with notation so read carefully. For any two elements $g_1, g_2 \in G$, and for all g' of G, we find

$$i(g_1g_2)(g') = P_{g_1g_2}(g') = g_1g_2g' = g_1P_{g_2}(g') = (P_{g_1} \star P_{g_2})(g') = (j(g_1) \star j(g_2))(g')$$
(140)

where g_1g' is to be read as Eq. (139) above. The final step is to show that the subset $\{P_{g_1}, P_{g_2}, \ldots, P_{g_n}\}$ forms a group.

- Identity: P_e is clearly the identity.
- Inverse: Since for any $g \in G$, $j(gg^{-1}) = j(e) = P_e = P_g \star P_{g^{-1}}$, the inverse exists for all elements P_g .
- Associativity follows from the associativity of the group laws of G and Perm(G).
- Closure of Perm(S) follows from the closure of group law of G and the preservation of the group law of Perm(G) under j.

Hence we have found an isomorphism j that maps G to a subgroup of Perm(G) as required \Box . Note that in some books, Cayley's Theorem is stated to be valid for finite ordered permutation group (or the symmetric group). But as you just saw, the proof does not rely on the finiteness of G and hence Cayley's Theorem is also valid for infinite ordered groups. I don't quite know why some books restrict the theorem to finite ordered groups. The only reason I can think of is history as Cayley first proved it for finite ordered groups but it was later extended by other people for infinite ordered groups.

4 Matrix Groups and Representation Theory

I've got a bad feeling about this.

Various Star Wars characters.

In this chapter, we will discuss matrix groups and representations. We will be doing a lot of matrix algebra, so if you are rusty with that, I suggest that you do some brushing up before plugging in.

This is a really long and extremely challenging chapter -I had a hard time trying to distill it into a digestible form. The discussion on Represention Theory is particularly difficult and long. Its difficulty is due to the many proofs of theorems which are in reality not something you would need to remember for the exams. However, pedagogy is not about exams, so I hope you have made the effort to follow through the proofs. We will summarize the main results in the section 4.5.

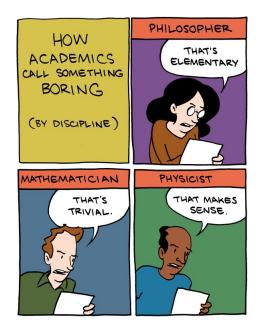


Figure 7: Stolen from http://www.smbc-comics.com/.

4.1 An Introduction to Continuous Groups

Continuous groups obey the group axioms we laid out in the beginning of Chapter 3. Consider a continuous group that you know and love.

Proposition: The set of Real Numbers \mathbb{R} forms a group under addition. *Proof*: We check the group axioms as follows:

- Identity: the element 0 is the identity since $a + 0 = 0 + a = a \ \forall a \in \mathbb{R}$.
- Closure: $a + b \in \mathbb{R}$.
- Associativity: a + (b + c) = (a + b) + c.
- Inverse: For every $a \exists (-a)$ such that a + (-a) = 0.

and hence we are done \Box . Furthermore since a + b = b + a, this is an *abelian* group.

Note that \mathbb{R} is technically *not* a group under multiplication since the element 0 has no inverse as 1/0 (which you will call ∞) is not an element of \mathbb{R} . However 1/0 is a tricky customer and causes much angst and requires special care, and often we can define the group $\mathbb{R}^* = \mathbb{R} - \{0\}$ (i.e. real numbers minus the zero) which then forms a group under multiplication¹⁸. What we have not discuss is *why* \mathbb{R} is continuous. The study of continuity is a whole subfield in mathematics called **Point Set Topology**, and digressing there will lead us way too far afield. In these lectures, we will *assert* the following

 \mathbb{R} is continuous hence any set or group that can be parameterized by \mathbb{R}^n , or some compact subset, will be continuous. n is the number of dimensions of this group.

We will come back to discussing continuity later in section 5.1.

4.1.1 Linear/Matrix Groups

Let's now talk about more interesting continuous groups. We begin with the group that string theorists love¹⁹.

(Definition) Special Linear Group $SL(2, \mathbb{C})$: Let $SL(2, \mathbb{C})$ denotes a set of 2×2 matrices which has determinant 1 and complex entries, with the group composition law being given by usual matrix multiplication. Each element $A \in SL(2, \mathbb{C})$ has the following form

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} , \ a, b, c, d \in \mathbb{C}$$
(141)

Since all the matrices must have det(A) = 1, this means that

$$ad - bc = 1. \tag{142}$$

We can then prove that $SL(2,\mathbb{C})$ is a group:

• Identity: There exists an identity e such that $Ae = eA = A \forall A$. This is just the usual identity matrix

$$e = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) \tag{143}$$

- Associativity: Since matrix multiplication is associative, the group *inherits* this property A(BC) = (AB)C for all $A, B, C \in SL(2, \mathbb{C})$.
- Inverse: Since the determinant of all matrices det(A) = 1 and hence it is never zero, this means that an inverse A^{-1} exists for all A such that $AA^{-1} = e$.
- Closure: Using the rule of determinant multiplication det(AB) = det(A) det(B), and now since det(A) = det(B) = 1, det(AB) = 1 and hence the group is closed.

Since a, b, c, d are all complex numbers²⁰, and it inherits the continuity from being a pair of real numbers. So the elements of $SL(2, \mathbb{C})$ are then similarly continuous and thus is a **continuous group**.

This group is called the **Special Linear Group** in 2 dimensions over the Complex Field (i.e. complex numbers equipped with the Field axioms we studied in Chapter 2). The word *Special* means that the

¹⁸If you have been paying attention, you will notice that way back in Chapter 2 we have defined a Field of real numbers with addition and multiplication, and say that inverses for both exists.

¹⁹In string theory, this group is also known as the **Global Conformal Group** in 2D, and it describes the symmetries of a world sheet, and as you will show in an homework problem, it preserves the angle of any two lines on the complex plane.

²⁰Complex numbers are really an ordered pair of real numbers $\mathbb{C} = \mathbb{R} \times \mathbb{R}$ equipped with the usual additional and multiplication operators, and additionally possess a *conjugation* action in the following way if $x, y \in \mathbb{R}$ then the conjugation relates $(x + iy) = (x - iy)^*$. In case you are wondering – this conjugation action is an equivalent relationship.

determinant of the matrices is 1, while *Linear* simply means that the elements are matrices. So you can also have $SL(4,\mathbb{R})$ the group of 4×4 matrices with real entries and unit determinant etc.

 $SL(2, \mathbb{C})$ is a big group, and as we will see, counts the group of 2-dimensional rotations and the dihedral groups D_n as some of its subgroups. But itself is a subgroup of an even larger group called $GL(2, \mathbb{C})$, or the **General Linear Group** in 2 dimensions, which itself can be generalized to N dimensions as follows.

(Definition) General Linear Group $GL(N, \mathbb{C})$: Let $GL(N, \mathbb{C})$ be a set of $N \times N$ square matrices with non-zero determinant, and complex entries. Then together with usual matrix multiplication and the algebra of the complex field, forms a group. (It should be easy for you to prove this.)

As you might have guessed, the word *General* means that the determinants of the matrices can be any value except zero (which is required for invertibility of the matrices).

4.1.2 Special Orthogonal Group SO(N) and Rotations

A subgroup of $SL(N, \mathbb{C})$ is the group of rotations in N dimensions SO(N):

(Definition) Special Orthogonal Group SO(N): Let SO(N) be a set of $N \times N$ matrices R such that det R = 1, and the condition $R^T R = e$, where R^T is the **Transpose**²¹ of the matrix R. Then SO(N) is a group.

Most of the proof is very similar to the case for $SL(2, \mathbb{C})$. The additional condition $R^{\dagger}R = 1$ requires just a bit of work to show closure, i.e. suppose $R_1, R_2 \in SO(N)$, then

$$(R_1 R_2)^T (R_1 R_2) = R_2^T R_1^T R_1 R_2$$

= $R_2^T (R_1^T R_1) R_2$
= $R_2^T R_2$
= e (145)

so the group is closed under matrix multiplication as required. This condition $R^T R = e$ is known as the **Orthogonality condition** (just in case you are wondering). This group is a subgroup of the **Orthogonal Group** O(N), which relaxes the condition on the determinant to be ± 1 (instead of just +1).

Why is this the group of rotations in N dimensions? Let's look at the simplest N = 2 case, SO(2), whose elements have the form

$$R = \begin{pmatrix} a & b \\ c & d \end{pmatrix} , \ a, b, c, d \in \mathbb{C}$$
(146)

with unit determinant

$$ad - bc = 1. \tag{147}$$

Meanwhile the orthogonality condition

$$R^T R = e \tag{148}$$

gives us three additional equations

$$a^{2} + b^{2} = 1$$
, $ac + bd = 0$, $c^{2} + d^{2} = 1$ (149)

A solution to these set of equations Eq. (147) and Eq. (149) is

$$a = \cos \theta , \ b = -\sin \theta , \ c = \sin \theta , \ d = \cos \theta$$
 (150)

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, A^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}.$$
 (144)

²¹I.e. For a 2×2 matrix A,

i.e., the matrix element is parameterized by a single real parameter²² θ .

$$R_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.$$
 (151)

Note that since the trigonometric functions are periodic the domain of $0 \le \theta < 2\pi$. We say that the domain is **compact** and SO(2) is a **compact group**²³.

For those who have seen it before, it's clear that Eq. (151) is a rotation matrix in 2 dimesions, in the following way. Recall that group elements can *act* on sets, as we have studied in Chapter 3 in the following way.

Let SO(N) act on the points belonging to the 2 dimensional Cartesian coordinates space²⁴ $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$, i.e. whose elements are the ordered pairs (x, y) with $x, y \in \mathbb{R}$. How do we want R_{θ} to act \mathbb{R}^2 ? Since the operators R_{θ} are 2 × 2 matrices, we can arrange (x, y) as a 2 × 1 column matrix V, and *define* the action as matrix multiplication from the left, which takes an element of \mathbb{R}^2 into another element of \mathbb{R}^2 , i.e.

Action of
$$SO(N)$$
 on \mathbb{R}^2 $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$; $R_{\theta}V = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ (152)

where

$$x' = x\cos\theta - y\sin\theta , \ y' = x\sin\theta + y\cos\theta.$$
(153)

As Figure 8 shows, this is a rotation of the vector (x, y) into a (x', y') counter-clockwise by an angle θ .

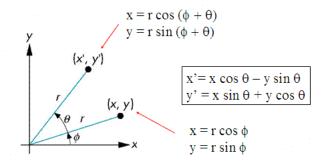


Figure 8: Action of an operator of $R_{\theta} \in SO(N)$ on an element of $(x, y) \in \mathbb{R}^2$ is a counterclockwise rotation by θ .

²²You might be puzzled why 4 equations do not yield the solutions to 4 unknowns a, b, c, d – it turns out that one of the equations is redundant.

 $^{^{23}\}mathbb{R}$ under addition is an example of a **non-compact** group. Compactness is a topological property that is a bit technical to define, and will not really reveal a lot of insight. Roughly speaking, a compact space is something which we can reach the "boundary" by successively taking smaller and smaller steps (called a sequence) towards it. So for example, the interval [0, 1] is compact because we can reach 0 by taking the sequence of steps $1, 1/2, 1/4, 1/8, \ldots$ towards it, and reach 1 by taking the sequence of steps $0, 1/2, 3/4, 7/8 \ldots$

²⁴See Chapter 1 to refresh your memory on product sets.

We can compose two rotation operators R_{θ_1} and R_{θ_2} , by using matrix multiplication

$$R_{\theta_1}R_{\theta_2}V = \begin{pmatrix} \cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1 \end{pmatrix} \begin{pmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) & -\cos(\theta_2)\sin(\theta_1) - \cos(\theta_1)\sin(\theta_2)\\ \cos(\theta_2)\sin(\theta_1) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2)\\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$
(154)
$$= R_{\theta_1 + \theta_2} \begin{pmatrix} x\\ y \end{pmatrix}$$

i.e. successive operations of two rotation matrices is cumulative. As practice, you can show that this group is abelian, i.e.

$$R_{\theta_1} R_{\theta_2} = R_{\theta_2} R_{\theta_1} = R_{\theta_1 + \theta_2}. \tag{156}$$

Note that SO(N) for N > 2 is generally non-abelian – can you see why?

In the introduction Chapter 1, we said that if we represented the group elements with square matrices, and objects which they act on as column matrices, then together they form a **Group Representation**. Here, SO(2) is already a matrix, and \mathbb{R} have been represented as column matrices V, so together they form a Group Representation of SO(2). We say "a representation" and not "the representation" because, in general, there are many representations for the same group. We will formally discuss Group Representations in Section 4.2, but first let's continue our journey using examples.

4.1.3 Unitary Groups U(N) and Special Unitary Groups SU(N)

Another matrix group that is very important in physics is the Special Unitary Group SU(N).

(Definition) Unitary Group U(N): Let U(N) be a set of $N \times N$ square matrices with non-zero determinant, complex entries and the Unitary condition $U^{\dagger}U = UU^{\dagger} = e$, where $U^{\dagger} = (U^*)^T$ is the Hermitian Conjugate of U. Then U(N) forms a group under usual matrix multiplication.

Like its close brethren, the SO(N), the only tricky part of the proof is to show closure, which follows the same prescriptoin

$$(U_1 U_2)^{\dagger} (U_1 U_2) = U_2^{\dagger} U_1^{\dagger} U_1 U_2 = U_2^{\dagger} (U_1^{\dagger} U_1) U_2 = U_2^{\dagger} U_2 = e$$
 (157)

An equivalent way of writing the Unitary condition $U^{\dagger}U = e$ is $U^{\dagger} = U^{-1}$, where in very high brow language we say "its inverse is its **adjoint**" – we'll come back to the often-seen word "adjoint" later.

(Definition) Special Unitary Group SU(N): The Special Unitary Group SU(N) are U(N) groups with the additional condition that the determinant of the matrices is 1.

Let's take a slight detour off group theory. You might have seen Hermitian Conjugation in your Quantum Mechanics class, and have studied operators. This is exactly the same Hermitian Conjugation – in Quantum Mechanics the space of states, called a **Hilbert Space** is a Complex Vector Space. Operators in Quantum are *linear maps* that acts on a state to take it to another state in the Hilbert Space. For example, suppose \hat{O} is an operator, and ψ is some normalizable state, then

$$\hat{O}: \psi \to \phi$$
 (158)

where ϕ is some other state which is normalizable. Furthermore, if f is a **Hermitian Operator**, then it obeys $f = f^{\dagger}$, and f is associated with an **observable**. For example, the momentum operator $\hat{\mathbf{p}}$ is a Hermitian Operator. Sometimes you might also hear people say that Hermitian Operators are **Selfadjoint**²⁵. We will talk about Vector Spaces and Linear Maps in Section 4.3.

In group theory language, the group SU(N) operators matrices and the Hilbert Space form a Group representation. Physical symmetries are then associated with states in the Hilbert space which are *equivalent* under the group action. These are dense words for the moment, but we will come back to study group theory in Quantum Mechanics in Chapter 6 when you will see that the symmetries associated with the U(N) and SU(N) operators are associated with conservation of charges and spins.

For now, let's consider the simplest of the unitary group, U(1). We will now show that it is actually isomorphic to SO(2) which we just studied, i.e. $U(1) \cong SO(2)$.

Proposition: $SO(2) \cong U(1)$

Proof: A literal reading of the definition for the Unitary Groups in Section 4.1.3 tells us that U(1) is the set of 1×1 complex matrix, which of course is just a complex number. Let $u \in \mathbb{C}$ be an element of U(1), then the unitary condition implies

$$u^*u = 1 \text{ or } |u|^2 = 1.$$
 (159)

Parameterizing the complex number u using the de Moivre formula

$$u = r \exp(i\theta) , \ r, \theta \in \mathbb{R}$$
(160)

where r is the radial distance in the Argand diagram and θ is the **argument** of u. But Eq. (159) implies that r = 1 and $0 \le \theta < 2\pi$, so we can write the set of the elements of U(1) as

$$U(1) = \{ \exp(i\theta) \mid 0 \le \theta < 2\pi \}.$$

$$(161)$$

Then it is easy to see that the group law implies

$$u_{\theta_1}u_{\theta_2} = \exp(i\theta_1 + i\theta_2) = u_{\theta_1 + \theta_2} \tag{162}$$

is obeyed. U(1) is clearly also an abelian group.

But look! Comparing Eq. (162) to the group law for Eq. (156), we can find the isomorphism

$$i: U(1) \to SO(2) \; ; \; i(\exp(i\theta)) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
 (163)

and with both sets of elements parameterized by $0 \le \theta < 2\pi$, this means that this map is injective. So despite their different names, they are the same group, i.e. $SO(2) \cong U(1)$. \Box .

$$(gx_1, x_2) = (x_1, fx_2)$$

²⁵What is the meaning of "adjoint"? In fact, you will hear the word "adjoint" used in apparently very different contexts in these lectures: adjoint operators, adjoint representations, self-adjoint etc. Adjoint-ness is an important abstract concept which is unfortunately not discussed more widely in physics. Suppose X is a set, and we are given an *action* $f: X \to X$, i.e. maps X into itself. Furthermore there exist a notion of "taking the inner product" (think of it as a way to define distance between objects in a set) of the elements of X defined to be (x_1, x_2) for $x_1, x_2 \in X$, then if there exist another action g such that

then we say that g is the adjoint of f. Of course, what the adjoint is depends on the set X, and the action, and the notion of "inner product". For example, in quantum mechanics, given two wavefunctions $\psi(x)$ and $\phi(x)$, then the inner product $(\phi(x), \psi(x)) \equiv \int_{-\infty}^{\infty} \phi(x)^* \psi(x) dx$. So an operator \hat{O} is self-adjoint if $(\hat{O}\phi, \psi) = (\phi, \hat{O}\psi)$, which you should be able to show yourself that implies $\hat{O}^{\dagger} = \hat{O}$. The usual notation physicists used to indicate the adjoint an operator \hat{O} is with the dagger \dagger symbol – can you see why the raising and lowering operators \hat{a} and \hat{a}^{\dagger} of the Simple Harmonic Oscillator are adjoints of each other but they are not self-adjoint?

What about the representation of U(1)? Obviously, the representations of SO(2) are 2×1 matrices so there is no natural action one can define for $u = \exp(i\theta)$ to act on them. On the other hand, one can define a 1×1 "matrix" v, i.e. another complex number $v \in \mathbb{C}$. Let $v = r \exp i\alpha$ with $0 < r < \infty$ and $0 \le \alpha < 2\pi$, then the action of u on v is simply

$$u_{\theta}v = r\exp(i\alpha + i\theta) \tag{164}$$

which is to *rotate* v in the Argand diagram clockwise by θ . This is exactly the same action as the action of SO(2), R_{θ} , on a vector in \mathbb{R}^2 space. The coincident is not surprising of course.

Now notice that while $SO(2) \cong U(1)$ are isomorphic to each other, their *Group representations* are different. Hence we learn one very crucial lesson here: for any group, there may exist more than one group representations.

4.2 Representations

In the proof of Cayley's Theorem in section 3.3.1, we introduced several new concepts without naming them. But now that you have done the hard work of understanding the proof, you are now ready to reap the rewards of breezing through the following.

4.2.1 Homomorphism and its Kernel

During the proof, we have constructed the map j between two groups which preserves the group law. You have seen something very similar, the *isomorphism* i, which is a map between two groups that preserves the group laws *and* is bijective. If we relax the condition of bijectiveness, then we obtain a more general map that simply preserves the group laws. Such a map is called a **homomorphism**.

(Definition) Homomorphism: Suppose G_1 and G_2 are groups with binary operators \cdot and \star , then a map $f: G_1 \to G_2$ is a homomorphism if

$$f(g \cdot g') = f(g) \star f(g') , \ \forall \ g, g' \in G_1.$$

$$(165)$$

In order to preserve the group law in G_2 , each element in G_1 is mapped to a *unique* element in G_2 but the reverse is not true. In other words, for every element $g_1 \in G_1$, $f(g_1)$ is an element in G_2 , but there may exist more than one element in G_1 which is mapped to the same element in G_2 , see Fig. 9. You will be asked to prove this in the homework.

Furthermore, by using the rule Eq. (165) and the group axioms, the identity in G_1 has to be mapped to the identity of G_2 . *Proof*: Suppose, let $g_1, e_1 \in G_1$, so $f(g_1e_1) = f(g_1) \star f(e_1)$, but $f(g_1e_1) = f(g_1)$ hence $f(g_1) = f(g_1) \star f(e_1)$ and $f(e_1) = e_2 \square$.

Also, similarly, the inverse of g_1 , g_1^{-1} is mapped to the inverse in G_2 . *Proof*: Let g_1^{-1} be the inverse of g_1 , so $f(g_1g_1^{-1}) = f(g_1) \star f(g_1^{-1})$ but $f(g_1g_1^{-1}) = f(e_1)$ so $f(g_1) \star f(g_1^{-1}) = e_2$ hence $f(g_1^{-1})$ must be the inverse of $f(g_1) \square$.

Now we have several cases depending on the domain and image of the map in the codomain (see Figure 10.

- The map is bijective: i.e. im(f) = cod(f), then the homomorphism is an *isomorphism* which we have studied previously. In other words, isomorphisms are special cases of homomorphisms.
- The map is one-to-one, but not onto: the homomorphism is called an injective/one-to-one homomorphism. We encountered this case in the proof of Cayley's Theorem the map j is an injective homomorphism. This means that the map f defines a so-called isomorphic embedding of the group G_1 into a subset of G_2 such that G_1 is subgroup of G_2 .

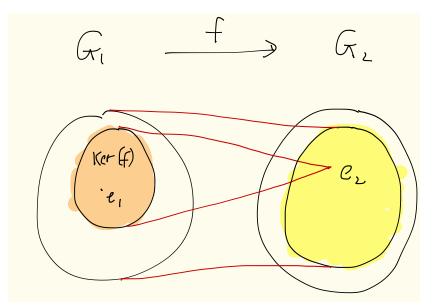


Figure 9: A homomorphism $f: G_1 \to G_2$. The Kernel of f is shaded red, and is mapped to e_2 the identity of G_2 . The entire group G_1 is mapped to a subset of G_2 (yellow). If f maps to the entirety of G_2 , and the kernel of f is trivial, then f is an *isomorphism*.

• The map is neither bijective nor one-to-one: each element in G_2 is mapped to more than one element in G_1 . This is the case which will be the most important in our study of groups, so we will expand the discussion below.

In the discussion below, we will drop the explicit writing of the binary operators \cdot and \star in from now on (restoring them only to clarify things) – it should be clear "in context".

(Definition) Image and Kernel: Suppose G_1 and G_2 are groups, and the homomorphism $f: G_1 \to G_2$ maps more than one element of G_1 into G_2 . Since the map is not necessarily onto, the image of f is a subset of G_2 , i.e.

$$\operatorname{im}(f) \subseteq G_2. \tag{166}$$

In addition, the set of G_1 which is mapped to the identity element $e_2 \in G_2$ in G_2 is called the kernel

$$\operatorname{Ker}(f) = \{g \in G_1 \text{ such that } f(g) = e_2\}.$$
(167)

This definition implies that the kernel $\operatorname{Ker}(f)$ forms a normal subgroup of G_1 . Proof: Let's prove that it is a subgroup first, then we prove that it is also normal. Since the kernel $\operatorname{Ker}(f) \subseteq G_1$, all we need to show is that it obeys the group laws. Let $K = \operatorname{Ker}(f)$, then

- Identity: It must possess the identity e_1 of G_1 , since f maps to the identity of G_2 .
- Closure: If $k_1, k_2 \in K$, then by the defining property of the homomorphism $f(k_1)f(k_2) = f(k_1k_2) = e_2e_2 = e_2$, hence $k_1k_2 \in K$.
- Inverse: If $k \in K$, then again by defining property of $f, k^{-1} \in K$.
- Associativity: Since G_1 is a group, K inherits the associativity property from G_1 .

Now to prove that it is also normal, we need to show that for every $k \in K$, $gkg^{-1} \in K \ \forall g \in G$. Using the defining property for the homomorphism $f(gkg^{-1}) = f(gk)f(g^{-1}) = f(g)f(k)f(g^{-1}) = f(g)e_2[f(g)]^{-1} = e_2$, and hence $gkg^{-1} \in K$. \Box .

In the homework, you will be asked to prove that im(f) forms a subgroup of G_2 .

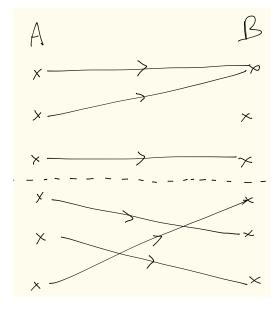


Figure 10: Possible homomorphisms from A to B. The top map is *one-to-one* but not *onto*, while the bottom map is bijective. Note that there is there is no map from two elements of B to an element of A.

4.2.2 Matrix (linear) Representations

We have seen before that we can represent group elements with matrices. For example in the introduction Chapter 1, we represented D_4 by a set of 2×2 matrices. Let us now formalize this. We will be discussing *linear representations*.

Suppose we have a group G. To represent a group G as a set of matrices, we identify each element of the group $g \in G$ with a matrix $U \in GL(N, \mathbb{C})$, i.e. the matrix is an element of the set of $n \times n$ matrices with non-zero determinant and complex entries. But look! We know from our study of continuous groups that $GL(N, \mathbb{C})$ is also a group under the usual matrix multiplication. This means that we can define a representation by a map between the group G and $GL(N, \mathbb{C})$ in the following way.

(Definition) Linear Representations: A group G is said to be linearly represented by U(g) with $g \in G$, where U is a homomorphism from G to $GL(N, \mathbb{C})$

Linear Representation
$$U: G \to GL(N, \mathbb{C}); U(g_1)U(g_2) = U(g_1g_2).$$
 (168)

Here think of the U's as square $n \times n$ matrices and $U(g_1)U(g_2)$ as simply matrix multiplication.

The first example you have seen is D_4 in Chapter 1. You also have seen the representation for Z_2 in Chapter 3. All the continuous groups that we discussed earlier in this chapter are already conveniently matrices, and hence are "represented by themselves". On the other hand, don't let this simple and intuitively notion lull you into complacency, particularly on the case of the continuous groups!

There are two key points here.

• The first easy key point is that we have left the dimensionality of N in the above definition as a free parameter – indeed this means in general there exist more than one linear representation for any group G.

Example: For the group $Z_2 = \{e, a\}$, we have seen the 2 × 2 representation previously

$$T(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ T(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
 (169)

But there is also a 1×1 representation

$$U(e) = 1 , \ U(a) = -1 \tag{170}$$

where you can easily show that U is a homomorphism between Z_2 and $GL(1, \mathbb{C})$.

Example: For the cyclic group $Z_4 = \{e, a, a^2, a^3\}$, an "obvious" representation by a set of 4×4 matrices U. Let's see how we can construct this representation by first constructing the multiplication table

Let's start with the element e, which is obviously mapped to the identity in the matrix representation (we use spaces for zeroes for legibility)

$$U(e) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & & 1 \end{pmatrix}$$
(172)

Now look at the 2nd row $\{a, a^2, a^3, e\}$. We see that it is a **complete rearrangement** in the ordering from the first row $e \to a$, $a \to a^2$, $a^2 \to a^3$ and $a^3 \to e$. Similarly, the 3rd row $\{a^2, a^3, e, a\}$ is also a complete rearrangement of the first row and so on. We can hence easily construct the rest of the representations

$$U(a) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \\ 1 & & - \end{pmatrix}, \ U(a^2) = \begin{pmatrix} 1 & & \\ & & 1 \\ 1 & & \\ & 1 & - \end{pmatrix}, \ U(a^3) = \begin{pmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & - \end{pmatrix}$$
(173)

which you can check that obey the group laws, e.g. $U(a)U(a^2) = U(a^3)$ etc. In fact, while this is a rather trivial example, it is a theorem²⁶ that given any finite order group with order |G| = n, one can always construct a multiplication table and follow the above prescription to construct an $N \times N$ representation. Such a representation is called a **Regular Representation**. We will use this construction in section 4.4.5 when we discuss how to decompose a reducible representation into irreps. (You will be asked to construct the regular representation for a D_3 group in the homework.) One can also find a 3×3 representation of Z_4 . There are many ways to find such representations (and indeed even 3×3 representations are not unique). A way is to use the fact that a is the generator of Z_4 , with the cyclic condition $a^4 = e$. For example, one can find

$$T(a) = \begin{pmatrix} 1 & & \\ & -1 \\ & 1 & \end{pmatrix} \text{ such that } T(a^4) = (T(a))^4 = T(e) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$$
(174)

so the rest of the elements can be generated by multiplying T(a) with itself

$$T(a^2) = T(a)T(a) = \begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \end{pmatrix}, \ T(a^3) = T(a)T(a)T(a) = \begin{pmatrix} 1 & & \\ & & 1 \\ & & -1 \end{pmatrix}$$
(175)

²⁶You might be able to see that this theorem is actually a specialized version of Cayley's Theorem we proved earlier. Mathematicians usually just say "by Cayley's Theorem" blah blah...and leave the rest of us scratching our heads. • The second much more subtle and important key point is that we have used homomorphisms to construct a representation, and not isomorphisms. This means that one can find representations where the matrices represent more than one group element. Let's see how this works in practice by considering a 2×2 representations of the Z_4 group we have been discussing above. Consider the generator element

$$U(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ such that } U(a^4) = U(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(176)

then

$$U(a^{2}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ U(a^{3}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
 (177)

Notice that both a^2 and e are mapped to the 2×2 identity matrix \mathbb{I} , so the kernel $\text{Ker}(U) = \{e, a^2\}$ has two elements²⁷. This means that this 2×2 representation do not "fully represent" all the intricacies of the Z_4 group. Such a representation is called an **Unfaithful Representation**. On the other hand, if the representation is also an *isomorphic embedding*, i.e. for each element $g \in G$ there is a unique matrix in $GL(N, \mathbb{C})$, then such a representation is called a **Faithful Representation**, so all the representations that we have considered up to now but not including the 2×2 representation of Z_4 are all faithful representations.

Now here is the fun bit: although continuous groups are matrices themselves, we can represent them with other matrices! In fact, you have seen a toy version of this previously in the guise of U(1) and SO(2) – although they are isomorphic to each other we could have easily say that we have represented the 2 × 2 matrices of SO(2) with the 1 × 1 matrices of U(1) and vice versa, since both of them are after all subgroups of $GL(N, \mathbb{C})$.

4.3 Vector Spaces and Linear Actions on Vector Spaces

We have been slightly careless in the past section in describing the matrix representation of groups as "the representation". But as we have emphasised way back in Chapter 1, a Group Representation for a group G consists of both the matrix representation of the group elements *and* the underlying vector space that the matrices *act on*.

Let us now formalize the notion. We begin by reminding you that an (left) action of a mathematical object on an another (usually class of) object can be written as (Eq. (14))

$$result = operator \times object.$$
(178)

Now if the "operator" above is a $N \times N$ square matrix, then the "object" can be any $N \times M$. We will focus on the case where M = 1, i.e. the object is a column matrix.

(Definition) Complex Vector Space: Consider three such objects,

$$V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix}, \ U = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{pmatrix}, \ W = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{pmatrix}$$
(179)

where $v_i, u_i, w_i \in \mathbb{C}$ are in general complex numbers. Analogous to the **vector** that you have learned in high school, one can think of such complex column matrices as elements of an *N*-dimensional Complex **Vector Space**. From your prior knowledge on matrices, the following conditions must be familiar to you. For any $a, b \in \mathbb{C}$

²⁷You should also check that the Kernel is also a normal subgroup of Z_4 , and that it is isomorphic to Z_2 . Also the fact that a and a^3 are mapped to the same matrix is simply a coincident.

- Associativity: U + (V + W) = (U + V) + W.
- Closure: $U + V \in \mathbb{V}$.
- Identity: U + 0 = U, where 0 here denotes a vector where all the entries are zeroes.
- Inverse: For every U, there exist an inverse element -U such that U + (-U) = 0.
- a(V+U) = aV + aU,
- (a+b)V = aV + bV,
- a(bV) = (ab)V.

Notice that there are two distinct operations – a "vector addition" and a "scalar multiplication". In high-brow mathematical language, we say that \mathbb{V} is a vector space over the Field of complex numbers. Harking back to Chapter 2, "Field" means that the vector space is armed with two binary operators, the usual vector addition "+" and the scalar multiplication aV, i.e. it is an Algebra.

Now let us consider some examples of vector spaces, some which are familiar to you but perhaps you are not aware are actually secretly vector spaces.

Example: "Ordinary" 3-dimensional real vectors.

Example: The N-dimensional abelian group of complex numbers \mathbb{C}^N , with the additional scalar multiplication binary operation (and hence promoting the group algebra into a Field algebra). Let $(a_1, a_2, a_3, \ldots, a_N)$ be any element of \mathbb{C}^N – you can hardly resist the temptation of thinking of them as vectors already, but they are not vectors *until* we define the following scalar multiplication operation

$$\mu(a_1, a_2, a_3, \dots, a_N) = (\mu a_1, \mu a_2, \mu a_3, \dots, \mu a_N).$$
(180)

Example: Quantum Mechanics and Function Spaces. Consider the set of all possible complex functions over a compact real interval x = [0, 1] with the following conditions

$$F = \{f(x)|x \in [0,1], f(0) = f(1) = 0\}, \ f: [0,1] \to \mathbb{C}.$$
(181)

i.e. the values of the function vanishes at the boundaries x = 0, 1. We can add two functions together in the usual way

$$f(x) + g(x) = (f + g)(x).$$
(182)

Don't let the strange notation confuse you – Eq. (182) simply says that, for any $x_0 \in [0, 1]$, either adding the functions up in their functional form and then evaluating the composite function at x_0 or evaluating the functions separately at x_0 and then adding their results together, give the same numerical result. (Read again.)

Scalar multiplication can also be defined by

$$af(x) = (af)(x). \tag{183}$$

Given the definitions Eq. (182) and Eq. (183), F forms a vector space. Let's be a pedant and quickly check through the axioms. The addition definition Eq. (182) clearly obeys Associativity. For Closure, we need to show the addition operation results in functions which obey the boundary condition, i.e. for any two functions $f_1(x)$, $f_2(x)$, $f_1(0) + f_2(0) = f_3(0) = 0$, and the same for x = 1. The identity element is clearly the function which is always zero $f_0 = 0$, while the inverse of any function is simply minus of itself. The scalar multiplication axioms follow from the fact that the functions f itself is a map from [0,1] to the set of complex values, and we use the scalar multiplication of real values to prove the rest. In your Quantum Mechanics class, you might have studied the infinite square well. There you solved the time-independent Schrodinger's equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_n(x)}{dx^2} + U(x)\psi_n(x) = E_n\psi_n(x)$$
(184)

where U(x) is the potential shown in figure 11, E_n are the **Energy Eigenvalues** and $\psi_n(x)$ are the **Energy Eigenfunctions** or **Stationary States**. Since the potential $U(0) = U(1) = \infty$, the eigefunctions $\psi_n(0) = \psi_n(1) = 0$ vanish at the boundaries, obeying the condition we wrote down in our definition of a function space Eq. (181). Hence the set of all eigenfunctions forms a vector space, i.e.

$$\psi_n(x) = \sin(n\pi x) , \ n = 1, 2, \dots, N , \ F = \{\psi_n(x)\}.$$
 (185)

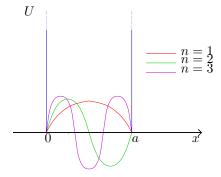


Figure 11: An infinite square well potential and the first few eigenfunctions of a quantum mechanical particle.

Given these examples, one can see that if we multiply an N-th dimensional vector with an $N \times N$ square matrix group matrix operator, what the operator does is to map the vector into another vector in the same vector space. For example, for a N = 3 vector, acted upon by a 3×3 matrix representation of some group element U(g) is simply

$$\begin{pmatrix} v_1' \\ v_2' \\ v_3' \end{pmatrix} = U(g) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}.$$
 (186)

We can use the more slick compact notation of indices i.e.

$$V_j' = M_{ji} V_i. \tag{187}$$

In particular, we see that, for $a, b \in \mathbb{C}$

$$M_{ji}(aV_i + bW_i) = aV'_j + bW'_j \text{ where } V'_j = M_{ji}V_i , \ W'_j = M_{ji}W_i.$$
(188)

Such a map that obey the Eq. (188) is called a **Linear Map**, and the matrix that executes this map a **Linear Operator**. If \mathbb{V} is a finite dimensional vector space, i.e. $N < \infty$, it is clear that we can represent linear maps as $N \times N$ matrices. But $N \times N$ matrices are exactly the form that group elements are represented! This is what we mean by "Group Representations consists of the matrix representations of groups, and the underlying vector space which they act on".

Linear maps do not have to be matrices – although they can be represented as such (which is why the study of matrices is called **Linear Algebra**). Abstracting, a linear operator is defined to be a map that takes an element of a vector space to another in the following way

$$f(aV + bU) = af(V) + bf(U) \ \forall \ a, b \in \mathbb{C}.$$
(189)

Such a mapping is sometimes also called a **Linear Transformation**. A common example of a linear transformation or linear map is the *derivative operator* d/dx acting on the space of all possible *normalizable* functions in x – you can check that for any normalizable functions f(x) and g(x),

$$\frac{d}{dx}(af(x) + bg(x)) = a\frac{df}{dx} + b\frac{dg}{dx}.$$
(190)

Can you think of a non-linear transformation?²⁸

Finally, we end this section on Vector Spaces with a few definitions and results which will be useful for the future. From your study of Quantum Mechanics, you learned that any wavefunction can be described by a linear superposition of eigenfunctions (here we ignore the fact that there maybe time evolution involved), i.e.

$$\Psi(x) = \sum_{n=1}^{N} a_n \psi_n(x) \ , \ a_n \in \mathbb{C}$$
(191)

i.e. a_n are complex coefficients. Compare this to the "ordinary three vector" $\mathbf{V} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ where \mathbf{i} , \mathbf{j} and \mathbf{k} are **basis vectors**, you can see that the eigenfunctions similarly form a basis. But since N is infinite²⁹, this function space is infinitely dimensional.

One thing which you have learned from Quantum Mechanics, but is a general property of linear vector spaces, is **Linear Independence**.

(Definition) Linear Independence. Suppose $\{v_i\}$ is a set of vectors. We say that this set is *linearly independent* if there exist no set of non-zero complex values λ_i such that

$$\sum_{i} \lambda_i v_i = 0. \tag{192}$$

This is a very precise definition for something you intuitively have grasped. For example, the basis vectors for ordinary three vectors are linearly independent of each other, while $2\mathbf{i} + 3\mathbf{j}$, $-2\mathbf{i} + 5\mathbf{j}$, $4\mathbf{j}$ are clearly not linearly independent to each other.

Don't confuse linear independence with the highly related but not exactly equivalent **orthogonality**. Orthogonality imply linear independence, but not the other way around. But you ask "what is orthogonality"? To define orthogonality requires a little bit of extra structure on the Vector space – the notion of an **Inner Product**. In usual ordinary 3 vectors, you remember that there exist an operation call the "dot product" of two vectors $\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3$ which is simply a (real) number. It has no direction, so it is a **scalar**. In high-brow math language, such an operation is called a **Scalar Product** or **Inner Product** or (obviously) **Dot Product** of two vectors, and the idea generalizes to the Vector Space we are studying.

(Definition) Scalar Product: Suppose $U, V \in \mathbb{V}$ are elements of a Vector Space over the complex numbers, then the *scalar product* $U \cdot V$ is a map $\mathbb{V} \times \mathbb{V} \to \mathbb{C}$ such that it is

- Hermitian: $U \cdot V = (V \cdot U)^*$.
- Linear: Given any $W \in \mathbb{V}$, $U \cdot (aV + bW) = a(U \cdot V) + b(U \cdot W)$ for $a, b \in \mathbb{C}$.
- **Positive Norm**: $U \cdot U \ge 0$, with $U \cdot U = 0$ iff U = 0.

The Hermitian condition imply that if V, U are complex vectors i.e. $V = (v_1, v_2, ...)$ and $U = (u_1, u_2, ...)$ where v_i and u_i are complex numbers, then their inner product is explicitly

$$U \cdot V = U^{\dagger}V = u_1^* v_1 + u_2^* v_2 + \dots$$
(193)

²⁸Example of a non-linear transformation let $N: x \to x^2$, so $N(ax) = a^2 x^2 \neq a N(x) = ax^2$.

 $^{^{29}}$ A great joke to tell at a physics party is to ask people whether N is countably or uncountably infinite and then watch the ensuing argument.

With this definition, we can finally define Orthogonality.

(Definition) Orthogonality: Two vectors U and V are *orthogonal* to each other if their inner product vanishes $U \cdot V = 0$.

In your study of Quantum Mechanics, you have encountered the scalar product of two state vectors $|\Psi\rangle$ and $|\Phi\rangle$ of a quantum mechanic particle in x space

$$\langle \Phi | \Psi \rangle \equiv \int_{-\infty}^{\infty} dx \ \Phi(x)^* \Psi(x).$$
 (194)

So often you hear people say the words "the state $|\Phi\rangle$ in x-representation is the wavefunction $\Phi(x)$ ". The use of the word "representation" is not a coincident – we can represent the state in any representation we like. For example, when you quantize the Harmonic Oscillator, you have used the *E*-representation $|n\rangle$ where *n* refers to the energy level of the state. But it is clear that once we have chosen a representation, the operators that act on it takes a different "mathematical form", even though the physics is the same. For example, the momentum operator in x-representation is $-i\hbar\partial_x$.

4.4 Reducible and Irreducible Representations

You should be convinced by now that there is a large number of representations for each group, and each representation often do not even have the same dimensionality. This promiscuity poses a problem for us – which is the "best" representation for a physical problem at hand? A related problem is that many of the representations of the group are actually **equivalent** to each other in the sense that they describe the same physical thing.

What we want is a notion of breaking down all the representations into its most fundamental "building blocks". In this section, we will study this. It turns out that representations can be broadly classified as two types, **reducible** and **irreducible** representations.

4.4.1 Similarity Transforms and Equivalence of Representations

Let's begin by attacking the idea that many of the representation are actually "equivalent" to each other.

Suppose we have an element $g \in G$, and its matrix representation A_{ij} acting on some vector V_j to get another vector

$$U_i = A_{ij} V_j. \tag{195}$$

Now let's suppose that we are given a non-singular matrix³⁰ B_{ij} which for the moment is not necessary the matrix representation any group. This matrix can create a new vector by

$$V'_{i} = B_{ij}V_{j} , \ U'_{i} = B_{ij}U_{j}$$
 (196)

The question is now: given B, what is the new matrix representation A'_{ij} , such that

$$U_i' = A_{ij}' V_j' ? (197)$$

For clarity in what follows, we will now drop the indices for now, and give the operators hats $A_{ij} = A$ just to be clear. We write

$$\hat{B}U = \hat{B}(\hat{A}V) = \hat{B}\hat{A}\underbrace{\hat{B}^{-1}\hat{B}}_{\hat{1}}V$$
(198)

or by using $\hat{B}U = U'$ and $\hat{B}V = V'$, we get

$$U' = \hat{B}\hat{A}\hat{B}^{-1}V' \equiv \hat{A}'V'.$$
 (199)

³⁰Non-singular matrices M are those whose determinants are non-zero det $(M) \neq 0$ and hence possess inverses.

Hence, if we define \hat{A}' to be

$$\widehat{A'} = \widehat{B}\widehat{A}\widehat{B}^{-1} \tag{200}$$

we find that, for any given non-singular \hat{B} ,

$$U = \hat{A}V \longrightarrow U' = \hat{A}'V'. \tag{201}$$

A transformation like Eq. (200) is called a **Similarity Transform**. Representations which can be related to each other by a similarity transforms are **equivalent**, otherwise they are **inequivalent**.

What's the point of all this, and what is so similar about \hat{A} and \hat{A}' ? This depends on what \hat{B} is of course. This is best illustrated by a common operation which you do a lot: \hat{B} is a **Change of Basis Transformation**.

As an example, let's go back to the ordinary 3 vectors, so $V = \mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$ and $U = \mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k}$, with **Basis Vectors** $(\mathbf{i}, \mathbf{j}, \mathbf{k})$. Suppose now we want to execute a *linear* change of basis to $(\mathbf{i}', \mathbf{j}', \mathbf{k}')$. Such a change of basis can be written as

$$\mathbf{i}' = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} , \ a_1, a_2, a_3 \in \mathbb{R}$$
(202)

and so on for \mathbf{j}' and \mathbf{k}' . This should be familiar to you – for example when you are doing a coordinate transformation from x basis to x' basis (see for example Fig. 8.) In general, a linear basis transform is defined as follows.

(Definition) Linear Basis Transformation: Suppose $\{\mathbf{e}_i\}$ and $\{\mathbf{e}'_i\}$ are two different basis vectors, then a *non-singular* linear basis transform B_{ij} is defined as

$$\mathbf{e}_i' = B_{ij}\mathbf{e}_j \,. \tag{203}$$

This form should look familiar to you: compare this to the Conjugacy Equivalence Relation for two group elements $g_1 \sim g_2$, which we encountered in our study of Conjugacy Classes in Section 3.2.3. There we say that if $g_1 = gg_2g^{-1}$ for any $g \in G$, then $g_1 \sim g_2$. The "colloquial" explanation there makes even more visual sense here: in a similarity transform, we can write $\hat{A} = \hat{B}^{-1}\hat{A}'\hat{B}$, so now instead of acting on the basis vectors with \hat{A} , we first "move to a new basis by \hat{B} ", act there with \hat{A}' , and then move back to the original basis with \hat{B}^{-1} .

Notice however, that here \hat{B} is any non-singular matrix, and does not have to be the matrix representation of any group element whereas for the conjugacy equivalence relation, the "rotation" to the new basis is an element of the group. But, as you might imagine, the power of the similarity transform will blossom when \hat{B} is actually an element of the group representation. This we will study in the coming sections.

Consider now the **trace** of the matrix

$$TrA_{ij} = \sum_{i} A_{ii}$$
(204)

You will be asked to prove the famous **Trace Identity** in the homework, for any two matrices A, B,

$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA) \,. \tag{205}$$

Using the identity Eq. (205), we can easily show that

$$Tr(\hat{B}\hat{A}\hat{B}^{-1}) = Tr((\hat{B}\hat{A})\hat{B}^{-1}) = Tr(\hat{B}^{-1}\hat{B}\hat{A}) = Tr\hat{A}.$$
(206)

In other words, the trace of any matrix representation is invariant under a similarity transform. In physics or math, when you see invariance under some operation, it usually means something important so we should give it a name. Traces of representations are called **Characters**. They are one of the important tools we will use to classify group representations.

(Definition) Characters: The *character* of a matrix representation D_{α} for any group element $g \in G$ is defined to be its trace, and we call it χ_{α} :

$$\chi_{\alpha} = \text{Tr}D_{\alpha}$$
(207)

The character is invariant under a similarity transform.

Some further remarks on characters.

- Characters can be complex or real-valued.
- Characters of representations in the same conjugacy class are equal. Proof: Suppose $g_1, g_2 \in G$ and $g_1 \sim g_2$, hence $\exists g$ such that $g_1 = gg_2g^{-1}$. Suppose now D(g) is a representation for G so $D(g_1) = D(gg_2g^{-1})$. Taking the trace and using the trace identity $\operatorname{Tr} D(g_1) = \operatorname{Tr} D(g_2)$. \Box .
- Characters of the *different inequivalent* representations of the same group are not necessarily equal.

We will come back and discuss characters and their uses when we discuss classification of representations.

4.4.2 Constructing Representations

Suppose a group G has two matrix representations (which may or may not be faithful) $D_1(g)$ and $D_2(g)$, which has dimensionality n and m respectively. In other words, $D_1(g)$ are $n \times n$ square matrices while $D_2(g)$ are $m \times m$ square matrices. We can now construct a *new* representation by taking the **Direct Sum** in the following way

$$D_3(g) = D_1(g) \oplus D_2(g) = \begin{pmatrix} D_1(g) & 0\\ 0 & D_2(g) \end{pmatrix}$$
(208)

i.e. the top left corner of $D_3(g)$ is a $n \times n$ matrix, while the bottom right is a $m \times m$ matrix, and the rest are zeroes. For example, suppose

$$D_1(g) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} , \ D_2(g) = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
(209)

then

$$D_{3}(g) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & & \\ a_{21} & a_{22} & a_{23} & & \\ a_{31} & a_{32} & a_{33} & & \\ & & & b_{11} & b_{12} \\ & & & & b_{21} & b_{22} \end{pmatrix}$$
(210)

where empty spaces are zeroes. Such a matrix is called a **block diagonal matrix** – i.e. the diagonal of th matrix are blocks of square matrices.

It is easy to show that if $D_1(g)$ and $D_2(g)$ is a matrix representation for the group element $g \in G$, so

is $D_3(g)$, viz for any two elements $g, g' \in G$, then

$$D_{3}(g)D_{3}(g') = \begin{pmatrix} D_{1}(g) & 0 \\ 0 & D_{2}(g) \end{pmatrix} \begin{pmatrix} D_{1}(g) & 0 \\ 0 & D_{2}(g) \end{pmatrix}$$
$$= \begin{pmatrix} D_{1}(g)D_{1}(g') & 0 \\ 0 & D_{2}(g)D_{2}(g') \end{pmatrix}$$
$$= \begin{pmatrix} D_{1}(gg') & 0 \\ 0 & D_{2}(gg') \end{pmatrix}$$
$$= D_{3}(gg')$$
(211)

where we have used the fact that $D_1(g)D_1(g') = D_1(gg')$ since $D_1(g)$ is a matrix representation, and similarly for D_2 , going from line 2 and 3.

In fact, we can keep going by adding more representations together, i.e. $D_4(g) = D_3(g) \oplus D_2(g) \oplus D_1(g)$. So in general, we can construct all the representations to our heart's content with the following relation

$$\mathcal{D}(g) = \sum_{\oplus} D_i(g) \tag{212}$$

where the \sum_{\oplus} means a direct sum of the representations $D_i(g)$.

But, like many things in life, plenty does not equal good. Here we are simply generating bloated representations without learning anything new. However, our new found ability to make new representations out of old ones begs the question: are the old representations themselves made out of even older ones?. Ask another way : are there representations which cannot be constructed using the direct sum method that we just learned? The answer to these questions is a resounding yes, there exist "building blocks" representations. Such building block representations are called **irreducible representations** or **irreps** for short. On the other hand, the representations that can be reduced into a block-diagonal form by some suitable similarity transforms are called **reducible representations** — note that some reducible representations do not "look" block-diagonal initially but can be made into a block-diagonal form with similarity transforms.

Let's say that again since it is so important: suppose you are given a reducible representation that is not in block-diagonal form, then there exists a similarity transform that will bring the representation into the block-diagonal form, with each "block" being an irreducible representation. Note that this definition means that all one dimensional representations are irreducible by definition.

So now our question becomes: given some representations, how do we know that it is reducible or irreducible? We can try a large number of similarity transforms and hope by trial and error we can reduce the representation (or die trying). But that's not efficient – fortunately we have some theorems and lemmas to help us and we will now study them. However, a good question is to ask "why are irreducible representations" so important? The answer depends on whether you are an mathematician or a physicist. A mathematician's answer would be "because they are the fundamental building blocks of which all other representations are built upon". In particular, irreducible representations of any group can be classified completely by their dimensionality and their characters – a powerful restriction.

On the other hand, a physicist answer would depends on the application of group theory to the physical problem at hand – for example, in particle physics irreps are states of fundamental particles, and a reducible representation will mix them up in some complicated way.

Before we start on that journey, let's look at a concrete case for reducible and irreducible reps.

Example: Reducible and Irreducible representations of D_3 .

The Dihedral $D_3 = \{e, R, R^2, m_1, m_2, m_3\}$ is an order 6 non-abelian group³¹. Consider 2 × 2 repre-

 $^{^{31}\}mathrm{It}$ is also isomorphic to the permutation group of 3 objects.

sentations U with real entries

$$U: D_3 \to SO(2, \mathbb{R}). \tag{213}$$

The identity element is always mapped to the identity matrix

$$U(e) = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
(214)

but now we have a plethora of choices for the other 5 elements. One such representation which is *irreducible* is the following

$$U(m_1) = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}, \ U(m_2) = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}, \ U(m_3) = \frac{1}{2} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$
(215)

$$U(R) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}, \quad U(R^2) = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}.$$
 (216)

This representation has a nice geometrical explanation as rotation and reflection matrices on a triangle with edges of unit length and centroid at (0,0) as shown in Fig. 12.

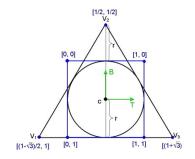


Figure 12: An equilateral triangle. The 3 vertices labeled V_1 , V_2 and V_3 form a vector space on which the 2 dimensional matrix representation U act on to keep the symmetry of the triangle invariant.

We have simply asserted that it is irreducible of course and have not proven it. Let's leave the general proof aside for later when we have developed more technology. But for 2×2 matrices, there is an easy way to check – suppose that U is reducible, then it is clear that the only way it can be reduced is to of the form

$$U(g) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \ a, b \in \mathbb{C}$$
(217)

i.e. a, b are simply some complex numbers (recall that similarity transforms can be executed by complex matrices). But matrices of the form Eq. (217) clearly *commute* with each other. Furthermore, similarity transforms *do not change the commutativity of the representations* which you can easily prove to yourself. Hence if the representation above have been reducible, they will also commute with each other. You can check for yourself that they do not commute, so they are hence irreducible. Note that this "test" of reducibility only works for 2×2 representations – can you see why?

On the other hand, a representation which is *inequivalent* to the above is given by

$$T(m_1) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ T(m_2) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ T(m_3) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(218)

$$T(R) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ T(R^2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (219)

This representation is clearly *reducible* since it is already in block-diagonal form

$$T(g) = \begin{pmatrix} D_1(g) & 0\\ 0 & D_2(g) \end{pmatrix}$$
(220)

where $D_1(g) = \{1, 1, 1, 1, 1, 1\}$ and $D_2(g) = \{1, -1, -1, -1, 1, 1\}$ are two *inequivalent* 1×1 real representations of D_3 . It is also *unfaithful*, since Ker $(T) = \{e, R, R^2\}$.

Finally, one thing you can check for yourself is that both representations U and T are *unitary*, i.e.

$$U^{\dagger}U = e , \ T^{\dagger}T = e \tag{221}$$

The group representations do not have to be unitary of course, but it will turn out that *every representation can be brought into unitary form by a similarity transform*. This theorem is one of the tools that will allow us to begin restricting the number of representations which we have to study. And we will begin our journey on how to do that by proving this theorem.

4.4.3 Unitary Representations

At the start of this chapter, in section 4.1, we discussed several properties of matrices which I hope you have learned and remembered from a class on linear algebra. Let's summarize here. For any matrice with complex entries A_{ij} , it is

- **Special** if det A = 1
- **Trace-free** if TrA = 0
- Orthogonal if $A^T A = e$, where T denotes Transposition, $(A^T)_{ji} = A_{ij}$.
- Hermitian if $A^{\dagger} = A$, where $A^{\dagger} = (A^T)^*$ denotes Hermitian Conjugation
- Unitary if $A^{\dagger}A = AA^{\dagger} = e$.

Further more, you can prove to yourself that

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger} , \ (AB)^{T} = B^{T}A^{T}.$$

$$(222)$$

Since the title of this section is Unitary Representations, let's focus on unitary matrices.

Proposition: Unitary Matrix Operators preserve the inner product of two complex vectors.

Proof: Suppose we have two complex vectors U, V, with the inner product

$$U \cdot V = \mathcal{N} \tag{223}$$

where $\mathcal{N} \in \mathbb{C}$. Let \hat{A} be a unitary matrix, such that $V' = \hat{A}V$ and $U' = \hat{A}U$, then

$$U' \cdot V' = (\hat{A}U)^{\dagger}(\hat{A}V) = U^{\dagger}\hat{A}^{\dagger}\hat{A}V = U \cdot V = \mathcal{N} \quad \Box.$$
(224)

Corollary: Norms of complex vectors are preserved under unitary matrix operations $U \cdot U = U' \cdot U'$. In ordinary 3 vectors, the norm of a vector $\mathbf{a} \cdot \mathbf{a} = |a|^2$ denotes its length. If we rotate this vector in any direction, the length remains the same. Hence one can think of unitary matrices as "generalized rotations".

We will now state an important theorem.

(Theorem) Unitary Representations: Every representation can be made unitary by a suitable similarity transformation.

Proof: To prove this theorem requires two lemmas.

(Lemma 1) : Suppose \hat{H} is a Hermitian Matrix with *normalized* eigenvectors $\{v_i\}$ which are column matrices, and *real*³² eigenvalues λ_i , i.e.

$$\hat{H}v_i = \lambda_i v_i \tag{225}$$

then we can construct a unitary matrix

$$U = (v_1 \ v_2 \ v_3 \ \dots). \tag{226}$$

Proof: Since the eigenvectors v_i are normalized, and hence *orthonormal* to each other i.e.

$$v_i \cdot v_j = v_i^{\dagger} v_j = \delta_{ij} \tag{227}$$

then

$$U^{\dagger}U = UU^{\dagger} = e \tag{228}$$

and hence U is a unitary matrix. \Box .

(Lemma 2) : We can diagonalize \hat{H} by a similarity transform using U.

Proof: Acting with \hat{H} on U, we get

$$\hat{H}U = U\Lambda \tag{229}$$

where Λ is a diagonal matrix consisting of the eigenvalues of \hat{H}

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$
(230)

 \Box .

With these Lemmas in hand, we can now prove the Theorem.

Suppose the group G is represented by a set of square $n \times n$ matrices $\{D_{\alpha}(g)\}$, where α labels the matrices. For clarity, we will write D_{α} and drop the (g) for now. We can construct a Hermitian matrix H in the following way

$$H = \sum_{\alpha} D_{\alpha} D_{\alpha}^{\dagger} \tag{231}$$

since $H^{\dagger} = \sum_{\alpha} (D_{\alpha} D_{\alpha}^{\dagger})^{\dagger} = H$. This Hermitian matrix has a set of eigenvalues $\{\lambda_i\}$ and eigenvectors $\{v_i\}$ which we can use to construct the unitary matrix using Lemma 1

$$U = (v_1 \ v_2 \ v_3 \ \dots) \tag{232}$$

and

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$
(233)

Using Lemma 2, we can diagonalize H to get

$$\Lambda = U^{-1} H U = U^{-1} \left(\sum_{\alpha} D_{\alpha} D_{\alpha}^{\dagger}\right) U.$$
(234)

Now inserting $UU^{\dagger} = e$ in the middle, and using $U^{\dagger} = U^{-1}$ we get

$$\Lambda = U^{-1} H U = \sum_{\alpha} (U^{\dagger} D_{\alpha} U) (U^{\dagger} D_{\alpha}^{\dagger} U)$$
(235)

 $^{^{32}}$ Hopefully you have learned that Hermitian matrices have real eiggenvalues somewhere in your linear algebra or quantum mechanics classes.

and by defining the new matrix

$$\tilde{D}_{\alpha} \equiv U^{\dagger} D_{\alpha} U \tag{236}$$

this $become^{33}$

$$\Lambda = \sum_{\alpha} \tilde{D}_{\alpha} \tilde{D}_{\alpha}^{\dagger}.$$
(237)

Now we want to claim at the diagonal elements of Λ are *positive definite*. We can see this by noting that the i - i element of Λ is given by (restoring the indices of the matrices)

$$\Lambda_{ii} = \sum_{\alpha} \sum_{j} (\tilde{D}_{\alpha})_{ij} (\tilde{D}_{\alpha})_{ji}^{\dagger}$$
$$= \sum_{\alpha} \sum_{j} |\tilde{D}_{\alpha ij}|^{2} > 0$$
(238)

where we have restored the summation of the matrix elements over j for clarity. In the last line, since α is summed over the identity matrix $\tilde{D}(e) = U^{\dagger}D(e)U = e$, it must always be non-zero³⁴

Since Λ has non-zero positive entries, it must possess an inverse Λ^{-1} , and since the entries are positive definite, $\Lambda^{1/2}$ must also possess real and non-zero diagonal entries

$$\Lambda^{1/2} = \begin{pmatrix} \lambda_{11}^{1/2} & & \\ & \lambda_{22}^{1/2} & & \\ & & \ddots & \\ & & & & \lambda_{ii}^{1/2} \end{pmatrix},$$
(239)

and similarly for $\Lambda^{-1/2}$. With all these construction, we now assert that the new representation T_{α}

$$\boxed{T_{\alpha} \equiv \Lambda^{-1/2} \tilde{D}_{\alpha} \Lambda^{1/2}} \tag{240}$$

is unitary and equivalent to D_{α} . The fact that it is equivalent to D_{α} should be clear, since

$$T_{\alpha} = (\Lambda^{-1/2} U^{\dagger}) D_{\alpha} (U \Lambda^{1/2})$$

= $(\Lambda^{-1/2} U^{-1}) D_{\alpha} (U \Lambda^{1/2})$
= $(U \Lambda^{1/2})^{-1} D_{\alpha} (U \Lambda^{1/2})$ (241)

i.e. the similarity transform is executed by the matrix $U\Lambda^{1/2}$.

To show that it is unitary is a bit more tricky, using $\Lambda^{1/2} = (\Lambda^{1/2})^{\dagger}$ since it is real,

$$T_{\alpha}T_{\alpha}^{\dagger} = \Lambda^{-1/2}\tilde{D}_{\alpha}\Lambda^{1/2}(\Lambda^{-1/2}\tilde{D}_{\alpha}\Lambda^{1/2})^{\dagger}$$
$$= \Lambda^{-1/2}\tilde{D}_{\alpha}\Lambda\tilde{D}_{\alpha}^{\dagger}\Lambda^{-1/2}$$
(242)

and now using $\Lambda = \sum_{\beta} \tilde{D}_{\beta} \tilde{D}_{\beta}^{\dagger}$, we get

$$T_{\alpha}T_{\alpha}^{\dagger} = \sum_{\beta} \Lambda^{-1/2} (\tilde{D}_{\alpha}\tilde{D}_{\beta}) (\tilde{D}_{\beta}^{\dagger}\tilde{D}_{\alpha}^{\dagger}) \Lambda^{-1/2}$$
$$= \sum_{\beta} \Lambda^{-1/2} (\tilde{D}_{\alpha}\tilde{D}_{\beta}) (\tilde{D}_{\alpha}\tilde{D}_{\beta})^{\dagger} \Lambda^{-1/2}$$
(243)

³³Can you see why $D_{\alpha} \sim \tilde{D}_{\alpha}$?

³⁴Not so fast, some of you might say: what if $|G| = \infty$, i.e. the order of G is countably infinite, so we have to sum α to infinite number of elements. How sure are we in this case that Λ_{ii} is not infinity, and hence the diagonal matrix is not well defined? It turns out that such pathological cases can indeed occur for *some* countably infinite order groups. In such cases, the theorem breaks down and all hell breaks lose and much angst is to be had. Fortunately, for the groups that physics is mostly concerned with, especially the Lie Groups, this does not happen.

where we have done some creative bracketing in the second line. But now, using closure of the group elements, this mean that

$$\tilde{D}_{\alpha}\tilde{D}_{\beta} = \tilde{D}_{\gamma} \tag{244}$$

and so for each incident of β in the summation, we get some element D_{γ} – which is *different*. This is because for fixed \tilde{D}_{α} , if there exist two elements \tilde{D}_{β_1} and \tilde{D}_{β_2} which gives us the same element \tilde{D}_{γ} , implies that

$$\tilde{D}_{\gamma}^{-1}\tilde{D}_{\gamma} = \tilde{D}_{\beta_{1}}^{-1}\tilde{D}_{\alpha}^{-1}\tilde{D}_{\alpha}\tilde{D}_{\beta_{2}} = \tilde{D}_{\beta_{1}}^{-1}\tilde{D}_{\beta_{2}} = e$$
(245)

or by uniqueness of inverses $D_{\beta_1} = D_{\beta_2}$. (Sometimes this fact is called the **Rearrangement Theorem**.) Hence we can sum over γ in Eq. (243) instead of β to get

$$T_{\alpha}T_{\alpha}^{\dagger} = \sum_{\gamma} \Lambda^{-1/2} \tilde{D}_{\gamma} \tilde{D}_{\gamma}^{\dagger} \Lambda^{-1/2} = \Lambda^{-1/2} \Lambda \Lambda^{-1/2} = 1$$
(246)

and proving that T_{α} is unitary, and completing the proof of our theorem. \Box .

4.4.4 Schur's Lemmas and the Orthogonality Theorem of Representations

After the last theorem on unitary representations, we finally have garnered enough infrastructure to discuss the tools we need to identify and classify irreps. These tools are encapsulated in two lemmas called **Schur's first and second Lemmas** and the **Orthogonality Theorem of Representations**. Let's state these theorems, and then prove them later.

Schur's First Lemma: Suppose $D_{\alpha}(g)$ is an irreducible representation of the group G with elements g and order |G|. If any $n \times n$ non-zero matrix M which commutes with every D_{α} , i.e

$$MD_{\alpha} = D_{\alpha}M \tag{247}$$

then M is the identity matrix e times some constant M = ce for some constant c.

Schur's first lemma gives us a way to check whether the representation D is irreducible or not – if one can find a matrix M which is not of the form ce which commutes with all D_{α} then D_{α} is not an irrep. Generalizing Schur's first lemma to different irreducible representations gives Schur's Second Lemma.

Schur's Second Lemma: Suppose D_{α} and D'_{α} are two irreducible representations of G with dimensions n and n' respectively. Then if there exist a matrix $n \times n'$ M such that

$$MD_{\alpha} = D'_{\alpha}M \tag{248}$$

then if n = n', M = 0 or D_{α} and D'_{α} are equivalent (i.e. related by a similarity transform), or if $n \neq n'$ then M = 0.

Since inequivalent representations of the same group G are still related by the group laws, one can imagine a relationship between the matrix elements of these representations. This relationship is encoded in the so-called **Fundamental Orthogonality Theorem of Representations**, which is in two parts.

Orthogonality Theorem (Single irreps): Suppose D_{α} is an irreducible representations with dimensions n of the group G with order |G|. Then

$$\sum_{\alpha} (D_{\alpha})_{ij}^* (D_{\alpha})_{kl} = \frac{|G|}{n} \delta_{ik} \delta_{jl}.$$
(249)

Orthogonality Theorem (Different irreps): Suppose D_{α} and D'_{α} are two inequivalent irreducible representations with dimensions n and n' of the group G with order |G|, respectively. Then

$$\sum_{\alpha} (D_{\alpha})_{ij}^{*} (D_{\alpha}')_{kl} = 0,$$
(250)

and if D_{α} and D'_{α} are equivalent, it reduces to the single irrep case above.

Suppose now we have \mathcal{M} number of inequivalent irreps of the group G each with dimensionality n_m we can label the irreps by D^m_{α} with $m = 1, 2, \ldots, \mathcal{M}$, and then we can combine both versions of the Orthogonality theorem in the following way

$$\sum_{\alpha} (D^m_{\alpha})^*_{ij} (D^{m'}_{\alpha})_{kl} = \frac{|G|}{n_m} \delta_{ik} \delta_{jl} \delta^{mm'}.$$
(251)

The Orthogonality theorem invites us to think of the representations and their matrix elements as some gigantic Vector Space. For example, in Eq. (251), if we fix the index m = m', then one can think of the set $\{D_{1ij}^m, D_{2ij}^m, \ldots, D_{\alpha ij}^m\}$ as an α -dimensional column vector, and since we can run $i, j = 1, 2, \ldots, n_m$, there are n_m^2 of these vectors, while Eq. (251) expresses the fact that each of these vectors are orthogonal to each other.

Now if we allow m and m' to be free, the $\delta^{mm'}$ on the RHS of Eq. (251) means that any vectors which are formed by D^m and $D^{m'}$ will be mutually orthogonal to each other, so the total number of vectors in the whole set is $\sum_{m=1}^{\mathcal{M}} n_m^2$ (i.e. each representation labeled m has n_m^2 vectors as we described in the previous paragraph). But since the order of the group |G| gives us the restriction on the total number of such vectors, the following inequality holds

$$\sum_{n=1}^{\mathcal{M}} n_m^2 \le |G|. \tag{252}$$

In fact, Eq. (252) is actually an *equality*, i.e.

$$\sum_{m=1}^{\mathcal{M}} n_m^2 = |G| \,, \tag{253}$$

a relation which is an incredibly powerful restriction on the total number of irreducible representations \mathcal{M} of the group. We will discuss this when we study Characters in section 4.4.6. This is one of the most important formula so you should memorize it.

Now that we have reviewed our theorems, we shall prove them.

Proof (Schur's First Lemma): Let D_{α} be an unitary³⁵ irreducible representation of G. Suppose there exist a matrix M such that

$$MD_{\alpha} = D_{\alpha}M \tag{254}$$

Taking the Hermitian conjugation, and then using the fact that D_{α} is unitary we get

$$M^{\dagger}D_{\alpha} = D_{\alpha}M^{\dagger}.$$
 (255)

Though M is not necessary Hermitian, we can construct Hermitian matrices from M by

$$H = M + M^{\dagger}, \ H' = i(M - M^{\dagger})$$
 (256)

 $^{^{35}}$ Which we can take WLOG since we have proven that any representation can be made unitary with a suitable similarity transform.

so that $H^{\dagger} = H$ and $H'^{\dagger} = H'$ are true trivially, and that 2M = H - iH'. The reason we want to use Hermitian matrices instead of M is because we can apply Lemma 1 from section 4.4.3, i.e. we can find a unitary matrix U such that H is diagonlized $\Lambda = U^{-1}HU$. Now, instead of M we want to prove the lemma for

$$HD_{\alpha} = D_{\alpha}H \tag{257}$$

and then since M is some linear combination of H and H', Schur's first Lemma will follow. Applying a unitary transform with U on Eq. (257), we get

$$U^{-1}HUU^{-1}D_{\alpha}U = U^{-1}D_{\alpha}UU^{-1}HU$$
(258)

and defining $\tilde{D}_{\alpha} = U^{-1}D_{\alpha}U$, we get

$$\Lambda \tilde{D}_{\alpha} = \tilde{D}_{\alpha} \Lambda. \tag{259}$$

Restoring the labels for the matrix elements, and rewriting we get

$$\Lambda_{ij}(D_{\alpha})_{jk} - (D_{\alpha})_{ij}\Lambda_{jk} = 0 \tag{260}$$

and now since Λ_{ij} is a diagonal matrix, we get (dropping the α for simplicity)

$$\Lambda_{ij}(\tilde{D}_{\alpha})_{jk} = \begin{pmatrix} \Lambda_{11} & 0 & \dots \\ 0 & \Lambda_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \tilde{D}_{11} & \tilde{D}_{12} & \dots \\ \tilde{D}_{21} & \tilde{D}_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \Lambda_{11}\tilde{D}_{11} & \Lambda_{11}\tilde{D}_{12} & \dots \\ \Lambda_{22}\tilde{D}_{21} & \Lambda_{22}\tilde{D}_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$
(261)

and

$$(\tilde{D}_{\alpha})_{ij}\Lambda_{jk} = \begin{pmatrix} \tilde{D}_{11} & \tilde{D}_{12} & \dots \\ \tilde{D}_{21} & \tilde{D}_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \Lambda_{11} & 0 & \dots \\ 0 & \Lambda_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \Lambda_{11}\tilde{D}_{11} & \Lambda_{22}\tilde{D}_{12} & \dots \\ \Lambda_{11}\tilde{D}_{21} & \Lambda_{22}\tilde{D}_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$
(262)

We can easily see that the diagonal terms in Eq. (260) hence are automatically satisfied, leaving the following relation

$$(\tilde{D}_{\alpha})_{ij}(\Lambda_{ii} - \Lambda_{jj}) = 0.$$
(263)

Now consider three cases

- Case 1: If Λ_{ii} are equal, then Eq. (263) vanishes automatically and hence \tilde{D}_{ij} can have any value, so it can form an irreducible representation. But since $\Lambda_{ii} = c \forall i$, we can write $\Lambda_{ij} = c \delta_{ij}$ or $\Lambda = ce$, a unit matrix times a constant. If Λ is proportional to the unit matri, then so is H and hence so is M.
- Case 2: If $\Lambda_{ii} \neq \Lambda_{jj}$ for $i \neq j$ (i.e. *H* has distinct eigenvalues), then $\tilde{D}_{ij} = 0$ for all the off-diagonal elements. Hence \tilde{D}_{ij} is a diagonal matrix. But we know that diagonal representations are clearly also block-diagonal, and hence is reducible.
- Case 3: If Λ_{ii} is equal for only some i = 1, 2, ..., k where k < n, then following Case 2, \tilde{D}_{ij} must vanish in the diagonal for any paris of i, j which do not have equal values for Λ_{ii} . So this follows that that part of the matrix must be diagonal just like in Case 2, and hence is block-diagonal.

Hence we have showed that if M is not proportional to the unit matrix, D_{α} must necessarily be reducible. Only in Case 1, if a non-zero matrix commutes with the elements of an irreducible representation, it must be proportional to the unit matrix. \Box .

Proof (Schur's Second Lemma): Let D_{α} and D'_{α} be two inequivalent unitary irreducible representations of group G with dimensions n and n' respectively. Suppose there exist a $n \times n'$ matrix M such that

$$MD_{\alpha} = D'_{\alpha}M. \tag{264}$$

Following the same steps as the 1st Lemma, we take the Hermitian Conjugation and using the fact the D_{α} and D'_{α} are unitary, $D^{\dagger} = D^{-1}$, we get

$$D_{\alpha}^{-1}M^{\dagger} = M^{\dagger}D_{\alpha}^{\prime-1}M^{\dagger}.$$
 (265)

Multiplying both sides by M from the left, and using $D = D^{-1}$ in Eq. (264) to replace D with D with D', we get

$$D'_{\alpha}{}^{-1}(MM^{\dagger}) = (MM^{\dagger})D'_{\alpha}{}^{-1}.$$
(266)

The matrix MM^{\dagger} is a $n' \times n'$ square matrix, but this has the form of Schur's First Lemma Eq. (247), this means that since D'_{α} is an element of a unitary *irreducible* representation, MM^{\dagger} must have the form

$$MM^{\dagger} = ce \ , \ c \in \mathbb{C}.$$

We now want to investigate M. Suppose n = n' and $c \neq 0$, Eq. (267) can be rearranged to become $M^{-1} = (1/c)M^{\dagger}$, giving us a relationship between M^{-1} and M^{\dagger} – and since our assumption is that M is non-zero, then M^{-1} is non-zero. This implies that M is invertible, so it can act to make D and D' equivalent via a similarity transform

$$D_{\alpha} = M^{-1} D_{\alpha}^{\prime} M. \tag{268}$$

Suppose again n = n' but c = 0, this means that $MM^{\dagger} = 0$, and the only matrix M that satisfies this equation is M itself is a zero matrix, i.e. M = 0.

In the case where $n \neq n'$, equation $MM^{\dagger} = ce$ implies that M^{\dagger} is the *inverse* of M. But we know from our study of matrices that *non-square matrices do not possess an inverse*³⁶, and hence the only way we can satisfy this equation is c = 0, or that M = 0.

This completes our proof of Schur's second Lemma. \Box .

Proof (Orthogonality Theorem): This is a long proof, so we will skip some algebra – you are encouraged to work through it.

Let D_{α} and D'_{α} be any two unitary representations of G with dimensions n and n'. Let B be any arbitrary non-singular matrix³⁷ of dimensions $n \times n'$, then we can construct a matrix M by summing up α in the following way

$$M \equiv \sum_{\alpha} D'_{\alpha} B D_{\alpha}^{-1}.$$
 (269)

We now want to show that Eq. (269) is satisfies the equation

$$D'_{\alpha}M = MD_{\alpha}.$$
(270)

Multiplying Eq. (269) on the left by D'_{β} , and by $D_{\beta}^{-1}D_{\beta} = e$ on the right, and after some fancy footwork we get

$$D'_{\beta}M = \sum_{\alpha} (D'_{\beta}D'_{\alpha})B(D^{-1}_{\alpha}D^{-1}_{\beta})D_{\beta}$$
(271)

and now using the closure of the representation $D'_{\beta}D'_{\alpha} = D'_{\gamma}$ and relabeling the summation from α to γ (see section 4.4.3 for the proof), then we get Eq. (270) as asserted.

³⁶You might argue that it may possess a *left inverse*, but one can also show that $M^{\dagger}M = ce$ so it must possess both left and right inverses for the equation to be true.

³⁷What is B? Secretly, it is the linear mapping between the vector spaces acted on by D and that acted on by D' – i.e. it is a **linear basis transformation** as we have studied in 4.4.1.

Now Eq. (270) has the form of which Schur's Second Lemma applies, which tells us that for M = 0, either $n \neq n'$ or n = n' and D and D' are inequivalent. In these condition, then from Eq. (269) is (restoring the matrix indices)

$$M_{ij} = \sum_{\alpha} \sum_{k,l} (D'_{\alpha})_{ik} B_{kl} (D^{-1}_{\alpha})_{lj} = 0.$$
(272)

Considering each (i, j) element, and since B_{kl} is arbitrary, this means that

$$\sum_{\alpha} \sum_{k,l} B_{kl} [(D'_{\alpha})_{ik} (D^{-1}_{\alpha})_{lj}] = 0.$$
(273)

or that each element k, l in this sum must vanish (since B_{kl} is arbitrary)

$$\sum_{\alpha} (D'_{\alpha})_{ik} (D^{-1}_{\alpha})_{lj} = 0.$$
(274)

and using the unitary condition $(D^{-1})_{lj} = D^{\dagger}_{lj} = D^{*}_{jl}$ which is the Orthogonality Theorem for different Irreps

$$\sum_{\alpha} (D'_{\alpha})_{ik} (D^*_{\alpha})_{jl} = 0.$$
(275)

For the case when n = n' and D is equivalent to D' so we will drop the prime, this is the case of Schur's First Lemma, so M must be proportional to the identity matrix M = ce. Eq. (269) the becomes

$$M_{ij} = \sum_{\alpha} \sum_{k,l} (D_{\alpha})_{ik} B_{kl} (D_{\alpha}^{-1})_{lj} = c \delta_{ij}$$

$$\tag{276}$$

Taking the trace of this equation, we get $\text{Tr}\delta_{ij} = n$, and using the Trace Identity, we get

$$cn = \sum_{\alpha} \operatorname{Tr} B = |G| \operatorname{Tr} B \tag{277}$$

where the second equality we have used the fact that there are |G| copies of B_{kl} in the summation. This gives us c as a function of the properties of the group representations and B

$$c = \frac{|G|}{n} \operatorname{Tr} B = \frac{|G|}{n} \sum_{k,l} B_{kl} \delta_{kl}.$$
(278)

Plugging Eq. (278) back into Eq. (276) we get

$$\sum_{k,l} B_{kl} \left[\sum_{\alpha} (D_{\alpha})_{ik} (D_{\alpha}^{-1})_{lj} - \frac{|G|}{n} \delta_{kl} \delta_{ij} \right] = 0$$
(279)

and again using the argument that since B is an arbitrary matrix, each element of the term in the square brackets must vanish

$$\left[\sum_{\alpha} (D_{\alpha})_{ik} (D_{\alpha}^{-1})_{lj} - \frac{|G|}{n} \delta_{kl} \delta_{ij}\right] = 0$$
(280)

and using $(D^{-1})_{lj} = D^{\dagger}_{lj} = D^{*}_{jl}$, we get the Orthogonality Theorem for equivalent unitary representations

$$\sum_{\alpha} (D_{\alpha})_{ik} (D_{\alpha}^*)_{jl} = \frac{|G|}{n} \delta_{kl} \delta_{ij}, \qquad (281)$$

and hence the proof is complete $\Box.$

Finally, before we proceed, there is a "toy version" of the Orthogonality Theorem for characters, we studied previously in 4.4. There, we introduced *characters* of representations as mathematical constructs – it is the trace of the matrix representation

$$\chi_{\alpha} = \operatorname{Tr} D_{\alpha}. \tag{282}$$

In this section, we will combine this with the Orthogonality Theorem to come up with a set of important results on irreducible representations which will allow us a systematic way of determining the irreducibility of any representations – and hence answering the question that we posed a while ago: how do we tell if a representation is irreducible or not. Fortunately, while the mathematical infrastructure is somewhat complicated to prove, the results are quite easy to apply.

Recall, that again in section 4.4, we showed that elements of a group which are in the same conjugacy class has the same character since if $g_2 \sim g_1$ for $g_1, g_2 \in G$, this means that $\exists g$ such that $g_1 = gg_2g^{-1}$

$$\operatorname{Tr} D(g_1) = \operatorname{Tr} D(gg_2g^{-1}) = \operatorname{Tr} D(gg^{-1}g_2) = \operatorname{Tr} D(g_2).$$
 (283)

or $\chi(g_1) = \chi(g_2)$.

We can now use this fact to prove the simplified version of the Orthogonality Theorem for characters:

(Theorem) Orthogonality Theorem for Characters: Suppose D^m_{α} and D'^{m}_{α} are the m-th and m'-th inequivalent irreducible unitary representation of the element α of a group G, then

$$\sum_{\alpha} (\chi_{\alpha}^{m})^* (\chi_{\alpha}^{m'}) = |G| \delta_{mm'}$$
(284)

Proof: Let's begin with the Orthogonality Theorem for single irreps (see section 4.4.4)

$$\sum_{\alpha} (D_{\alpha})_{ij}^* (D_{\alpha})_{kl} = \frac{|G|}{n} \delta_{ik} \delta_{jl}.$$
(285)

Since the indices (i, j, k, l) are all different in Eq. (285), so one can think of the LHS as 4-index *tensor* object. We can now **contract** over the pair of indices (i, j) and (k, l), which means we sum over all the terms i = j and k = l so now the equation becomes (adding in the sum over i, k for emphasis)

$$\sum_{\alpha} \sum_{i,k} (D_{\alpha})_{ii}^* (D_{\alpha})_{kk} = \frac{|G|}{n} \sum_{i,k} \delta_{ik} \delta_{ki}.$$
(286)

But $\sum_{i} (D_{\alpha}^{*})_{ii} = \text{Tr}D_{\alpha}^{*}$, and $\sum_{k} (D_{\alpha})_{kk} = \text{Tr}D_{\alpha}$, i.e. *contraction* is nothing but selective "trace" over the indices of a multi-index object. Also, on the RHS

$$\sum_{ik} \delta_{ik} \delta_{ki} = \sum_{i} \delta_{ii} = n \tag{287}$$

which is the dimensions of the matrix representation for D. So Eq. (286) becomes

$$\sum_{\alpha} \mathrm{Tr} D_{\alpha}^* \mathrm{Tr} D_{\alpha} = |G|$$
(288)

If we now look at the General Orthogonality theorem with different representations, using Eq. (251) instead of Eq. (249) as our starting point,

$$\sum_{\alpha} (D^m_{\alpha})^*_{ij} (D^{m'}_{\alpha})_{kl} = \frac{|G|}{n_m} \delta_{ik} \delta_{jl} \delta^{mm'}$$
(289)

the $\delta_{mm'}$ just gets carried around, and we obtain the following

$$\sum_{\alpha} \operatorname{Tr}(D_{\alpha}^{m})^{*} \operatorname{Tr}D_{\alpha}^{m'} = |G|\delta_{mm'}$$
(290)

and using Eq. (282) we get the theorem we intend to prove \Box .

(Corollary): Recall that matrix representations belonging to the same conjugacy class have equal characters. Suppose group G has C conjugacy classes, and for each conjugacy class labeled by $\mu =$

 $1, 2, 3, \ldots C$ there are N_{μ} elements, then we can rewrite Eq. (284) as a sum over conjugacy classes instead of sum over all elements of G

$$\sum_{\mu}^{\mathcal{C}} N_{\mu}(\chi_{\mu}^{m})^{*}(\chi_{\mu}^{m'}) = |G|\delta_{mm'}$$
(291)

4.4.5 Decomposition of Reducible Representations

The previous section is long, and we proved a bunch of theorems. Now we are going to reap the first rewards of our diligence.

We have spent a lot of time discussing irreps, but what about reducible representations? In section 4.4.2, we show how, given any set of representations (regardless of whether they are reducible or irreps), we can construct reducible representations by *direct sum*

$$\mathcal{D}(g) = \sum_{\oplus} D_i(g). \tag{292}$$

As we have discussed, the fundamental building blocks for representations are the irreps. So, although we can build any other representations from reducible representations, let us restrict ourselves to the irreps as building blocks.

Suppose now we have a set of representations, $\{D^m_\alpha\}$, where $m = 1, 2, 3, \ldots, \mathcal{M}$, where \mathcal{M} is the total number of irreps in the theory. Now further suppose we are given a *reducible* representation, remember that we can always find a *similarity transform* that brings it to block-diagonal form, although the exact form of this transform might be hard to find. Such a block-diagonal form would then be a direct sum of the irreps

$$\mathcal{D}_{\alpha} = D_{\alpha}^{m_1} \oplus D_{\alpha}^{m_2} \oplus D_{\alpha}^{m_3} \oplus \dots$$
(293)

where m_i are the irreps – notice that we can have *repeated* irreps so for example $m_1 = m_3 = 4$ for the fourth irrep in the above sum. Now remember that characters of irreps are invariant under similarity transforms, so if we take the trace of Eq. (293) we get

$$\chi_{\alpha} = \sum_{m} a_{m} \chi_{\alpha}^{m} \tag{294}$$

where χ_{α} is the character for element α , and a_m is a non-complex integer which tells us how many times the *m*-th irrep appear in the reducible form. Next we use the Orthogonality Theorem for characters Eq. (291): multiply Eq. (294) by $N_{\alpha}\chi_{\alpha}^{m'*}$ where N_{α} is the number of elements in the conjugacy class which α belongs, and then summing over all α , we get on the RHS

$$\sum_{m} a_{m} \underbrace{\sum_{\alpha} N_{\alpha} \chi_{\alpha}^{m'*} \chi_{\alpha}^{m}}_{|G|\delta_{mm'}} = |G|a_{m'}$$
(295)

so plugging this back to Eq. (294) we get

$$a_{m'} = \frac{1}{|G|} \sum_{\alpha} N_{\alpha} \chi_{\alpha}^{m'*} \chi_{\alpha}$$
(296)

The way to think about Eq. (296) is to think of the big reducible representation as a *linear sum* (the \oplus) over the irreps where the irreps are the "eigenfunctions", so Eq. (296) is the equation which *picks* out the *coefficients* of these irreps³⁸.

³⁸Here is it in hardcore equation form. Suppose we have a function $\psi(x)$, and a *complete set* of eigenfunctions $u_i(x)$. We can then describe $\psi(x) = \sum_i a_i u_i(x)$ using the completeness property. The coefficient a_i can be obtained by taking the

Let's now construct a *test* for whether a representation is an irrep or reducible rep. Starting with Eq. (294), and take the absolute square, multiply by N_{α} , then summing over all α :

$$\sum_{\alpha} N_{\alpha} |\chi_{\alpha}|^{2} = \sum_{\alpha} N_{\alpha} \chi_{\alpha}^{*} \chi_{\alpha}$$

$$= \sum_{\alpha} \sum_{m,m'} a_{m} a_{m'} N_{\alpha} \chi_{\alpha}^{m*} \chi_{\alpha}^{m'}$$

$$= \sum_{m,m'} a_{m} a_{m'} |G| \delta_{mm'}$$

$$= \sum_{m} a_{m}^{2} |G|$$
(298)

where in the 2nd line we have used Eq. (291) again. Note that $a_m = a_m^*$ since it is simply a non-complex integer. This result gives us a direct result between the coefficients a_m , N_{α} and the total trace of the (possibly) reducible representation:

• \mathcal{D} is an *irreducible representation*: Recall that the a_m 's are the coefficients that tell us how many m-th representation are there in \mathcal{D} , hence since \mathcal{D} is one (and only one) of the irrep, say the m_0 -th irrep, then $a_{m_0} = 1$ and every $a_m = 0$. Then Eq. (298) becomes the equality

$$\sum_{\alpha} N_{\alpha} |\chi_{\alpha}|^2 = |G| \,. \tag{299}$$

• \mathcal{D} is a reducible representation: From the argument above, there must exist either more than one non-zero a_m 's, or that at least one of the $a_m > 1$, or both. Hence Eq. (298) is the *inequality*

$$\boxed{\sum_{\alpha} N_{\alpha} |\chi_{\alpha}|^2 > |G|}.$$
(300)

Taken together, these two results give us a *test* for whether a representation is reducible or now as long as you know |G| and its conjugacy classes: calculate the sum on the LHS of Eq. (299), and if it is equal to |G| then it is a irreducible representation, and if it is more than |G| it is reducible. (If you get less than |G|, you have made a mistake.)

Example: Consider the representations of D_4 . Let's start with 1-dimensional representations – recall that all one dimensional representations are irreducible. It turns out that there are four of them, which we will lable i = 1, 2, 3, 4

$$D^{i}: D_{4} = \{e, R, R^{2}, R^{3}, m_{1}, m_{2}, m_{3}, m_{4}\} \rightarrow \begin{cases} \{1, 1, 1, 1, 1, 1, 1, 1\} \\ \{1, 1, 1, -1, -1, -1, -1\} \\ \{1, -1, 1, -1, 1, 1, -1, -1\} \\ \{1, -1, 1, -1, -1, -1, 1, 1\} \end{cases}$$
(301)

Notice that the first representation is just all ones, i.e. $\operatorname{Ker}(D^1) = D_4$. Such a representation is called the **Trivial Representation**. You can easily prove to yourself that all groups possess a trivial representation. It is clear that all the 1-D representations are unfaithful. From our study of the Dihedral groups in section 3.3, we learned that D_4 is partitioned into following conjugacy classes C_k with total elements n_k

• The identity is its own conjugacy class, $C_1 = \{e\}$, with $N_1 = 1$.

u

inner product of $\psi(x)$ with the eigenfunction $u_i(x)$ viz

$$_{i}^{*}(x)\psi(x) = \sum_{i'} a_{i'}u_{i}^{*}(x)u_{i}(x) = \delta_{ii'}a_{i'} = a_{i}$$
(297)

so the LHS of Eq. (297) is the linear algebra equivalent of the RHS of Eq. (296). Think of fourier transforms.

- Since D_4 is an even Dihedral group, the reflection operators are partitioned into odd and even conjugacy classes $C_2 = \{m_1, m_3\}$ and $C_3 = \{m_2, m_4\}$ with $N_2 = N_3 = 2$.
- All the rotation operators are paired into conjugacy classes with its respective inverse, i.e. $\{R^j, R^{-j}\}$. For D_4 , we have 3 rotation operators R, R^2, R^3 , it's clear that since R^2 is its own inverse, it forms its own class $C_4 = \{R^2\}$, and since the inverse of R is $R^{-1} = R^3$, the last conjugacy class is $\{R, R^3\}$.

The trace of a 1×1 representation is simply the number itself i.e. $\chi_{\alpha} = D_{\alpha}$. You can now apply Eq. (299) to check that the 1-D representations are truly irreducible. For D^1 , all $\chi_{\alpha} = 1$, so

$$\sum_{\alpha} N_{\alpha} |\chi_{\alpha}|^2 = (1 \times 1) + (2 \times 1) + (2 \times 1) + (1 \times 1) + (2 \times 1) = 8 = |G|$$
(302)

as claimed. The calculation are very similar for the other 3 1-D representations.

Now, let's consider 2×2 representations of D_4 . We have seen a representation in the introduction Chapter 1 – we can check whether or not it is an irrep or not easily by applying Eq. (299). The characters are (considering only a representative from each conjugacy class)

$$\chi(e) = 2 , \ \chi(R) = 0 , \ \chi(R^2) = -2 , \ \chi(m_1) = 0 , \ \chi(m_2) = 0.$$
 (303)

Hence Eq. (299) then gives

$$\sum_{\alpha} N_{\alpha} |\chi_{\alpha}|^2 = (1 \times 4) + (2 \times 0) + (2 \times 0) + (1 \times 4) + (2 \times 0) = 8 = |G|$$
(304)

which proves that it is an irrep.

Finally consider the following unfaithful representation of D_4

$$D(e) = D(R) = D(R^2) = D(R^3) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ D(m_1) = D(m_2) = D(m_3) = D(m_4) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(305)

which you can prove to yourself is a representation of D_4 by showing that the matrices obey the group composition laws (what is the kernel of this representation?). Now the characters are

$$\chi(e) = 2 , \ \chi(R) = 2 , \ \chi(R^2) = 2 , \ \chi(m_1) = 0 , \ \chi(m_2) = 0.$$
 (306)

so applying Eq. (299) we get

$$\sum_{\alpha} N_{\alpha} |\chi_{\alpha}|^2 = (1 \times 4) + (2 \times 0) + (2 \times 0) + (1 \times 4) + (2 \times 4) = 16 > |G|$$
(307)

which proves that it is not an irrep, although the fact that it is already in block-diagonal form probably gives the game away – can you see which are the two 1-D representation that this is built out of?

Let's collect the characters of the irreps into a table. Calling the 2×2 irrep D^5 , we have

	e	R	\mathbb{R}^3	R^2	m_1	m_3	m_2	m_4
$\chi(D^1)$	1	1	1	1	1	1	1	1
$\chi(D^2)$	1	1	1	1	-1	-1	-1	-1
$\chi(D^3)$	1	-1	-1	1	1	1	-1	-1
$\chi(D^4)$	1	-1	-1	1	-1	-1	1	1
$\chi(D^5)$	2	0	0	-2	0	0	0	0

Such a table is called a **Character Table**. It doesn't really convey more information than those that one already obtained from applying all the theorems, but it does provide a good pedagogical device for us to see some patterns. Notice that, except for the Trivial representation D^1 , the characters sum to zero. This is actually a consequence of the Orthogonality Theorem for different irreps Eq. (284)

$$\sum_{\alpha} (\chi_{\alpha}^{m})^{*} (\chi_{\alpha}^{m'}) = |G| \delta_{mm'}$$
(309)

and now choosing m = 1 for the trivial irrep, so $\chi^1_{\alpha} = 1$, and then for any other m', we have $\delta_{1m'} = 0$ for $m' \neq 1$, so

$$\sum_{\alpha} (\chi_{\alpha}^{m'}) = 0 \tag{310}$$

and hence we have shown that the sum of all characters in any non-trivial irrep is zero – yet another way for us to check for irreducibility.

Here for D_4 , there are 5 conjugacy classes as we have shown, and we have found 5 irreps. Is there another irrep lurking away? In fact we can show from our results that there isn't any, recall Eq. (252)

$$\sum_{m=1}^{\mathcal{M}} n_m^2 \le |G| \tag{311}$$

and we have already found 4 1-D and 1 2-D representations, so $1 + 1 + 1 + 1 + (2)^2 = 8 \le |G|$, so there is no more irreps. Of course, we asserted that the \le is really an equality $-D_4$ is evidence of it. We will come back to proving this in the next section.

There is another piece of information shown in the Character Table that it not manifest and which is apparently a coincident: the number of conjugacy classes is the same as the number of irreps. Let's look at the Character Table for $D_3 = \{e, R, R^2, m_1, m_2, m_3\}$, with three conjugacy classes $C_1 = \{e\}, C_2 = \{R, R^2\}, C_3 = \{m_1, m_2, m_3\}$:

where D^1 is the trivial representation, D^3 is the 2 × 2 representation we considered in the example in Section 4.4.2 – there we asserted that it is an irrep but now you can actually prove it by using Eq. (299) which we will leave to you to do. $D^2 = \{1, 1, 1, -1, -1, -1\}$ is a 1-D unfaithful irrep which is new to us. Since using Eq. (252), we have 1 + 1 + 4 = 6 = |G| there is no other irreps. Notice again that there are 3 conjugacy classes and 3 irreps. We will prove this theorem next.

4.4.6 Burnside's Theorem

We now end this long chapter with a final theorem. This is actually a couple of theorems, which we have asserted but didn't prove. The two theorems are collectively sometimes know as **Burnside Theorem**.

(Theorem) Burnside:

• (Part 1): Suppose n_m is the dimensions of the matrix representations of the m-th inequivalent irrep of the group G and G has \mathcal{M} number of such irreps, then the following equality holds

$$\sum_{m=1}^{\mathcal{M}} n_m^2 = |G| \tag{313}$$

• (Part 2): The number of inequivalent irreducible representations is equal to the number of conjugacy classes in the group.

Proof: We will prove part Part 1 first. Recall the construction of the *regular representation*, see section 4.2.2. Since it is constructed via a *complete rearrangmenet*, a regular representation has two main salient points (which you should spend a moment to convince yourself)

- The matrix representation is |G|-dimensional, i.e. it is made out of $|G| \times |G|$ square matrices.
- The only element that has no-zero trace is the identity, which is $\chi(e) = |G|$, and $\chi(g \neq e) = 0$.

One can easily check that the regular representation is reducible by applying Eq. (298) – the only non-zero matrix representation is the identity, which is also its own conjugacy class, so

$$\chi(e)^2 = |G|^2 > |G| \tag{314}$$

as long as |G| > 1 (i.e. it is not the trivial group). What are the building blocks of the regular representation, i.e. what are the irreps of which it is built out of? We can use the techniques of Decomposition 4.4.5 to find out in the following way. We first decompose the characters of the representation using Eq. (294)

$$\chi_{\alpha} = \sum_{m} a_m \chi_{\alpha}^m \tag{315}$$

where a_m are given by Eq. (296). Now set $\alpha = e$, i.e. we consider the identity representation. But now for every irrep labeled by m, the identity representation is simply the identity matrix of $n_m \times n_m$ dimensions, so $\chi_e^m = n_m$. Furthermore, $N_e = 1$ as we explained earlier. Hence Eq. (296) becomes

$$a_{m} = \frac{1}{|G|} \sum_{\alpha} N_{e} \chi_{\alpha}^{m*} \chi_{e}$$
$$= \frac{1}{|G|} \times n_{m} \times |G|$$
$$a_{m} = n_{m}.$$
(316)

or

Since a_m is the number of time the *m*-th irrep appear in the regular representation, this means that each *m*-th irrep appear n_m times. Now remember that the size of the regular representation is an $|G| \times |G|$ matrix, and this is constructed out of a_m number of $n_m \times n_m$ square matrices (after some suitable similarity transforms), this means that

$$\sum_{m} a_m n_m = |G| \tag{317}$$

or

$$\sum_{n=1}^{\mathcal{M}} n_m^2 = |G|$$
(318)

which proves Part 1 of Burnside's Theorem \Box .

Part 2 of Burnside's theorem is a more complicated and longer proof, so we will sketch this instead of going full monty – you are encouraged to fill in the steps – it has a very pretty ending though. We begin with the conclusion of the Part 1, which is that the Regular representation is built out of n_m number of inequivalent D^m representation, suitably similarly transformed. Let's call the regular representation \mathcal{D}^{reg} , so it is

$$\mathcal{D}^{reg}(g) = \sum_{\oplus} D^m(g). \tag{319}$$

Now let $g_1, g_2 \in G$. Via closure, $g_1 g_2^{-1}$ must be some element in G, so this becomes

$$\mathcal{D}^{reg}(g_1 g_2^{-1}) = \sum_{\oplus} D^m(g_1 g_2^{-1}).$$
(320)

Taking the trace of Eq. (320), we get on the LHS

$$\operatorname{Tr}\mathcal{D}^{reg}(g_1g_2^{-1}) = \begin{cases} |G| \text{ if } g_1 = g_2\\ 0 \text{ otherwise} \end{cases}$$
(321)

since we know that the only non-zero character of the regular representation is the identity, so the only way $g_1g_2^{-1} = e$ is when $g_1 = g_2$, so we can write it as $\text{Tr}\mathcal{D}^{reg}(g_1g_2^{-1}) = |G|\delta_{g_1,g_2}$. Tracing over the RHS we get after some algebra

$$|G|\delta_{g_1,g_2} = \sum_m^{\mathcal{M}} n_m D_{ij}^m(g_1)(D_{ji}^m(g_2^{-1})) = \sum_m^{\mathcal{M}} n_m D_{ij}^m(g_1)(D_{ij}^m(g_2))^*$$
(322)

where we have used unitarity $D_{ij}^m(g_2^{-1}) = (D_{ji}^m(g_2))^*$.

Now here is some trickery: let us consider $g_1 \to gg_1g^{-1}$ and sum over all $g \in G$ in Eq. (322),

$$|G|\sum_{g} \delta_{gg_1g^{-1},g_2} = \sum_{m}^{\mathcal{M}} \sum_{g} n_m D_{ij}^m (gg_1g^{-1}) (D_{ij}^m (g_2))^*$$
(323)

and using $D^m(gg_1g^{-1}) = D^m(g)D^m(g_1)D^m(g^{-1})$, and after some index juggling and using the Orthogonal Theorem for different irreps Eq. (249), we get

$$|G|\sum_{g} \delta_{gg_1g^{-1},g_2} = |G|\sum_{m} \delta_{ij}\delta_{kl}D^m_{kl}(g_1)(D^m_{ij}(g_2))^*$$
(324)

but now using the deltas to contract the matrices, we get characters

$$\sum_{g} \delta_{gg_1g^{-1},g_2} = \sum_{m}^{\mathcal{M}} \chi^m(g_1)\chi^m(g_2)^*.$$
(325)

Now we fix g_1 and g_2 , and let g runs over all the elements of the group G. We have two cases depending on the conjugacy class the element gg_1g^{-1} belongs to. Let the conjugacy class C_2 be the class of which g_2 belongs to and C_1 be the class g_1 belongs to, then we have two cases:

- If $gg_1g^{-1} \notin C_2$, then it is clear that gg_1g^{-1} cannot be g_2 so we get zero.
- If gg₁g⁻¹ ∈ C₂, thus C₁ = C₂, then some terms are non-zero, because by conjugation some terms get sent from g₁ to g₂. Suppose ğ and ğ' are two such elements (which may be the same element), i.e. g₂ = ğg₁ğ⁻¹ and g₂ = ğ'g₁ğ'⁻¹, then we can write g₂ = hg₁h⁻¹, where h = ğ⁻¹ğ'. Turns out that the set of all h, H_{g1} = {h} is a subgroup of G, which you will be asked to prove in the homework. This means that the set of {ğ, ğ', ğ'', ...} (which is not a subgroup of G!) has the same number of elements as H_{g1}, or |H_{g1}|. Since g₂ can be any element of C₂ = C₁, which means it can also be g₁ ∈ C₁. Since the set {ğ, ğ', ğ'', ...} is, via h = ğ⁻¹ğ' is simply the left coset of a subgroup H_{g1}, it partitions G (see section 3.2.2) into |C₁| disjoint subsets each with |H_{g1}| number of elements, i.e.

$$G| = |\mathcal{C}_1| |H_{g_1}|. \tag{326}$$

hence the LHS of Eq. (325) is then

$$\sum_{g} \delta_{gg_1g^{-1},g_2} = |G||H_{g_1}|\delta_{\mathcal{C}_1,\mathcal{C}_2} = \frac{|G|}{|\mathcal{C}_1|}\delta_{\mathcal{C}_1,\mathcal{C}_2}$$
(327)

and we finally get the Orthogonality Theorem for Classes

$$|G|\delta_{\mathcal{C}_1,\mathcal{C}_2} = |\mathcal{C}_1| \sum_m^{\mathcal{M}} \chi^m(g_1) \chi^m(g_2)^*$$
(328)

Eq. (328) says that the RHS is only non-zero for any given two g_1 and g_2 , if $g_1 \sim g_2$ i.e. they belong to the same class. You can use this formula to calculate all sorts of stuff. But how does this show that the number of conjugacy classes is equal to \mathcal{M} the number of irreps? Now if we write Eq. (328) as

$$|G|\delta_{\mathcal{C}_1,\mathcal{C}_2} = |\mathcal{C}_1| \sum_m^{\mathcal{M}} \chi_{\mathcal{C}_1}^m \chi_{\mathcal{C}_2}^m ^*$$
(329)

We can see this by thinking of C_1 , C_2 and m on $\chi^m_{\mathcal{C}}$ as indices for a $N \times \mathcal{M}$ matrix, where N is the number of conjugacy class. But then Eq. (329) can be rewritten as

$$\mathbf{I} \propto \chi_{m\mathcal{C}} {\chi_{\mathcal{C}m}}^{-1} \tag{330}$$

which we have used unitarity again. But again we know that only square matrices have inverses! This means that $\chi_{m\mathcal{C}}$ must be a square matrix, and hence the dimension of m must be the same as the dimensions for \mathcal{C} . We have thus proven that the number of conjugacy classes must be equal to the number of irreps \Box .

4.5 Summary

We shall summarize the important points on this chapter. The main thrust is to study *Group representa*tions. We have shown that group elements may be represented by square matrices, and the objects which square matrices naturally act on are column matrices which are also *Complex Vectors*. Then we showed that the matrix representation of group elements are *incredibly restricted* in their form – the order of the group |G|, the number of conjugacy classes severely restrict not just the number of irreps, but also the *individual matrix elements* of the matrix representation themselves! If you think about it, the only input we have entered is the group axioms – this is one of the most mind-blowing thing about group theory.

These set of restrictions are encoded in a set of **Orthogonality Theorems** which you should memorize:

• Orthogonality Theorem of matrix elements of group representations:

$$\sum_{\alpha} (D^m_{\alpha})^*_{ij} (D^{m'}_{\alpha})_{kl} = \frac{|G|}{n_m} \delta_{ik} \delta_{jl} \delta^{mm'}.$$
(331)

• Orthogonality Theorem of Characters:

$$\sum_{\alpha} (\chi_{\alpha}^{m})^{*} (\chi_{\alpha}^{m'}) = |G| \delta_{mm'}.$$
(332)

• Orthogonality Theorem for Classes:

$$|G|\delta_{\mathcal{C}_1,\mathcal{C}_2} = |\mathcal{C}_1| \sum_{m}^{\mathcal{M}} \chi^m(g_1) \chi^m(g_2)^*.$$
(333)

• With these theorems, one can derive the following relations: Restriction on the values of characters:

$$\sum_{\alpha} N_{\alpha} |\chi_{\alpha}|^2 = |G|. \tag{334}$$

Restriction on the dimensionality of irreps:

$$\sum_{m=1}^{\mathcal{M}} n_m^2 = |G| \tag{335}$$

Restriction on the number of irreps.

Number of conjugacy classes $\mathcal{M} =$ Number of inequivalent irreps (336)

5 Lie Groups and Lie Algebras

We move in space with minimum waste and maximum joy.

Sade, Smooth Operator

With a solid background on group theory in the past few chapters, we now embark the study of the capstone of our course – Lie Groups and Lie Algebras. Lie Groups are Continuous Groups which also possess the *additional property that functions of the elements of this Group is* **smooth and differen-tiable**, and furthermore **analytic**. We will elucidate on the bold words soon enough. Lie Groups are, without doubt, the most important class of group in physics. It pops its head out in every field from particle physics, quantum mechanics, condensed matter physics, to General Relativity, String Theory, and basically anything that you can think of in physics.

Despite its critical nature, the study of Lie Groups has its humble beginnings in **Sophus Lie**'s (1842-1899) hope to solve some differential equations. He was inspired by **Galois**, who invented Galois Theory to show that one can use the properties of the symmetric group to solve algebraic equations. You probably have learned that the quadratic equation $ax^2 + bx + c = 0$ has the "solution by radicals" $x = (1/2a)(-b \pm \sqrt{b^2 - 4ac}) - i.e.$ the roots are some "square root" of some clever combination of the coefficients. Galois proved that one can solve equations up to quartic order using such "solutions by radicals", but not quintic and above³⁹. To do this, he exploited the fact that some combinations of the roots are symmetric under the permutation group, the details of which we will not pursue here. Lie was wondering if he could use similar ideas to help him solve differential equations "by radicals", and found that he could. However, to do that, he developed the entire machinery of Lie Groups and Lie Algebras, which ended up revolutionizing both mathematics and physics.

5.1 Continuity, Smoothness and Analyticity

In the introduction to Chapter 3, we alluded to the fact that **continuous** groups needs additional mathematical structure, namely what do we mean for two elements in a set to be "infinitisimally" close together. In addition to being continuous, the set of elements may or may not possess the additional property of being **smooth**. For example, consider the kink (see figure 13)

$$f(x) = \begin{cases} x+1, \ x < 0\\ -x+1, \ x \ge 0 \end{cases}$$
(337)

which is continuous. However, x = 0 the kink does not "look smooth". We make the definition of "smoothness" precise by considering the first derivative of this function

$$\frac{df}{dx} = \begin{cases} 1, \ x < 0\\ -1, \ x \ge 0 \end{cases}$$
(338)

At x = 0, the derivative $d^2 f/dx^2$ is "undefined". In other words, while f(x) is differentiable, its derivative df(x)/dx is not differentiable. More generally, some functions are differentiable everywhere for up to n times, which we categorized them as C_n functions. Hence a smooth function is a continuous C_{∞} function.

(Definition) Smoothness: A C_n function f(x) is a function which can be differentiated n times. A smooth function is a C_{∞} function. If a function has more than one variable, i.e f(x, y, z, ...), each variable may have different levels of differentiability⁴⁰.

³⁹This might sound trivial, but it flummoxed mathematicians for 2000 years.

⁴⁰As we briefly alluded to in the beginning of Chapter 4, continuous sets with the notion of "distance" are called **topological spaces**. Each point on a topological space may be labeled with a **coordinate**, and if functions of this space

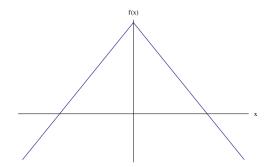


Figure 13: A kink is a continuous but non-differentiable (at x = 0) function.

A function which is smooth within some (open) domain M can hence be differentiated an infinite number of times within this domain. This allow us to expand this function as a **Taylor Series** at any point $x_0 \in M$, i.e.

$$f(x) = f(x_0) + \frac{df}{dx}\Big|_{x_0} (x - x_0) + \frac{1}{2!} \frac{d^2 f}{dx^2}\Big|_{x_0} (x - x_0)^2 + \dots$$
(339)

This series may or may not converge⁴¹, depending on the exact form of f. If this series converges to its functional value *everywhere* in the (open) domain considered, then we say that the function f is **analytic** in M. All this is familiar to you when you do Calculus 101. Since we will be exclusively be dealing with C_{∞} functions, we will now drop the awkward term "infinitely" from now on.

5.2 Lie Groups

Recall our working definition for a continuous group is that the elements can be parameterized by \mathbb{R}^n or a compact subset of \mathbb{R}^n . Consider a simple n = 1 continuous group, SO(2). As we have seen in Chapter 4, the 2D matrix representation for SO(2) is given by the 1-parameter matrix Eq. (151)

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \ 0 \le \theta < 2\pi.$$
(340)

Similarly, the 1D irrep of SO(2) is given by

$$R_{\theta} = e^{i\theta}.\tag{341}$$

Notice that both representations are parameterized by a single continuous parameter.

In general, the **dimension** of any Lie Group is the number of continuous parameters needed to parameterized it. Consider now a dimension 1 Lie Group G with some representation L, i.e.

$$L: G \to GL(N, \mathbb{C}). \tag{342}$$

Do not confuse the dimensionality of the matrix N with the dimensionality of the Lie Group n – as we have seen in the case SO(2) above, $n \neq N$ in general. We parameterize the representation L with some real variable \mathbb{R} . From closure, then

$$L(c) = L(a)L(b) , \ a, b, c \in \mathbb{R}.$$
(343)

is differentiable in these coordinates, then this space is called a **differential manifold**. Differential manifolds are crucial in physics for obvious reasons – most physical models of dynamical systems are expressed in terms of *time and space derivatives* of variables, and you will encounter them very often in the future. For example, in General Relativity, the curvature of spacetime **metric** can be described by a tensor field that lives on a differential manifold. Indeed, Lie Groups' natural "home" is also the differential manifold. For this class, we will not go that route since it will take us too far afield (and into the subfield of mathematics known as **Differential Geometry**).

 $^{^{41}\}mathrm{I.e.}$ this means that not all smooth functions are analytic.

Now since G is a continuous group, then c must be a continuous function of a and b, i.e.

$$c = f(a, b)$$
, f is a continuous function of a and b. (344)

The function f(a, b) must obey the inherited rules of the parent group.

Associativity:
$$L(a)[L(b)L(c)] = [L(a)L(b)]L(c) \Rightarrow f(a, f(b, c)) = f(f(a, b), c)$$
 (345)

Identity : Let a_0 labels the identity i.e. $L(a_0) = e$

then
$$L(a)L(a_0) = L(a_0)L(a) = L(a) \Rightarrow f(a, a_0) = f(a_0, a) = a.$$
 (346)

The last equality, $f(a, a_0) = f(a_0, a) = a$ can be derived via $L(c) = L(a)L(b) \Rightarrow L(f(a, b)) = L(a)L(b)$ and substituting $b = a_0$ we get $L(f(a, a_0)) = L(a)L(a_0) = L(a)$ and hence $f(a, a_0) = a$. Finally there is the inverse

Inverse: Let L(b) be the inverse of L(a) i.e. $(L(b))^{-1} = L(a)$ then (347)

$$L(a)L(b) = L(b)L(a) = L(a_0) \Rightarrow f(b, a) = f(a, b) = a_0.$$
(348)

So far we have recapped the usual story about continuous groups, with the group laws that we have now *isomorphically* mapped to some domain in \mathbb{R} , and expressed by the continuous function f(a, b). Now, we have all that is required to describe Lie Groups.

(Definition) Lie Groups: Let G be a n-the dimensional Lie Group parameterized by some continuous n dimensional space M, $a, b \in M$ be points on the parameter space of G, and f(a, b) be a continuous function which maps two points (a, b) in the Lie Group onto a third point c, then f(a, b) is an *analytic* function in both variables.

In other words, a Lie Group is a continuous group with the added property that the elements are not just continuous, but the group mapping law is also analytic. Now, f(a, b) is a function of two variables, so analyticity means that the function must be *differentiable in both sets of variables*.

(Definition) Dimensions: The number of independent parameters of the Lie Group is called its Dimensions.

Example: Consider again SO(2), and for simplicity let's work with the 1D irrep where the operators are paramterized as

$$R(\theta) = e^{i\theta}.\tag{349}$$

The group composition law is

$$R(\theta_3) = R(\theta_1)R(\theta_2) = R(\theta_1 + \theta_2) \tag{350}$$

which means that the function f for this group is given by the simple addition

$$f(\theta_1, \theta_2) = \theta_1 + \theta_2 \mod 2\pi \tag{351}$$

This function is clearly C_{∞} and analytic for both variables, which we can see by expanding in a Taylor series

$$f(\theta_1, \theta_2) = f(\bar{\theta}_1, \bar{\theta}_2) + \frac{\partial f}{\partial \theta_1} \Big|_{\bar{\theta}_1} (\theta_1 - \bar{\theta}_1) + \frac{\partial f}{\partial \theta_2} \Big|_{\bar{\theta}_2} (\theta_2 - \bar{\theta}_2) + \dots$$

$$= \bar{\theta}_1 + \bar{\theta}_2 + (\theta_1 - \bar{\theta}_1) + (\theta_2 - \bar{\theta}_2)$$

$$= \theta_1 + \theta_2, \qquad (352)$$

i.e. within the domain $0 \le \theta < 2\pi$, the Taylor expansion converges to the functional value f.

5.3 Invariant transformations on Real Space

You have learned that one way to understand group operations is to leave some object invariant. For example the dihedral-4 group D_4 leaves the square invariant. We can abstract this class of objects from geometrical things to the more abstract notion of "equations". For example, consider the differential equation for y(x)

$$x\frac{dy}{dx} + y - xy^2 = 0.$$
 (353)

If one perform the following transformation, for any non-zero $a \neq 0 \in \mathbb{R}$

$$x \to ax , y \to a^{-1}y$$
 (354)

then

$$\frac{dy}{dx} \to a^{-2}\frac{dy}{dx}.\tag{355}$$

Substituting these back into Eq. (353) we recover the original equation – we say that the tranformations leave Eq. (354) invariant, hence it is a symmetry of the equation. Note that we have insisted that $a \neq 0$ else the transformation $y \to a^{-1}y$ is undefined – you will soon see that this requirement is intimately tied with the existence of inverses. Indeed the transformations Eq. (354) form a group – we can check that they obey the usual group laws as follows:

• Closure : Let $a, b \in \mathbb{R}$ and $a, b \neq 0$, and consider the two successive transformations

$$x' = ax$$
 , $y' = a^{-1}y$ (356)

$$x'' = bx' \quad , \ y'' = b^{-1}y' \tag{357}$$

and then it follows that x'' = abx and $y'' = (ab)^{-1}y$. But let c = ab and it's clear that $c \in \mathbb{R} \neq 0$, and hence we have demonstrated closure.

- Associativity : Follows from the associativity of multiplication of real numbers.
- Identity : It is trivial to see that 1 is the identity.
- Inverse : Again it is clear that the inverse for any transformation labeled a is its geometric inverse a^{-1} .

Hence we have proven that the set of transformations Eq. (354) is indeed a group⁴². In fact, it is a Lie group – it is the Lie group $\mathbb{R}^* = \mathbb{R} - \{0\}$, i.e. the group of reals (modulo the origin) under multiplication. To see that, we first construct the representation in a more familiar manner in the following way. First note that the "action" of the group is to transform the coordinates $(x, y) \to (ax, a^{-1}y)$, so we can write a 2D reducible representation as

$$T(a) = \begin{pmatrix} a & 0\\ 0 & a^{-1} \end{pmatrix}$$
(358)

which act on the vector (x, y) such that

$$T(a) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax \\ a^{-1}y \end{pmatrix}.$$
 (359)

The group law as we have shown above is multiplicative, i.e.

$$T(c) = T(a)T(b) = T(ab)$$
(360)

⁴²Can you show that it is also an Abelian group?

so in function form f(a, b) = ab. This function is clearly analytic, and hence we have shown that this is a Lie Group.

The above example is something you will encounter very often in physics – a set of transformations leaving the original equation invariant. If we think of (x, y) above as points on the Cartesian space \mathbb{R}^2 , then the transformation of the form x' = ax is called **dilatation**, a "stretch" or a **scale transformation**. Expressions which are invariant under such a transformation are called **scale invariant**. For example, the simple equation

$$F(x,y) = \frac{x}{y} \tag{361}$$

is scale invariant under the transformation x' = ax and y' = ay for $a \neq 0 \in \mathbb{R}$.

Example: Consider the following 2 parameter transformation on a 1D target space $x \in \mathbb{R}$,

$$x' = a_1 x + a_2 , \ a_1, a_2 \in \mathbb{R} , \ a_1 \neq 0 , \ x \in \mathbb{R}$$
 (362)

and a second successive transformation yields

$$x'' = b_1 x' + b_2 = b_1 a_1 x + (b_1 a_2 + b_2) \equiv c_1 x + c_2.$$
(363)

This transformation is non-abelian, as one can easily check by reversing the order of the transformation via

$$x' = b_1 x + b_2 , \ x'' = a_1 x' + a_2 \tag{364}$$

and

$$x'' = a_1 b_1 x + (a_1 b_2 + a_2) \equiv c'_1 x + c'_2, \tag{365}$$

which clearly $c_2 \neq c'_2$ in general. The identity is $a_1 = 1, a_2 = 0$. We can find the inverse by requiring that $b_1a_1 = 1$ and $b_1a_2 + b_2 = a_1b_2 + a_2 = 0$, so the inverse of (a_1, a_2) is $(a_1^{-1}, a_1^{-1}a_2)$. Notice that it is the requirement of the existence of an inverse which imposes our initial condition that $a_1 \neq 0$ (but not $a_2 \neq 0$). Can you construct a function F(x) which is left invariant by this transformation?

To show that this transformation is analytic (and hence forms a Lie Group), we note that the transformations Eq. (362) acts on the target space x

$$x' = f(x, a_1, a_2) = a_1 x + a_2, (366)$$

and is analytic in both a_1 and a_2 , i.e. it is clear that we can Taylor expand around both a_1 and a_2 .

The above example is a type of transformations which you see often, which is that the Lie Group operators map elements of a **target space** T to other elements in the same target space T, i.e.

$$L: T \to T.$$
 (367)

In general, consider an *n*-parameter Lie Group labeled by (a_1, a_2, \ldots, a_n) acting on an *N*-th dimensional target space labeled by coordinates $\{x_i\}$ for $i = 1, 2 \dots N$. A general transformation is given by the set of equations

$$\begin{aligned}
x'_{1} &= f_{1}(x_{1}, x_{2}, \dots, a_{1}, a_{2}, \dots) \\
x'_{2} &= f_{2}(x_{1}, x_{2}, \dots, a_{1}, a_{2}, \dots) \\
&\vdots \\
x'_{i} &= f_{i}(x_{1}, x_{2}, \dots, a_{1}, a_{2}, \dots)
\end{aligned}$$
(368)

and as long as all the f_i 's are analytic in the a_i 's Lie parameters the transformation is analytic.

As an example, recall the transformation at the start of this section Eq. (354) which is a single parameter Lie Group acting on a 2D target space $\{x, y\}$, it is clear that both x'(a, x, y) = ax and $y'(a, x, y) = a^{-1}y$ is analytic in $a \in \mathbb{R}^*$.

Before we close this section, we want to make a subtle point clear. In this section, we have chosen to represent Lie Group transformations as functions of some choice of parameterization of their group elements, and argue that analyticity of the parameters determines whether they are Lie Groups or not. However, sometimes we may choose to parameterize Lie Groups with some choices of parameters which may not be analytic throughout the entire group – perhaps in some physical situations the operations which do not overlap with the region of the group which is not "covered by the parameterization". An example is the 3-parameter Lie Group $SL(2, \mathbb{R})$, which one can parameterize by the following 2D representation

$$T(a_1, a_2, a_3) = \begin{pmatrix} a_1 & a_2 \\ a_3 & \frac{1+a_2a_3}{a_1} \end{pmatrix} \in SL(2, \mathbb{R}) , \ a_i \in \mathbb{R}$$
(369)

where it is clear that the parameterization is not analytic at $a_1 \to 0$. It turns out that the reason this is so is that $SL(2, \mathbb{R})$ is actually not parameterized by \mathbb{R}^3 , but by $\mathbb{R}^2 \times S_1$. In other words, one of the parameter is periodic, and hence compact so we have to restrict the domain of the parameterization to the region where the transform is analytic. You will be guided through how to show this in a homework problem. The point here is that it is often a non-trivial task to show analyticity of a Lie Group – one has to first choose a parameterization which "covers" the whole group in an isomorphic way. We will not delve too deeply into this discussion – which requires knowledge of **Topology** – in our introductory symmetry class though.

5.4 Linear/Matrix Groups as Lie Groups

In Chapter 4, we discuss Matrix Groups as prototypes of continuous groups. We now reintroduce them in this section – it turns out that matrix groups that we have studied are actually also Lie Groups⁴³. Recall that the element of an N-th dimension matrix group is an $N \times N$ matrix, and the natural "object" for this operator to act on is an $N \times 1$ column matrix. Consider an N = 3 matrix operator M

$$\begin{pmatrix} x'\\y'\\z' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix}$$
(370)

and it is clear that what the matrix operator does to the *target space* with coordinates $\{x, y, z\}$ is to execute a **linear transformation**

$$x' = a_{11}x + a_{12}y + a_{13}z \tag{371}$$

$$y' = a_{21}x + a_{22}y + a_{23}z \tag{372}$$

$$z' = a_{31}x + a_{32}y + a_{33}z. ag{373}$$

If the group is the General Linear group over the field of reals $GL(3,\mathbb{R})$, then the only condition we require on the a_{ij} 's is that the determinant must not be zero $\det(M) \neq 0$ so there is no **algebraic constraint** on the values of a_{ij} . Then it is clear that the transformations Eq. (371) is analytic and the dimensionality of the Lie Group $GL(3,\mathbb{R})$ is 9.

However, if the group is a more constrained group, like $SL(3,\mathbb{R})$, i.e. where we impose conditions on the determinant and group operators, then we are not free to choose the values of a_{ij} . Indeed, the determinant of $M \in SL(3,\mathbb{R})$ is given by

$$a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} = 1$$
(374)

⁴³Not all Lie Groups are matrix groups, and not all matrix groups are Lie Groups. But almost all the Lie Groups that you will encounter as physicists are isomorphic to some matrix groups.

which represents an algebraic constraint on the possible values of a_{ij} . This means that the dimensionality of the Group is 9-1=8, since once we have chosen 8 different values for a_{ij} the ninth is completely determined by Eq. (374). For groups with more constraints, such as $SO(3,\mathbb{R})$, which in addition to possess unit determinant, must also obey $R^T R = e$, the parameter space for a_{ij} is even smaller. Recall our discussion of SO(2) – take a look at section 4.1.2 again – we showed there explicitly that the unit determinant constraint and the orthogonality condition implies that such a strong condition that the initial 4 parameters $a_{11}, a_{12}, a_{21}, a_{22}$ are reduced to a single compact parameter $0 \le \theta < 2\pi$.

We will now retrace our steps, and reconsider the Orthogonal and Unitary groups in a new light as **metric preserving groups**.

5.4.1 Metric Preserving Operations

What is a **metric**? If you are already well advanced in the study of differential geometry or general relativity, you will think of the metric as some $N \times N$ dimensional matrix which determines the *length* between two infinitisimal points. So, roughly speaking, the "metric preserving operations" means "length preserving operations". How we define "length" however, depends on the underlying physics. Let us consider the simplest of cases, which is length in usual 3 dimensional **Euclidean Space** \mathbb{R}^3 – this is exactly what you think it is, i.e. length *L* between origin and a point (x, y, z) is given by $L^2 = x^2 + y^2 + z^2$. A linear transformation that transforms $(x, y, z) \rightarrow (x', y', z')$ is called **Metric Preserving** if

$$x^{2} + y^{2} + z^{2} = x'^{2} + y'^{2} + z'^{2}.$$
(375)

In other words, the symmetry of this group operation is to *leave the length invariant*. For simplicity, let us consider metric preserving operations on a 2D Euclidean space \mathbb{R}^2 . For a matrix R, then

$$\begin{pmatrix} x'\\y' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12}\\a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x\\y \end{pmatrix}$$
(376)

and hence after the tranformation we get

$$x^{\prime 2} + y^{\prime 2} = (a_{11}^2 + a_{21}^2)x^2 + 2(a_{11}a_{12} + a_{21}a_{22})xy + (a_{12}^2 + a_{22}^2)y^2.$$
(377)

Imposing the metric preserving condition $x^2 + y^2 = x'^2 + y'^2$ we get the conditions

$$a_{11}^2 + a_{21}^2 = 1$$
, $a_{12}^2 + a_{22}^2 = 1$, $a_{11}a_{12} + a_{21}a_{22} = 0$, (378)

which are three algebraic constraints on the parameters, which means that the group is really 4-3=1 dimensional. Now, multiplying the first two equations of Eq. (378), and then subtracting the square of the 3rd equation, we get

$$(a_{11}^2 + a_{21}^2)(a_{12}^2 + a_{22}^2) - (a_{11}a_{12} + a_{21}a_{22})^2 = 1$$

or $(a_{11}a_{22} - a_{12}a_{21})^2 = 1.$ (379)

One can recognize that Eq. (379) is just the square of the determinant of R

$$(\det R)^2 = (a_{11}a_{22} - a_{12}a_{21})^2 = 1,$$
(380)

which means that det $R = \pm 1$. If we now choose det R = +1, then this is the so-called **Special** condition we have discussed in section 4.1. In fact, the derivation you have is exactly what we have done when we talked about SO(2) in that section. If we do not impose det R = +1, then this group is known as O(2).

Again from section 4.1, we have learned that the *orthogonality condition* is $R^T R = e$, and you can check for yourself that this leads to the derivation above. In fact, this is a general condition for *all*

compact metric preserving groups over the real field \mathbb{R} . The proof is just a real valued version of the fact that unitary matrix operators perserve the inner product of two complex vectors which we have already proven in section 4.4.3.

Theorem: Let R be a real valued $N \times N$ square matrix with non-zero determinant. If R obey the **Orthogonality Condition**, $R^T R = e$, then it preserves the inner product of two real vectors.

Proof Let U, V be two real N dimensional vectors, then V' = RV and U' = RU, and recalling that the inner product of two real vectors U and V is $U \cdot V = U^T V$, we have

$$U' \cdot V' = U'^{T} V' = (RU)^{T} (RV) = U^{T} R^{T} RV$$
(381)

then for $U' \cdot V' = U \cdot V$, we require

$$R^T R = e. \quad \Box \tag{382}$$

Using this theorem, and setting V = U and $U = (x_1, x_2, x_3, \dots, x_N)$, then a matrix satisfying the orthogonality condition will transform such that it preserves its "metric" (length)

$$U \cdot U = x_1^2 + x_2^2 + x_3^2 + \dots + x_N^2 = x_1'^2 + x_2'^2 + x_3'^2 + \dots + x_N'^2 = U' \cdot U'.$$
(383)

The eerie similarity to the unitary operators studied in section 4.4.3 is of course not a coincidence.

(Definition): Orthogonal groups O(N) are compact metric preserving Lie groups over the real fields, while Unitary groups U(N) are compact metric preserving Lie groups over the complex fields. If the determinants are furthermore positive, they are *special* (SO(N) and SU(N) respectively).

The special condition restricts the group to simple rotations. If we do not impose specialness, then the group also include the parity symmetry operations – it is clear that if we set $x \to -x$, $y \to -y$, etc and not necessarily all of them at once, the metric is still preserved. This also means that SO(N) are subgroups of O(N), and similarly for Unitary groups.

The additional moniker **compact** means that the Lie Group parameters occupy a compact space, for example for SO(2), the parameter $0 \le \theta < 2\pi$ is clearly compact. We can classify the groups in the following way

Real Field
$$R^T e R = e \quad O(N)$$

Complex Field $U^{\dagger} e U = e \quad U(N)$ (384)
Quartenion Field $Q^{\dagger} e Q = e \quad Sp(N)$

where we have sneaked in the extra identity e into the equation with a view of generalizing this set-up even further later. We have also added an extra Field, called **quartenions**, whose metric preserving Lie Group is called the **Symplectic Group** Sp(N). You have encountered quartenions before, when you worked on the quartenion group Q_8 in your homework set, which is an order 8 group. We will not discuss the details of quartenions or the Symplectic group in this class⁴⁴.

In addition to compact metric preserving Lie Groups, there are **non-compact metric preserving** Lie Groups as well. Consider the following metric

$$s^{2} = -(ct)^{2} + x^{2} + y^{2} + z^{2}$$
(385)

which you may recognize as the *invariant spacetime length* that you have encountered when you studied special relativity. Let us set c = 1 as all high energy physicists do, then we want to find a group whose linear transformations leave the metric Eq. (385) invariant, i.e.

$$-t^{2} + x^{2} + y^{2} + z^{2} = -t^{\prime 2} + x^{\prime 2} + y^{\prime 2} + z^{\prime 2}.$$
(386)

⁴⁴Quartenions are generalizations of complex numbers in the following way. Let a, b be real numbers, then we can construct a complex number by z = ai + b with $i^2 = -1$. Given two complex number y, z, a quartenion can be constructed by writing q = yj + z, here $j^2 = -1$, and ij + ji = 0.

It turns out that this is not hard to do at all. Consider the Orthogonal group O(4) with the condition $R^T e R = e$; all we need to do is to replace

$$e = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & & 1 \end{pmatrix} \to I_{3,1} \equiv \begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \\ & & & 1 \end{pmatrix}$$
(387)

such that non-compact metric preserving group satisfies

$$R^T I_{p,q} R = I_{p,q} \tag{388}$$

and we are done. You will be asked to prove this is true in a homework problem. We have introduced the notation $I_{p,q}$ above to denote p number of +1 and q number of -1, arranged in a diagonal. The dimensions of the matrix is N = p + q, i.e. they are represented by $(p + q) \times (p + q)$ square matrices. Non-compact Orthogonal (Unitary and Symplectic) groups are also called Orthogonal (Unitary and Symplectic) groups, but with the name O(p,q) (U(p,q) and Sp(p,q)). Hence, the group which preserves the metric Eq. (385) is O(3, 1). If we further impose the condition that the determinant is +1, then it is SO(3, 1), also known as the 4D **Lorentz Group**⁴⁵ – the underlying symmetry by which Einstein's Special Relativity can be understood.

5.5 Lie Algebras and Exponentiation

In Finite group theory, one of the crucial property of a finite group is that its *order*, i.e. the number of elements in the group, is finite. With that property, many theorems and properties can be studied and proven. In continuous group however, the "order" of the group is infinite, so in general it is harder to study it. However, Lie Groups are continuous groups with a powerful trump card: their analyticity.

Much like the fact that an analytic function allows us to study its *local* properties around a small infinitisimal region, the analyticity of Lie Groups allow us to study the group in some small local region (in parameter space). As you will soon see, this is a significant simplification, as sometimes knowledge of a small local region is sufficient to describe the whole group. This is, of course, not general – there are some groups whose *global* properties cannot be extracted from studying their local properties. Nevertheless, we will get far.

5.5.1 Infinitisimal Generators of Lie Groups

Recall that in finite groups, often we can generate the entire group using only a smaller subset of the group elements which we call generators, by the *repeated application of the generators*. In Lie Groups, the generators are a bit more subtle to define – we can indeed find some (often non-unique) set of generators which allow us to *sometimes* generate the entire group by repeated application ("integration"). If such generators exist, then knowledge of the generators is as good as knowing the whole group, and as we will see in this section these generators are intimately related to the *local* properties of the group.

Let us begin by considering our favorite example, SO(2) in its reducible 2×2 representation from section 4.1.2

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \ 0 \le \theta < 2\pi.$$
(389)

⁴⁵Sometimes, it is called the Homogenous Lorentz Group, where the Inhomogenous Lorentz Group (or more popularly the Poincaré Group) includes translations.

Since this is a Lie Group, analyticity allows us to Taylor expand 46 around $\theta=0$

$$R(\theta) = R(0) + \left. \frac{dR}{d\theta} \right|_{\theta=0} \theta + \left. \frac{1}{2!} \frac{d^2 R}{d\theta^2} \right|_{\theta=0} \theta^2 + \dots$$
(391)

We now want to calculate $dR(\theta)/d\theta|_{\theta=0}$. To do that, we use the usual composition law

$$R(\theta_1 + \theta_2) = R(\theta_1)R(\theta_2) \tag{392}$$

and now taking derivatives of both side with respective to θ_1 and then setting $\theta_1 = 0$

$$\frac{dR(\theta_1 + \theta_2)}{d\theta_1}\Big|_{\theta_1 = 0} = \frac{dR(\theta_1)}{d\theta_1}\Big|_{\theta_1 = 0} R(\theta_2).$$
(393)

The LHS of this equation is, via the chain rule,

$$\frac{dR(\theta_1 + \theta_2)}{d(\theta_1 + \theta_2)} \frac{d(\theta_1 + \theta_2)}{d\theta_1}\Big|_{\theta_1 = 0} = \begin{pmatrix} -\sin(\theta_1 + \theta_2) & -\cos(\theta_1 + \theta_2) \\ \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\Big|_{\theta_1 = 0}$$

$$= \begin{pmatrix} -\sin(\theta_2) & -\cos(\theta_2) \\ \cos(\theta_2) & -\sin(\theta_2) \end{pmatrix}$$

$$= \frac{dR(\theta_2)}{d\theta_2} \tag{394}$$

which must equal the RHS of Eq. (393)

$$\frac{dR(\theta_2)}{d\theta_2} = \frac{dR(\theta_1)}{d\theta_1} \Big|_{\theta_1=0} R(\theta_2)$$

$$= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{pmatrix}$$

$$= X \begin{pmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{pmatrix}$$
(395)

where we have defined

$$X \equiv \left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right). \tag{396}$$

This means that, dropping the subscript 2, we have

$$\frac{dR(\theta)}{d\theta} = XR(\theta) \tag{397}$$

and hence using $R(\theta) = \mathbb{I}$

$$\left. \frac{dR(\theta)}{d\theta} \right|_{\theta=0} = X. \tag{398}$$

We will now show that X generates the entire group, and hence is a **generator**, using Eq. (391). Using very similar calculations from above, we can show that

$$\left. \frac{d^2 R(\theta)}{d\theta^2} \right|_{\theta=0} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} = X^2.$$
(399)

$$\frac{d}{d\theta} \begin{pmatrix} a_{11}(\theta) & a_{12}(\theta) \\ a_{21}(\theta) & a_{22}(\theta) \end{pmatrix} = \begin{pmatrix} da_{11}/d\theta & da_{12}/d\theta \\ da_{21}/d\theta & da_{22}/d\theta \end{pmatrix},$$
(390)

which we are allowed to do because the operator $d/d\theta$ is a linear operator.

 $^{^{46}}$ The derivative of a matrix is

Either via bruteforce, or via induction, you can show that

$$\left. \frac{d^m R(\theta)}{d\theta^m} \right|_{\theta=0} = X^m. \tag{400}$$

Plugging in Eq. (400) into the Taylor expansion Eq. (391), we get

$$R(\theta) = R(0) + \frac{dR}{d\theta} \Big|_{\theta=0} \theta + \frac{1}{2!} \frac{d^2 R}{d\theta^2} \Big|_{\theta=0} \theta^2 + \dots$$

$$= \mathbb{I} + X\theta + \frac{1}{2!} X^2 \theta^2 + \dots$$

$$= \sum_{m=1}^{\infty} \frac{1}{m!} (X\theta)^m$$

$$= e^{X\theta}.$$
 (401)

Where in the last line, we have treated the matrices X, X^2 etc as *functions*. This is probably something new that you may not have seen before. Indeed, one can take the last line as a *definition for the exponentiation action of a square matrix*, i.e.

$$e^{A\theta} \equiv \sum_{m=1}^{\infty} \frac{1}{m!} (A\theta)^m$$
 for any square matrix A . (402)

From Eq. (401), we can see that given X, we can generate the entire group $R(\theta)$ with a single generator X via the **exponentiation** (or **Exponent Map**)

$$R(\theta) = e^{X\theta}$$
(403)

While it may sound weird for now, we say that X is an element of the Lie Algebra $\mathfrak{so}(2)$ of the Lie Group SO(2), with the weird fonts $\mathfrak{so}(2)$ to differentiate it from capital SO(2). Why it forms an algebra – a set of elements with some binary rule which closes – is not clear since with only a single generator $\mathfrak{so}(2)$ is rather trivial.

Let us consider a more complicated example, SO(3).

Recall that SO(3) is the group of all rotations in 3 dimensions, so let us consider the 3×3 representation of SO(3). Since there are 3 axes (x_1, x_2, x_3) , we can parameterize the rotations around these three *fixed* axes using the angles $(\theta_1, \theta_2, \theta_3)$. Let arrange the target space as a vector

$$P = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$
 (404)

Consider rotations around the x_3 axis. Since this keeps x_3 fixed, we can write down the representation as

$$R(\theta_3) = \begin{pmatrix} \cos\theta_3 & -\sin\theta_3 & 0\\ \sin\theta_3 & \cos\theta_3 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$
(405)

We can carry out similar calculations as we have done above for SO(2) to find the generator X_3

$$X_3 \equiv \frac{dR(\theta_3)}{d\theta_3}|_{\theta_3=0} = \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$
 (406)

It should be obvious now how we can derive the generators X_1 and X_2 for rotations around the x_1 and x_2 axes, which are

$$R(\theta_1) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta_1 & -\sin\theta_1\\ 0 & \sin\theta_1 & \cos\theta_1 \end{pmatrix}, \ X_1 \equiv \frac{dR(\theta_1)}{d\theta_1}|_{\theta_1=0} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{pmatrix}.$$
 (407)

$$R(\theta_2) = \begin{pmatrix} \cos\theta_2 & 0 & \sin\theta_2 \\ 0 & 1 & 0 \\ -\sin\theta_2 & 0 & \cos\theta_2 \end{pmatrix}, \quad X_2 \equiv \frac{dR(\theta_2)}{d\theta_2}|_{\theta_2=0} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$
 (408)

Now, we perform the following redefinition $X_i \equiv -iL_i$ to make contact with more familiar notation, i.e.

$$L_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

$$L_{2} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}$$

$$L_{3} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
(409)

These operators obey the following commutator relation

$$[L_i, L_j] = L_i L_j - L_j L_i = i\epsilon_{ijk} L_k \tag{410}$$

where ϵ_{ijk} is the **Levi-Civita symbol** which has the relation $\epsilon_{123} = \epsilon_{312} = \epsilon_{231} = 1$, $\epsilon_{132} = \epsilon_{321} = \epsilon_{213} = -1$ and everything else zero⁴⁷. You have seen these relations before – these are the **angular momentum operators** in your quantum mechanics class, modulo the Planck constant \hbar . Notice that we have derived the relations without even talking about quantum mechanics – the non-commutative nature of the rotation operators comes from the fact that *rotations in 3D do not commute even classically*. You can check this fact yourself with a ball.

Now, the operators $\{L_1, L_2, L_3\}$ form a set and the commutator relation Eq. (410) provides a binary relation for this set, i.e. it tells us how to put two operators from the set to get a third operator which also belongs to the set. In other words, the set of generators for SO(3), $\{L_1, L_2, L_3\}$ is closed under the binary relation Eq. (410) and hence (recall our definition of an algebra way back in section 2.4), this forms an algebra. We call this the **Lie Algebra** of SO(3), and symbolically $\mathfrak{so}(3)$ with the "frattur" fonts.

Similar to SO(2), if we are given the Lie Algebra $\mathfrak{so}(3)$, we can generate the entire group SO(3) via the exponentiation

$$R(\theta_1, \theta_2, \theta_3) = e^{i(\theta_1 L_1 + \theta_2 L_2 + \theta_3 L_3)}$$
(412)

where $\theta_1, \theta_2, \theta_3$ defines the rotation axis $\vec{\theta} = \theta_1 \hat{x}_1 + \theta_2 \hat{x}_2 + \theta_3 \hat{x}_3$.

$$[L_i, L_j] = i \sum_{k=1}^{k=3} \epsilon_{ijk} L_k.$$
(411)

 $^{^{47}}$ We have used the summation convention over k, i.e. you should read Eq. (410) as

(**Remark**) : We say that "the generators Eq. (409) generate the representations of SO(3) in the parameterization given by Eq. (407), Eq. (408), Eq. (405)". In general, different matrices – or different parameterizations of the Lie Algebras – will generate different representations of SO(3).

We will see a very different representation for SO(3) in the next chapter 6, with a very different set of generators.

Finally, it should be obvious that the number of generators must equal the number of dimensions of the Lie Group, since there will be a generator for each parameter.

5.5.2 Lie Algebras, Structure Constants and the Adjoint Representation

In the previous section 5.5.1 we have derived the Lie Algebras $\mathfrak{so}(2)$ and $\mathfrak{so}(3)$, by *linearizing* around some point in the parameter space of the Lie Group. In particular, for SO(3), we found that its Lie Algebra is the set of generators $\mathfrak{so}(3) = \{L_1, L_2, L_3\}$ with the commutator relation

$$[L_i, L_j] = i\epsilon_{ijk}L_k. \tag{413}$$

which serves as the binary relation for the algebra. In general, it is always possible to find the closure relation in terms of commutators for any Lie Algebra, with the *structure* of the algebra determined by something else other than ϵ_{ijk} .

(Definition) Stucture Constants: For any given Lie Group L, we can find its (finite) *n*-dimensional set of generators $l = \{l_1, l_2, ..., l_n\}$ which will close under some commutator relation

$$[l_i, l_j] = c_{ij}^k l_k \tag{414}$$

where c_{ij}^k can be read either a 3-tensor, or (more prosaically) a set of $n \times n$ matrices c_{ij} labeled by k. These are called the **Structure Constants** of the Lie Algebra. The structure constants are invariant under the change of representation⁴⁸.

The commutator relation [A, B] = AB - BA must obey certain relations. One of them is the ubiquitous **Jacobi Identity**.

(Theorem) Jacobi Identity: Given any 3 operator A, B, C and a binary (commutator) operation [A, B] = AB - BA, then the operators obey the Jacobi Identity

$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0.$$
(415)

You will be asked to prove the Identity in a homework problem. To summarize, Lie Algebras have the following properties.

Properties of Lie Algebras:

• Linear Vector Space: Lie Algebras \mathfrak{g} form a linear vector space under vector addition and scalar multiplication, i.e. if $X, Y \in \mathfrak{g}$ and $a, b \in \mathbb{F}$ is some field (such as \mathbb{R} or \mathbb{C}), then

$$aX + bY \in \mathfrak{g}.\tag{416}$$

• Closure under commutation: If $X, Y \in \mathfrak{g}$, then

$$[X,Y] \in \mathfrak{g}.\tag{417}$$

which follows Eq. (414).

⁴⁸Hence "constants", doh

• Jacobi Identity: It obeys the Jacobi Identity.

It should be clear to you that there are many different representations for Lie Algebras. However, there is a particularly special representation called the **Adjoint Representation** which we will now discuss.

(Definition) Adjoint Representation: The set of matrices defined by the structure constants $(C_i)_j^k \equiv -c_{ij}^k$ of some Lie Algebra forms a representation of the parent Lie Group⁴⁹.

Let's parse the above definition as follows. We substitute Eq. (414) into the Jacobi Identity Eq. (415), using $A = l_i, B = l_j$ and $C = l_j$, some algebra leads us to the relation

$$c_{ij}^m c_{mk}^n + c_{jk}^m c_{mi}^n + c_{ki}^m c_{mj}^n = 0. ag{418}$$

Now if we consider c_{ij}^k as a set of $n \ n \times n$ matrices C_i , defined as

$$(C_i)_j^k \equiv -c_{ij}^k \tag{419}$$

where the upper index labels the columns and the lower index labels the rows of the matrix, we can rewrite Eq. (418) as

$$(c_{ij}^m C_m)_k^n + (C_j C_i)_k^n - (C_i C_j)_k^n = 0.$$
(420)

(Note that a single small c_{ij}^m survives the substitutions.) Dropping the subscripts k and superscript n, and replacing the index $m \to k$, we get

$$C_i C_j - C_j C_i = [C_i, C_j] = c_{ij}^k C_k$$
(421)

which is just the binary operation Eq. (414) which defines the algebra! In other words, the structure constants themselves form a Lie Algebra of the group.

Consider $\mathfrak{so}(3)$, the structure constants $c_{ij}^k = i\epsilon_{ijk}$, and we can see that the set of 3 matrices $(C_i)_j^k = -c_{ij}^k$ are

$$C_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} = L_{1}$$

$$C_{2} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} = L_{2}$$

$$C_{3} = \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = L_{3}.$$
(422)

In other words, the generators $\{L_1, L_2, L_3\}$ form the structure constants themselves. However, this is purely a coincident in our case – in general there are many different paramterizations of the Lie Algebra g which do not have the same matrices as the structure constants – as we will soon see in chapter 6.

5.6 Non-matrix representations of Lie Algebras : Differential Operators

We have focussed on matrix representations of Lie Algebras so far. But they don't always appear as matrices – as long as they obey the algebraic relation Eq. (414), then they form algebras.

Consider an infinitisimal counter clockwise rotation of $\Delta \theta$ around the z-axis, see figure 14. The

 $^{^{49}}$ This representation is faithful if and only if the Lie Group is simply connected and possesses no non-trivial **Center**, where the Center of a group is defined to be the set of elements which commute with every other element in the group. Just to confuse you even further, a group is called **centerless** if the center consists only of the identity *e*.

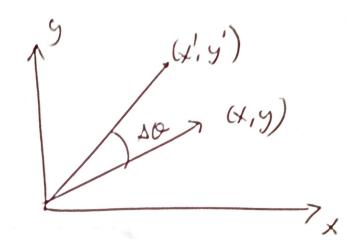


Figure 14: Infinitesimial counter clockwise rotation.

transformations are

$$x' = x\cos(\Delta\theta) - y\sin(\Delta\theta) , \ y' = x\cos(\Delta\theta) + y\cos(\Delta\theta) , \ z' = z$$
(423)

where in the limit $\Delta \to 0$, we can Taylor expand around $\Delta \theta = 0$, (moving to infinitisimal notation $d\theta$),

$$x' = x - yd\theta + \dots , \ y' = xd\theta + y + \dots , \ z' = z$$

$$(424)$$

Now, consider some analytic function F(x, y, z). Under the transform Eq. (424), we can again Taylor expand

$$F(x,y,z) \longrightarrow F(x',y',z') = F(x-yd\theta,xd\theta+y,z) = F(x,y,z) + \underbrace{\left(-y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}\right)}_{I_3}Fd\theta + \dots \quad (425)$$

where we have defined the differential operator

$$I_3 \equiv \left(-y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}\right). \tag{426}$$

We can do the same calculation for infinitisimal rotation around the x and y axes, to get

$$I_{1} \equiv \left(-z\frac{\partial}{\partial y} + y\frac{\partial}{\partial z}\right)$$
$$I_{2} \equiv \left(-x\frac{\partial}{\partial z} + z\frac{\partial}{\partial x}\right). \tag{427}$$

Defining $L_i \equiv -i\hbar I_i$, we obtain the familiar **Angular Momentum Operators** of quantum mechanics

$$L_i = -i\epsilon_{ijk}x_i\frac{\partial}{\partial x^k}.$$
(428)

You can easily check that Eq. (428) forms a Lie Algebra of SO(3) by computing the commutator of two angular momentum operators

$$[L_i, L_j] = i\hbar\epsilon_{ijk}L_k. \tag{429}$$

5.7 Conclusions and some final Remarks

We have taken rather unsystematic tour of Lie Algebras and Lie Groups, and have left some loose ends hanging which we will now make a few remarks on. Unfortunately, we will not have time to go into the details of the following facts, but you should aware of them. Much of the subtlety stems from the fact that Lie Algebras captures only the *local* behavior of a group. There is a large amount of literature on Lie Groups and Lie Algebras – the diligent student is encouraged to check out the references suggested in the front page!

- Is there a unique Lie Algebra for every Lie Group? Yes. However, there may not be a Lie Group for every Lie Algebra this is one reason why mathematicians like to distinguish between Lie Algebras and Lie Groups. They are intimately connected, yet are not the same thing!
- Are Lie Groups with isomorphic Lie Algebras isomorphic? No. Different Lie Groups may share the same Lie Algebra. For example, the group SU(2) and SO(3) share the same Lie Algebra – both are 3 dimensional and obey the commutator $[L_i, L_j] = i\epsilon_{ijk}L_k$, i.e. they have the same structure constants and hence $\mathfrak{su}(2) \cong \mathfrak{so}(3)$. However SU(2) is not isomorphic⁵⁰ to SO(3).
- Can we always generate the entire group with some set of generators? Yes. If we blindly consider the exponentiating maps of some Lie Algebra $l_i \in \mathfrak{l}, L(\alpha_i) = e^{\alpha_i l_i}$, these in general do not generates the entire group. In particular, if the group is non-compact then this exponentiating will fail. However, we can generate the entire group if we split the map into a product of exponentiating maps of compact and non-compact generators.
- Is the map from a Lie Algebra onto a Lie Group unique? No. In other words, while the Lie Algebra for each Lie Group is unique (i.e. they have the same structure constants), there are different parameterizations for the same Lie Algebra. However, they are related to each by the **Baker-Hausdorf-Campbell** formula.
- Do we know all the Lie Groups and Lie Algebras in existence? Yes. Like Finite Groups, remarkably mathematicians led by Killing and Cartan have managed to classify all the inequivalent Lie Groups in existence. In analogy to Finite groups, which are based upon the classification of Simple groups which cannot be factored (i.e. which have no proper normal subgroup), Lie Groups have a special class of fundamental groups called Simple Lie Groups which has no non-trivial normal subgroup and which one can use to build other non-simple Lie Groups. Killing and Cartan have classified all of the simple Lie Groups.

⁵⁰The fact that they share the same Lie Algebra means that they are related in some way. In fact, there exists a 2 to 1 onto homeomorphic map from SU(2) to SO(3), i.e. "SU(2) is twice a big as SO(3)". We say that "SU(2) covers SO(3) twice". In general, when two algebras are isomorphic but their parent groups are not, it is due to the fact that one of the group covers the other multiple times. The smallest group of this set (and hence is always the one being "covered") is called the **Universal Cover Group**. Here SO(3) is the universal cover for SU(2).

6 Application : Rotation Symmetry in Quantum Mechanics

In this chapter, we will show an application of group theory to a physics problem – the problem of finding the energy eigenstates of a quantum mechanical particle in a spherical symmetric potential. You will have seen this problem done in your usual Quantum Mechanics class, so I hope you will be familiar with the results. We will attack this problem from a Group Theory perspective.

6.1 Quantum Mechanics of Hydrogen Atom Review

We begin by recalling the time-indepedent Schrödinger's Equation in 3 dimensions with potential $V(\mathbf{x})$ using Cartesian coordinates

$$\left[-\frac{\hbar}{2m}\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}\right) + V(\mathbf{x})\right]\psi(\mathbf{x}) = E\psi(\mathbf{x})$$
(430)

where $\psi(\mathbf{x})$ is the wavefunction. We can express this in terms of the **Hamiltonian** operator

$$\hat{H} \equiv -\frac{\hbar}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right) + V(\mathbf{x})$$
(431)

so Eq. (430) can be written concisely as

$$\hat{H}\psi(\mathbf{x}) = E\psi(\mathbf{x}). \tag{432}$$

Recall that the derivative operators $\mathcal{D} \equiv \partial^2 / \partial x_i^2$ are **linear** i.e.,

$$\mathcal{D}(a\psi(\mathbf{x}) + b\phi(\mathbf{x})) = a\mathcal{D}\psi(\mathbf{x}) + b\mathcal{D}\phi(\mathbf{x})$$
(433)

hence the Hamiltonian Operator is a linear map (see Eq. (189) and the discussion below). One of the nice things about Linear differential equations of the form Eq. (432) is that their solutions obey the **superposition principle**, i.e. sum of solutions are still solutions.

If, furthermore, the potential $V(\mathbf{x})$ is also **spherically symmetric**, i.e. $V(\mathbf{x}) = V(r)$ where $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$ then we can reexpress Eq. (430) in the usual spherical coordinates

$$x_{1} = r \cos \phi \sin \theta$$

$$x_{2} = r \sin \phi \sin \theta$$

$$x_{3} = r \cos \theta$$

$$r = \sqrt{x^{2} + y^{2} + z^{2}}.$$
(434)

 \mathbf{so}

$$\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] + V(r)\psi = E\psi.$$
(435)

In the QM class you studied the Hydrogen Atom whose potential is given by the Coulomb Potential

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r}.$$
(436)

You then proceeded to solve Eq. (435) by using the ansatz

$$\psi(r,\theta,\phi) = \chi_{nlm}(r)Y_{l,m}(\phi,\theta) \tag{437}$$

where $Y_{l,m}$ are the **Spherical Harmonics** which form a complete basis for the compact 2-sphere S_2 labeled by (ϕ, θ) – you can think of them as "fourier transforms" of a compact 2-sphere. The radial function χ_{nl} is dependent on the **Angular Momentum Quantum number** l, and the **Principal** **Quantum Number** n but not the **Magnetic Angular Momentum Quantum Number** m. Plugging in Eq. (437) into Eq. (435), we get a set of equations labeled by l

$$-\frac{\hbar^2}{2m} \left[\frac{1}{r} \frac{\partial^2}{\partial r^2} (r\chi_{nlm}) \right] + \frac{l(l+1)\hbar^2}{2mr^2} \chi_{nlm} - U(r)\chi_{nlm} = E\chi_{nlm}.$$
(438)

You then solve Eq. (438) using a power series, and found that χ_{nlm} is a Laguerre Polynomial

$$\chi_{E_{n,l}}(r) = e^{-\zeta/n} \sum_{k=l+1}^{n} a_k \zeta^{k-1}.$$
(439)

with

$$\zeta = \frac{m_e e^2}{4\pi\epsilon_0 \hbar^2 r} , \ a_{k+1} = \frac{2(\alpha k - 1)}{k(k+1) - l(l+1)} a_k, \ \alpha^2 = -\frac{32\pi^2\epsilon_0^2 \hbar^2}{m_e e^4} E.$$
(440)

The solutions are labeled by quantum number (n, l, m). For each Principal number n > 0, there exists an *n*-fold degeneracy in the Angular Momentum number l = 0, 1, 2, ..., n-1, and for each *l* there exists a (2l+1)-fold degeneracy in the Magnetic Angular Momentum number m = -l, -l+1, ..., -1, 0, 1, ..., l-1, l. So far so familiar. One of the things that you did *not* derive from this method is the fact that we may have *half-integer* spins l = 1/2, 3/2, ... states. Indeed, the electron spin is 1/2, with two possible states (-1/2, 1/2). Where did that come from?

In this lecture however, we will take a different tack and look at spherical symmetry in Quantum Mechanics from the perspective of Group Theory. We will show that for a quantum mechanical system with spherical symmetry SO(3), we can construct all the possible states – including the spin 1/2 states – using only our knowledge of the symmetry of the system.

6.2 Spherical Symmetry of the Hamiltonian

Let's begin by recalling what a rotation in 3D does. From our study in chapter 5, we recognize that SO(3) is the group we want to consider. The rotation operators are then elements of the rotation group in 3D, or $R \in SO(3)$. If we arrange the 3D Cartesian space as a vector $\mathbf{x} = (x_1, x_2, x_3)$, then a rotation simply rotates it to another point $\mathbf{x}' = x'_i = (x'_1, x'_2, x'_3)$, i.e.

$$R\mathbf{x} = \mathbf{x}'.\tag{441}$$

Now consider the 3D Schröinger's equation with spherically symmetric potential V(r),

$$\left[-\frac{\hbar}{2m}\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}\right) + V(r)\right]\psi(\mathbf{x}) = E\psi(\mathbf{x}).$$
(442)

Let $\psi(\mathbf{x})$ be a solution to Eq. (442). Now, if we can define a new function $\psi'(\mathbf{x})$,

$$\psi'(\mathbf{x}) = \psi(R\mathbf{x}) = \psi(\mathbf{x}'). \tag{443}$$

It is now straightforward to show that $\psi'(\mathbf{x})$ must also be a solution to Eq. (442). Taking derivative of $\psi(\mathbf{x}')$ and using the chain rule, we get

$$\frac{\partial}{\partial x_i}\psi(\mathbf{x}') = \frac{\partial x'_j}{\partial x_i}\frac{\partial}{\partial x'_j}\psi(\mathbf{x}').$$
(444)

Now we can define

$$R_{ij} \equiv \frac{\partial x'_j}{\partial x_i} \tag{445}$$

which we have suggestively called " R_{ij} " since it is just the rotation operator. To see this, let's write Eq. (441) as

$$R_{ij}x_j = x'_i,\tag{446}$$

so since R_{ij} is a linear transformation, we can take derivatives on both side to get

$$R_{ij} = \frac{\partial x'_i}{\partial x_j}.\tag{447}$$

Eq. (447) is, for the moment, just some linear transformation as we detailed in section 4.1.1. However, if we insist that it is an element of SO(3), then it must obey the orthogonality and positive unit determinant conditions

$$R^T R = e \to R_{ik} R_{ij} = \delta_{kj} , \quad \det R_{ij} = 1.$$
(448)

Taking the second derivatives of $\psi(x_i)$, we then get

$$\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{i}} \psi(\mathbf{x}') = \frac{\partial x'_{j}}{\partial x_{i}} \frac{\partial x'_{k}}{\partial x_{i}} \frac{\partial}{\partial x'_{j}} \frac{\partial}{\partial x'_{k}} \psi(\mathbf{x}')$$

$$= R_{ji} R_{ki} \frac{\partial}{\partial x'_{j}} \frac{\partial}{\partial x'_{k}} \psi(\mathbf{x}')$$

$$= \delta_{jk} \frac{\partial}{\partial x'_{j}} \frac{\partial}{\partial x'_{k}} \psi(\mathbf{x}')$$

$$= \frac{\partial}{\partial x'_{j}} \frac{\partial}{\partial x'_{j}} \psi(\mathbf{x}'),$$
(449)

where we have used the orthogonality condition Eq. (448) in the 2nd to last line.

We can investigate the potential $V(\mathbf{x})$ under the same transformation, but since it is spherical symmetric

$$V(\mathbf{x}') = V(R\mathbf{x}) \tag{450}$$

it is remains invariant. Hence, we have proven that $\psi'(\mathbf{x}) = \psi(R\mathbf{x})$ is also a solution of Eq. (442). This means that, if we have a solution $\psi(\mathbf{x})$, we can generate as many solutions as we want by simply applying the rotation operator to it via Eq. (444).

Now, since \hat{H} is a linear operator, its solutions must obey the linear superposition principle. Let's collect all the possible solutions in a large (and possibly infinite) set $\mathbb{V} = \{\psi_1, \psi_2, \dots, \psi_i\}$. In fact \mathbb{V} is a vector space that we have studied previously in 4.3⁵¹. Suppose we start with $\psi_1(\mathbf{x})$, apply the rotation operator to the coordinate to obtain a new function $\psi'_1(\mathbf{x}) = \psi_1(R\mathbf{x})$, then we can write $\psi'(\mathbf{x})$ as

$$\psi_1'(\mathbf{x}) = \psi_1(R\mathbf{x}) = a_{11}\psi_1(\mathbf{x}) + a_{12}\psi_2(\mathbf{x}) + \dots + a_{1j}\psi_j(\mathbf{x}), \tag{451}$$

where $a_{11} \in \mathbb{C}$ are some complex constants related to R. For a given R, we can do this operation on all the ψ_j . We can write this concisely as

$$\psi_i'(\mathbf{x}) = D_{ij}(R)\psi_j(\mathbf{x}) \tag{452}$$

where D_{ij} are determined by R (i.e. a function of). Eq. (452) above has the form

$$v' = \text{matrix representation of } \mathbf{R} \times v \ , \ v, v' \in \mathbb{V}$$
 (453)

which I hope you will recognize $-D_{ij}(R)$ combined with the vector space of all possible solutions \mathbb{V} forms a **representation** of SO(3). In other words, D is a *homomorphic* map of the elements of SO(3) into matrices D_{ij} , in the following way. Given

$$\psi(R_1 \mathbf{x}) = D(R_1)\psi(\mathbf{x}) , \ \psi(R_2 \mathbf{x}) = D(R_2)\psi(\mathbf{x})$$
(454)

⁵¹You can show this yourself, by following the same steps as in the case of the square well potential we studied (see page 55). Here the boundary condition for normalizability is $\psi_i(\infty) = 0$, so closure is easily shown.

and closure of the group law for rotations $R_1R_2 = R_3$, we get

$$\psi(R_1 R_2 \mathbf{x}) = D(R_1 R_2) \psi(\mathbf{x}) = D(R_1) \psi(R_2 \mathbf{x}) = D(R_1) D(R_2) \psi(\mathbf{x})$$
(455)

hence

$$D(R_1R_2) = D(R_1)D(R_2), (456)$$

which is exactly the definition for matrix representations as discussed in section 4.2.2.

Now, as you have studied throughout this class, D_{ij} and \mathbb{V} are not at all unique – they come in all sorts of parameterizations, they can be reducible/irreducible, faithful/unfaithful etc. Indeed, the set of eigenfunctions expressed as spherical harmonics which you have studied in your QM class labeled by (n, l, m) formed a vector space, which together with the rotation operators $D_{lm,l'm'}$ (which can be expressed as the horribly painful **Clebsch-Gordan** coefficients which you have no doubt banished into the deepest recesses of your memories) form a representation of the SO(3) group.

Let us now derive this representation using group theory (instead of the old fashion way of solving eigenfunction equation Eq. (442) as you did in your QM class).

6.3 Generating the Representations of SO(3)

We begin with the Lie Algebra of SO(3), which obeys the commutator relation

$$[K_i, K_j] = i\epsilon_{ijk}K_k. \tag{457}$$

Since the rotation operators correspond to physical observables (the angular momentum of a quantum system), they must be Hermitian, hence $K = K^{\dagger}$.

What we want to do is to find *all* the representations of SO(3). To find them, we need to exponentiate K_i via $R(K) = \exp(\alpha_i K_i)$ as we discussed in chapter 5. However, for now, we don't know anything about K_i except that they are square matrices. We don't know their dimensions or what is in them – remember that the L_i matrices (Eq. (409)) or the *adjoint representation* will generate just one possible representation (i.e. the rotation matrices in Eq. (407), Eq. (408), Eq. (405)). What we want is a systematic way of generating all possible representations. Since SO(3) is compact, and we know that we can generate the group with the exponentiating map, this reduces our problem to finding a systematic way of constructing all possible sets of matrices K_i which obey the $\mathfrak{so}(3)$ Lie Algebra Eq. (457). To do this, we will employ a trick that you will be familiar with when you studied the Quantum harmonic oscillator.

We first define two new operators,

$$K_{\pm} = K_1 \pm iK_2 \tag{458}$$

which are called **creation/raising and annihilation/lowering operators** for reasons we will soon see. These are analogous to the raising and lowering operators a^{\dagger} and a that you studied in the quantum harmonic oscillator. Just like a and a^{\dagger} , they are each other's **adjoint**, i.e.

$$(K_{\pm})^{\dagger} = K_{\mp}.$$
 (459)

It is easy to derive the commutator of K_{\pm} with K_3 ,

$$[K_3, K_{\pm}] = \pm K_{\pm}. \tag{460}$$

We can also define the "total rotation operator" or **Casimir Invariant**⁵²,

$$K^2 = K_1^2 + K_2^2 + K_3^2.$$
(461)

 $^{^{52}}$ Operators constructed out of the Lie Algebra which commute with every other element of the Lie Algebra are called Casimir Invariants.

 K^2 commutes with K_i , as you can easily check

$$[K^2, K_1] = [K^2, K_2] = [K^2, K_3] = 0.$$
(462)

Now, the usual story you learned from quantum mechanics is that since K^2 commutes with K_3 , a famous theorem in linear algebra states that they must share a common basis of eigenfunctions, i.e. there exist some set of eigenfunctions $v_{l,m} \in \mathbb{V}$ such that

$$K^2 v_{l,m} = l(l+1)v_{l,m} , \ K_3 v_{l,m} = m v_{l,m}, \tag{463}$$

where l and m are what you think they are – total and magnetic quantum numbers⁵³. Furthermore, the eigenvalue of K^2 has to be positive semi-definite, so $l(l+1) > 0 \Rightarrow l \ge 0$.

It does seem here that we are cheating by using "knowledge" from quantum mechanics – there is indeed a way to actually mechanically "turn the crank" to calculate Eq. (463), but this will take us a bit far afield for the moment so you have to derive it in a problem set.

For now, all we know about the vector space $v_{l,m}$ is that it is spanned by two indices, which means that it is the tensor product of two vector spaces

$$v_{l,m} = v_l \otimes v_m, \tag{465}$$

but we do not yet know their dimensionality. Let us now figure out what the operators K_{\pm} does to $v_{l,m}$. First we show that it does not act on the v_l vector space since K^2 commutes with K_i and hence K_{\pm}

$$K^{2}(K_{\pm}v_{l,m}) = l(l+1)(K_{\pm}v_{l,m}).$$
(466)

However, K_{\pm} does act on the v_m vector space. Using the commutator Eq. (460), we see that

$$K_3(K_+v_{l,m}) = (K_+K_3 + K_+)v_{l,m} = (m+1)(K_+v_{l,m})$$
(467)

which means that the state $(K_+v_{l,m})$ is an eigenstate of K_3 with eigenvalue m + 1! In other words, K_+ "created" a quanta of magnetic angular momentum, very much akin to the creation operator a^{\dagger} in the quantum harmonic oscillator⁵⁴. Similarly, K_- "annihilate" a quanta, viz

$$K_3(K_-v_{l,m}) = (K_-K_3 - K_-)v_{l,m} = (m-1)(K_+v_{l,m}).$$
(469)

In other words,

$$K_{\pm}v_{l,m} = C^{\pm}v_{l,m\pm 1} \tag{470}$$

where C^{\pm} are (l, m)-dependent constants which we will now determine. To do this, we consider the *norm* (see the discussion on scalar products on page 56) of the state $v_{l,m}$ which is simply the product $v_{l,m}^{\dagger}v_{l,m}$. Since we are doing quantum mechanics, we want our states to be normalizable, so this means that

$$v_{l,m} \cdot v_{l,m} \equiv v_{l,m}^{\dagger} v_{l,m} = 1 \tag{471}$$

for all possible l, m. Now consider the state $K_{-}K_{+}v_{l,m} \propto v_{l,m}$ and then taking the inner product

$$v_{l,m}^{\dagger}K_{-}K_{+}v_{l,m} = v_{l,m}^{\dagger}(K^{2} - K_{3}(K_{3} + 1))v_{l,m}$$

= $[l(l+1) - m(m+1)]v_{l,m}^{\dagger}v_{l,m} \equiv |C|^{2}$ (472)

$$|l,m\rangle \equiv v_{l,m} , \ \langle l,m| \equiv v_{l,m}^{\dagger}.$$

$$\tag{464}$$

We don't use the notation here, to be consistent with the rest of the lectures. However, you should note that the braket notation is not exclusive to quantum mechanics – it is just Dirac's shorthand to denote vector spaces.

⁵⁴This is a general feature of commutator structure that looks like

$$[H, X_{\pm}] = \pm X_{\pm} \tag{468}$$

and X_{\pm} are each other's adjoint – the X_{\pm} operator will act on the eigenstates of H to raise its eigenvalue by ± 1 .

 $^{^{53}}$ In quantum mechanics, you might have used instead the **Dirac bra-ket** notation to denote the vector, where

where we have used the fact that the norm $|C|^2$ must be positive (and real) definite. Also note that

$$(K_{-}v_{l,m}) \cdot v_{l,m} = (K_{-}v_{l,m})^{\dagger}v_{l,m}$$

$$= v_{l,m}^{\dagger}(K_{-})^{\dagger}v_{l,m}$$

$$= v_{l,m}^{\dagger}(K_{+}v_{l,m})$$

$$= v_{l,m} \cdot (K_{+}v_{l,m})$$

$$(473)$$

so this means that the adjointness condition Eq. (459) (see the footnote on Page 48) of the K_{\pm} operators allows us to identify⁵⁵

$$K_{-}v_{l,m}^{\dagger} \Leftrightarrow K_{+}v_{l,m} \tag{475}$$

which $implies^{56}$

$$K_{-}v_{l,m}^{\dagger} = C^{*}v_{l,m+1}^{\dagger} , \ K_{+}v_{l,m} = Cv_{l,m+1}$$
(476)

and similarly

$$K_{+}v_{l,m}^{\dagger} = \tilde{C}^{*}v_{l,m-1}^{\dagger} , \ K_{-}v_{l,m} = \tilde{C}v_{l,m-1}.$$
(477)

This means that the norm

$$|C|^{2} = l(l+1) - m(m+1)$$
(478)

implies that

$$K_{+}v_{l,m} = \sqrt{l(l+1) - m(m+1)}v_{l,m+1}, \qquad (479)$$

up to a phase $e^{i\theta}$ which can be absorbed into $v_{l,m+1}$ without changing its normalization. Hence, beginning from some state $v_{l,m}$, we can keep creating new quanta by repeatedly acting on it with K_+

$$v_{l,m} \xrightarrow{K_+} v_{l,m+1} \xrightarrow{K_+} v_{l,m+2} \xrightarrow{K_+} v_{l,m+3} \xrightarrow{K_+} \dots$$
 (480)

However, we are not allowed to indefinitely increase m since the norm must be non-negative, so we must have $l(l+1) - m(m+1) \ge 0$ which implies

$$-(l+1) \le m \le l \tag{481}$$

where the highest quanta state m = l

$$K_{+}v_{l,m=l} = 0 (482)$$

terminates the series.

We can do exactly the same calculation as above for K_{-} , and it's easy to show (in a homework set) that

$$K_{-}v_{l,m} = \sqrt{l(l+1) - m(m-1)}v_{l,m-1}.$$
(483)

Similarly, starting from some state $v_{l,m}$ we can keep annihilating quanta by repeated acting on it with K_{-}

$$\dots \stackrel{K_{-}}{\leftarrow} v_{l,m-3} \stackrel{K_{-}}{\leftarrow} v_{l,m-2} \stackrel{K_{-}}{\leftarrow} v_{l,m-1} \stackrel{K_{-}}{\leftarrow} v_{l,m}$$
(484)

Again, the non-negative condition from Eq. (483) $l(l+1) - m(m-1) \ge 0$ enforces the condition

$$-l \le m \le l+1 \tag{485}$$

 $^{55}\mathrm{In}$ Dirac notation this means

$$\langle l, m | K_{-} \Leftrightarrow K_{+} | l, m \rangle.$$
 (474)

⁵⁶Notice the K_- raises the m by 1 on a conjugate state $v_{l,m}^{\dagger}$, just as you would do in quantum mechanics $\langle l, m | K_- = \langle l, m + 1 | C^* \rangle$

where the lowest quanta state m = -l

$$K_{-}v_{l,m=-l} = 0 (486)$$

terminates the series.

Thus, starting from any state $v_{l,m}$, we can repeatedly apply K_+ and K_- to construct the states with $-l, -l + 1, \ldots, -1, 0, 1, \ldots, l - 1, l$, i.e. a total of 2l + 1 states. In other words, for a given l, we can construct 2l + 1 states of different values of m. From purely group theoretic arguments, we have found the dimensionality of the vector space of v_m given some integer values of l. Since the total number of states 2l + 1 also has to be an integer, this means that l and m can take half-integer values *i.e.* $l = 0, 1/2, 1, 3/2, \ldots$ This latter fact is not manifest in the derivation of the angular momentum eigenstates you studied in your quantum mechanics class.

Knowledge of the dimensionality of the v_m vector space, for a given l, allow us to construct representations in the following way.

- l = 0 singlet: This is the Trivial representation. There is only one state $v_{0,0}$ and all the operators act trivially on it, i.e. $K_{\pm}v_{0,0} = 0$, $K^2v_{0,0} = 0$.
- l = 1/2 doublet : Here $m = \pm 1/2$, so it is a 2-dimensional representation. If we represent the basis elements as $v_{1/2,-1/2}$ and $v_{1/2,1/2}$ as a 2-D column matrix

$$v_{1/2,-1/2} = \begin{pmatrix} 0\\1 \end{pmatrix}$$
, $v_{1/2,1/2} = \begin{pmatrix} 1\\0 \end{pmatrix}$ (487)

then using the action $K_{-}v_{1/2,-1/2} = K_{+}v_{1/2,1/2} = 0$, $K_{\pm}v_{1/2,\pm 1/2} = v_{1/2,\pm 1/2}$, and $K_{3}v_{1/2,\pm 1/2} = (\pm 1/2)v_{1/2,\pm 1/2}$, we can construct the following 2×2 matrices for the K's

$$K_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , \ K_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
(488)

$$K_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad K_2 = \frac{i}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad K_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (489)

The representations for SO(3), for l = 1/2, is then obtained from exponentiating these matrices Eq. (489)

$$D_{l=1/2}(\theta_i) = e^{\theta_i K_i}.$$
(490)

It turns out that these are *irreducible representations* of SO(3), by finding the characters of the $D_{l=1/2}$ matrices, and then integrating (as opposed to summing them in finite groups) them over angle space θ_i , and then showing that they are zero (see Eq. (310)), but this will take us way too far afield.

Finally, the matrices Eq. (489) must look familiar with you – they are simply the **Pauli Matrices** (multiplied by two, i.e. $\sigma_i = 2K_i$) which corresponds to the spin angular momentum of spin-1/2 particles. Indeed, this is the origin of the "1/2" in spin-1/2 – particles with spin-1/2 obey the symmetry properties of the l = 1/2 representation of SO(3)! We have mentioned briefly that the group SU(2) shares the Lie Algebra of SO(3), so often you hear that the words "Pauli matrices form the Lie Algebra $\mathfrak{su}(2)$ of the group SU(2)", but this statement is equally valid for SO(3).

This fact is also the reason that when you consider additional of angular momentum in the Hydrogen atom, we can simply "add" the $m = \pm 1/2$ spins of the electron to the total magnetic angular momentum. Electrons, in addition to their "particle" property, also "carry spin" which basically means that they are quantum states that transform under SU(2). • l = 1 triplet : Here m = -1, 0, 1, so we have a 3-dimensional representation. We will leave it as a homework problem for you to derive the matrix representations

$$K_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, K_{+} = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}, K_{-} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}.$$
 (491)

You can keep going, deriving representations for $l = 3/2, 2, 5/2, \ldots$ multiplets. All these representations are *irreducible*, whose proof we will not discuss.

6.4 Conclusions : Why should you care?

Now, we need to ask the question: What does the vector space $v_{l,m}$ represent? Abstractly, it represents eigenstates of the operators K_3 and K^2 , and we also know how they transform under the operators K_1 and K_2 – we know how they "change" when we rotate them. In other words, they are a set of basis states which we can now identify with physical observables. To make contact with the quantum mechanics, we need to give them additional meaning. Firstly, note that the Casimir operator $K^2 = K_1^2 + K_2^2 + K_3^2$ is simply the "total angular momentum" operator, so its eigenvalue l(l + 1) (modulo \hbar) is exactly the amount of angular momentum quanta of the state.

Furthermore, if the Hamiltonian \hat{H} itself possesses SO(3) symmetry, then a solution (i.e. some linear combination of basis states $v_{l,m}$) of \hat{H} which is rotated (i.e. acted upon by an element of SO(3)) is also a solution (i.e. some other linear combination of $v_{l,m}$). In other words, let D_i be some element of the representation of SO(3), then

$$D_i H v_{l,m} = H D_i v_{l,m} \tag{492}$$

or dropping $v_{l,m}$ and writing more abstractly

$$D_i H D_i^{-1} = H, \tag{493}$$

i.e.

$$[D_i, H] = 0. (494)$$

This means that

$$H(D_i v_{l,m}) = D_i(H v_{l,m}) = D_i(E v_{l,m}) = E(D_i v_{l,m})$$
(495)

i.e. the rotation operators acting on the $v_{l,m}$ do not change the energy state.

This means that there is a 2l + 1 **degeneracy** in the energy eigenstates of the spherical symmetric Hamiltonian \hat{H} . Hence, by just considering the symmetry properties of the Hamiltonian, and without actually solving the Schrödinger's Equation⁵⁷, we have figured out both the *spectrum of the eigenstates of* the system and its energy degeneracy. Indeed, since mathematicans have already kindly calculated most the representations of Lie Groups, we don't even have to lift a finger – just go look it up in a book⁵⁸!

This fact is incredibly powerful. In particle physics, sometimes we see sets of particles which have very similar properties – for example the mass of the proton (938 MeV) and neutron (939 MeV) are

⁵⁷Those who are attentive may notice that, in the Hydrogen atom, we actually have a $\sum_{l}^{n-1}(2l+1) = n^2$ degeneracy in the energy states for any principal quantum number n. Where does this "additional" degeneracy comes from? If we subscribe to our insight that additional degeneracy means additional symmetry in the system, then we should look for this symmetry. Indeed, it turns out that since the Coulomb potential $V(r) \propto 1/r$, there exists an additional conserved quantity in the system called the **Runge-Lenz Vector**. This enlarges the symmetry from SO(3) to SO(4), which result in the additional degeneracy. So a complete derivation of all the possible eigenstates of the Hydrogen atom requires us to do more work (although since $SO(3) \subset SO(4)$, representations of SO(3) are also representations of SO(4) as well). Here is the funny history part: Schödinger himself realized the existence of this symmetry, and derived (before anyone else) the spectrum of the hydrogen atom using group theoretic methods which we discussed here working with SO(4)!

 $^{^{58}}$ Unfortunately for us, we still have to figure out what they are talking about, hence you taking this class.

very close together. From our insight of group theory, we can infer that perhaps they are different states of a unified dynamical system with some symmetry, much like the fact that all the angular momentum states in the same representation have the same energy. Indeed, the proton and neutron can be grouped together in a 2 dimension doublet representation which transform like a spin-1/2 particle, which we call **Isospin**. Closer to home, the equations of Electro-dynamics obey the U(1) gauge symmetry group – the equations themselves are invariant under the U(1) transformations where at every point in spacetime, the transformation can be acted upon by different elements of the group (the italics is what distinguish a "gauge" symmetry to a global symmetry).

So the life of a particle physicist is primarily to find symmetries which allow us to explain the particles that are seen in nature – some which require a tremendous amount of energy to create hence the construction of particle colliders like the recently retired Tevatron (in Fermilab, USA) and the Large Hadron Collider (at CERN, Europe). After all these years of searching, physicists have determined that all the particles that we currently know of obey a Hamiltonian which has the symmetry group $SU(3) \times SU(2) \times U(1)$ – particle states are (sometimes approximate) representations of this gigantic group. The last piece of puzzle which confirms this neat structure is the discovery of the Higgs particle in July 2012 – this is why we were so certain of finding it, because we already, in a way, had found the other states which were consistent with its existence we were super confident that the Hamiltonian must have this symmetry. This is the Standard Model of Particles.

The question for physicists is now "what next?" There are two main thrusts for high energy physicists. The first question is the **Grand Unification Theory problem**, which is "can we find an even larger group which $SU(3) \times SU(2) \times U(1)$ is embedded in?" The reason we care about this is because even though the Standard Model works very well in predicting the existence of particles, it has "naturalness" issues – we need to fine tune some numbers to make it hang together. So perhaps this "fine-tuning" is not really a fine-tuning, but the consequence of some even higher symmetry? The theory that has physicists obsessed for the past few decades is **Supersymmetry**.

The other question, which is even grander, is the **Theory of Everything** problem : how to unify quantum mechanics and gravity. Even in this case, physicists look to symmetries for guidance. The current poster child for such a TOE is String Theory, which is based on the premise that particles are excitations on string-like objects, which themselves are posited to obey certain symmetries.

Epilogue

So this is the place where people write all sorts of inspirational stuff. Unfortunately, I do not have any inspirational stuff for you. Instead, I offer you a lame joke, and hope that you have had as much fun learning about symmetries as I had teaching you.

HOW TO GET A PHYSICIST TO DATE YOU:

Figure 15: Stolen from www.smbc-comics.com.