> Candidate number:

Desk number:

King's College London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

5CCP2332 Symmetry in Physics

Examiner: Dr. Eugene A. Lim
Examination Period 2
(Summer 2017)
Time allowed: TWO hours

Candidates may answer as many parts as they wish from SECTION A, but the total mark for this section will be capped at 20 out of a total of 50 for the whole paper.

Candidates should also answer ONE question from SECTION B. No credit will be given for answering a further question from this section.
The approximate mark out of 30 for each part of a question is indicated in square brackets.

Calculators may be used. The following models are permitted: Casio fx83 and Casio fx85.

Physical Constants

Permittivity of free space
Permeability of free space
Speed of light in free space
Gravitational constant
Elementary charge
Electron rest mass
Unified atomic mass unit
Proton rest mass
Neutron rest mass
Planck constant
Boltzmann constant
Stefan-Boltzmann constant
Gas constant
Avogadro constant
Molar volume of ideal gas at STP $=2.241 \times 10^{-2} \mathrm{~m}^{3}$
One standard atmosphere
$\epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} m^{-1}$
$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{G}=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$
$m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{u}}=1.661 \times 10^{-27} \mathrm{k} g=931.494 \mathrm{MeV} \mathrm{c}^{-2}$
$m_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{k} g$
$m_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
$h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}=8.617 \times 10^{-11} \mathrm{MeV} \mathrm{K}^{-1}$
$\sigma=5.670 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
$R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$P_{0}=1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$

SECTION A

Answer SECTION A in an answer book. Answer as many parts of this

 section as you wish. Your total mark for this section will be capped at 20.1.1 Let S be a set. Define what is meant by a partition of S.
1.2 Suppose f is a map from set A to set B, i.e. $f: A \rightarrow B$, i.e., A is the domain of f, $\operatorname{dom}(f)$ and B is the codomain of $f, \operatorname{cod}(f)$. What do you call the map if (separate cases)
(i) $\operatorname{Im}(f)=\operatorname{cod}(f)$
(ii) $a, a^{\prime} \in A$ and if $a \neq a^{\prime}$ then $f(a) \neq f\left(a^{\prime}\right)$
[3 marks]
1.3 Let Z_{2} and Z_{3} be the order 2 and order 3 cyclic groups respectively. Construct the multiplication (or Cayley) table for $Z_{2} \times Z_{3}$.
[5 marks]
1.4 Let Z_{n} be a cyclic group and $D: Z_{n} \rightarrow G L(2, \mathbb{R})$ be a 2×2 faithful representation of Z_{n}. Let $a \in Z_{n}$, and

$$
D(a)=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right)
$$

Determine the minimum order of Z_{n}.
[4 marks]
1.5 Let \mathbb{Z} be the set of all integers, and \star be a binary operator between elements of \mathbb{Z}, such that

$$
a \star b=a+b-a \cdot b, a, b \in \mathbb{Z},
$$

where the,+- and \cdot operators denote usual addition, subtraction and multiplication.
Determine whether
(i) \star is commutative,
(ii) \star is associative,
(iii) an identity exists (find it if it does).
(iv) an inverse exists (find it if it does).
1.6 Let G be a group, and $a \in G$. Let $C_{G}(a)$ be the set of all elements of G which commute with the element a, i.e.

$$
C_{G}(a)=\{g \in G: a g=g a\} .
$$

Prove that C_{G} is a group.
1.7 Consider the following differential equation

$$
x \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}+\frac{x}{y}=0
$$

Suppose the coordinate x undergoes a dilatation $x \rightarrow a x^{\prime}$ for $a \neq 0$. Find the corresponding transformation for y which leaves the equation invariant.

Solution 1.1

partition of S is a collection C of subsets of S such that (a) $X \neq \emptyset$ whenever $X \in C$, (b) if $X, Y \in C$ and $X \neq Y$ then $X \cap Y=\emptyset$, and (c) the union of all of the elements of the partition is S.

Solution 1.2 (i) surjective/onto (ii) injective/into

Solution 1.3

Let $Z_{1}=\{(e, a)\}$ and $Z_{2}=\left\{e, b, b^{2}\right\}$ and $Z_{2} \times Z_{3}=\left\{(e, e),(e, b),\left(e, b^{2}\right),(a, e),(a, b),\left(a, b^{2}\right)\right\}$.

(e, e)	(e, b)	$\left(e, b^{2}\right)$	(a, e)	(a, b)	$\left(a, b^{2}\right)$
(e, b)	$\left(e, b^{2}\right)$	(e, e)	(a, b)	$\left(a, b^{2}\right)$	(a, e)
$\left(e, b^{2}\right)$	(e, e)	(e, b)	$\left(a, b^{2}\right)$	(a, e)	(a, b)
(a, e)	(a, b)	$\left(a, b^{2}\right)$	(e, e)	(e, b)	$\left(e, b^{2}\right)$
(a, b)	$\left(a, b^{2}\right)$	(a, e)	(e, b)	$\left(e, b^{2}\right)$	(e, e)
$\left(a, b^{2}\right)$	(a, e)	(a, b)	$\left(e, b^{2}\right)$	(e, e)	(e, b)

Solution 1.4

Easy to compute

$$
\begin{gather*}
D(a) D(a)=D\left(a^{2}\right)=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right), \tag{2}\\
D(a) D(a) D(a)=D\left(a^{3}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=D(e), \tag{3}\\
D(a) D(a) D(a) D(a)=D\left(a^{4}\right)=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right)=D(a), \tag{4}
\end{gather*}
$$

So $n=3$.

Solution 1.5

(i) $a \star b=a+b-a b=b \star a$ (commutative)
(ii) $a \star(b \star c)=a+b+c-a b-a c-c b+a b c=(a \star b) \star c$ (associative)
(iii) $a \star e=a$ so $a+e-a e=a$ or $e(1-a)=0$ so $e=0$ satisfies the condition for all a. (identity exists)
(iv) $a \star b=e=0$ so $a+b-a b=0$ or $b=a /(a-1)$. But since $b \notin \mathbb{Z}$ necesarily (e.g. $a=5$) inverse does not exist.

Solution 1.6 Let $c_{1}, c_{2} \in C_{g}$, then

- Closure : $c_{1} a=a c_{1}$, multiply from the left with c_{2}, we get $c_{2} c_{1} a=c_{2} a c_{1}$, but using commutative property on the RHS, this is $\left(c_{2} c_{1}\right) a=a\left(c_{2} c_{1}\right)$, so $c_{3}=c_{1} c_{2} \in C_{g}$.
- Associativity is inherited from G.
- Identity : since e commute with everything, $e \in C_{g}$.
- Inverse : let g be the inverse of c_{1}. Now $c_{1} a=a c_{1}$, multiply from right with g, we get $c_{1} a g=a c_{1} g=a$ since $c g_{1}=e$. Multiply from the left with g, we get $g c_{1} a g=g a \Rightarrow a g=g a$, hence $g \in C_{g}$.

Solution 1.7

Easy to show $y \rightarrow a y^{\prime}$ will leave the equation invariant.

SECTION B - Answer ONE question Answer section B in an answer book

2

(i) Consider two Lie groups, $S O(3, \mathbb{R})$ and $S L(2, \mathbb{R})$. Let $R \in S O(3, \mathbb{R})$ and $L \in S L(2, \mathbb{R})$ be in the 3×3 and the standard 2×2 matrix representations of these two groups respectively. Furthermore, let T be a 3×2 matrix with real coefficients and $0_{2 \times 3}$ be a 2×3 matrix with zero coefficients. We can then construct the set of 5×5 matrices, \mathcal{M}, such that

$$
M=\left(\begin{array}{cc}
R & T \\
0_{2 \times 3} & L
\end{array}\right)=\left(\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & t_{11} & t_{12} \\
r_{21} & r_{22} & r_{23} & t_{21} & t_{22} \\
r_{31} & r_{32} & r_{33} & t_{31} & t_{32} \\
0 & 0 & 0 & l_{11} & l_{12} \\
0 & 0 & 0 & l_{21} & l_{22}
\end{array}\right), M \in \mathcal{M}
$$

where $r_{i j}, l_{i j}$ and $t_{i j}$ are the coefficients for the R, L and T matrices respectively.
(a) Define what it means for a matrix to be block-diagonal. What are the coefficients of the matrix T such that the matrix M is block-diagonal?
(b) Show that the set \mathcal{M} is closed under matrix multiplication, i.e.

$$
M_{1} M_{2}=\left(\begin{array}{cc}
R_{1} & T_{1} \tag{5marks}\\
0_{2 \times 3} & L_{1}
\end{array}\right)\left(\begin{array}{cc}
R_{2} & T_{2} \\
0_{2 \times 3} & L_{2}
\end{array}\right) \in \mathcal{M}
$$

(c) Let L^{-1} and R^{-1} be inverses for L and R respectively. Find A such that the following matrix

$$
M^{-1}=\left(\begin{array}{cc}
R^{-1} & A \\
0_{2 \times 3} & L^{-1}
\end{array}\right)
$$

is the inverse for M, i.e. $M M^{-1}=M^{-1} M=e$. And hence argue that M forms a group under matrix multiplcation.
(ii) Consider the following real vector

$$
\mathbf{x}=\binom{x}{y} .
$$

An affine transformation of \mathbf{x} is defined to be the following operation

$$
\mathbf{x}^{\prime}=A \mathbf{x}+B
$$

where $A \in G L(2, \mathbb{R})$ and B is a 2×1 column matrix with real coefficients,

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), B=\binom{b_{1}}{b_{2}} .
$$

(a) Describe what it means for $f(x)$ to be an analytic function in its domain?
(b) Prove that the affine transformation described in the preamble forms a group. This group is called the affine group Aff(2).
(c) By considering the analyticity of the transformations, show that the affine group Aff(2) is a Lie group. What is the dimensionality of this Lie group?
(d) The elements of $\operatorname{Aff}(2)$ can be represented as a 3×3 matrix

$$
M=\left(\begin{array}{ccc}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
0 & 0 & 1
\end{array}\right) \in \operatorname{Aff}(2)
$$

Verify that matrix multiplication reproduces the group composition laws you computed in (b). Identify the identity element and hence calculate the generators for Aff(2) in this representation.

Solution

Q2.
(i)
(a) Block-diagonal means that a matrix can be decomposed into the following form

$$
\left(\begin{array}{llll}
A & & & \\
& B & & \\
& & C & \\
& & & \ldots
\end{array}\right)
$$

where A, B, C etc are square matrices. Equation (5) is block diagonal if T has zero coefficients.
(b) Multiplying M_{1} and M_{2} we get

$$
M_{1} M_{2}=\left(\begin{array}{cc}
R_{1} & T_{1} \\
0_{2 \times 3} & L_{1}
\end{array}\right)\left(\begin{array}{cc}
R_{2} & T_{2} \\
0_{2 \times 3} & L_{2}
\end{array}\right)=\left(\begin{array}{cc}
R_{1} R_{2} & R_{1} T_{2}+T_{1} L_{2} \\
0_{2 \times 3} & L_{1} L_{2}
\end{array}\right) \in \mathcal{M}
$$

so it is closed.
(c) Solution follows from plugging in M^{-1} and setting top right element equal to 1.
(ii) (a) An analytic function is an infinitely differentiable $\left(C_{\infty}\right)$ function whose Taylor series around a point x_{0} converges to $f\left(x_{0}\right)$ for x_{0} within its domain.
(b) (Closure) Consider two successive transformations $\mathrm{x}^{\prime}=A_{1} \mathbf{x}+B_{1}$ and $\mathbf{x}^{\prime \prime}=A_{2} \mathrm{x}^{\prime}+$ B_{2}, so

$$
\begin{align*}
\mathbf{x}^{\prime \prime} & =A_{2}\left(A_{1} \mathbf{x}+B_{1}\right)+B_{2} \tag{5}\\
& =A_{2} A_{1} \mathbf{x}+\left(A_{2} B_{1}+B_{2}\right)
\end{align*}
$$

But since $A_{2} A_{1} \in G L(2, R)$ and $A_{2} B_{1}+B_{2}$ is a 2×1 column matrix with real coefficients, the transformation is closed.
(Identity) Given by $A=I$ and $B=0$.
(Inverse) To find the inverse, we set $\mathbf{x}^{\prime \prime} \rightarrow \mathbf{x}$ in equation (6), to get

$$
\begin{equation*}
\mathbf{x}=A_{2} A_{1} \mathbf{x}+\left(A_{2} B_{1}+B_{2}\right) \tag{6}
\end{equation*}
$$

and the inverse is found when $A_{2}=A_{1}^{-1}$ (which exists since $A \in G L(2, R)$) and $A_{2} B_{1}+B_{2}=$ 0 , or $B_{2}=-A_{1}^{-1} B_{1}$, which we can always find a solution for B_{2} since A_{1}^{-1} exists. So an inverse exist.
(Associativity) Inherited from matrix multiplication.
(c) The coordinate transforms for x and y can be written as

$$
\begin{equation*}
x^{\prime}=a_{11} x+a_{12} y+b_{1}, y^{\prime}=a_{21} x+a_{22} y+b_{2} \tag{7}
\end{equation*}
$$

both equations which are clearly analytic in $a_{i j}$. Since there are six unconstrained parameters, the dimensionality of $\operatorname{Aff}(2)$ is 6 .
(d) Group multiplication law is given by matrix multiplication

$$
M_{2} M_{1}=\left(\begin{array}{cc}
A_{2} & B_{2} \tag{8}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A_{1} & B_{1} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
A_{2} A_{1} & A_{2} B_{1}+B_{2} \\
0 & 1
\end{array}\right)
$$

which reproduces (b). Note that we have use left multiplcation rules (not $M_{1} M_{2}$).
The identity element is $a_{11}=a_{22}=1$ and everything else zero. The generators can be easily found by taylor expanding around the identity, whose first terms for each generator are

$$
\begin{equation*}
X_{i}=\left.\frac{\partial M}{\partial a_{i}}\right|_{I} \tag{9}
\end{equation*}
$$

The 6 generators are

$$
\begin{align*}
& X_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), X_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), X_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \tag{10}\\
& X_{4}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), X_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), X_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \tag{11}
\end{align*}
$$

3.

(i) Let G be a finite group, and $D: G \rightarrow G L(2, \mathbb{C})$ be a 2×2 faithful representation of the group. G is generated by two generators, g_{1} and g_{2}, which in this representation are given by

$$
D\left(g_{1}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), D\left(g_{2}\right)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

(a) Define what is meant by the generators of a group?
[2 marks]
(b) Determine the orders of the generators g_{1} and g_{2}. Hence, compute all the other elements of G. What is the order of G ?
[10 marks]
(c) Calculate the characters for the representation $D(g)$. Is this a reducible or irreducible representation? Justify your conclusions.
(ii) Let G be a finite group, and H be a subgroup of G.
(a) Define what is meant by the left coset space G / H.
(b) State what is a normal subgroup H of G.
[2 marks]
(c) Hence, prove that a subgroup H with index 2, i.e. $|G / H|=2$, is a normal subgroup. Hint: Recall that cosets partition G.
[10 marks]
Solution Q3
(i)
(a) A generator $g \in G$ element of G where by repeated application of the group composition with itself or other generators of G, makes (or generates) other elements of G.
(b) By bruteforce computing

$$
D\left(g_{1}\right) D\left(g_{1}\right)=\left(\begin{array}{ll}
1 & 0 \tag{12}\\
0 & 1
\end{array}\right)=D(e)
$$

and

$$
\begin{gather*}
D\left(g_{2}\right) D\left(g_{2}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=D\left(g_{4}\right) \tag{13}\\
D\left(g_{2}\right) D\left(g_{2}\right) D\left(g_{2}\right)=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)=D\left(g_{6}\right) \tag{14}\\
D\left(g_{2}\right) D\left(g_{2}\right) D\left(g_{2}\right) D\left(g_{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=D(e) \tag{15}
\end{gather*}
$$

so g_{1} is order 2 while g_{2} is order 4 .
The other elements of G can be computed easily by bruteforce

$$
\begin{gather*}
D\left(g_{1}\right) D\left(g_{2}\right)=\left(\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right) \equiv D\left(g_{3}\right) \tag{16}\\
D\left(g_{2}\right) D\left(g_{3}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \equiv D\left(g_{5}\right) \tag{17}\\
D\left(g_{2}\right) D\left(g_{5}\right)=\left(\begin{array}{cc}
-i & 0 \\
0 & -i
\end{array}\right) \equiv D\left(g_{7}\right) \tag{18}
\end{gather*}
$$

and other combinations will result in existing elements, so $|G|=8$.
(c) The characters are just traces, so $\chi\left(g_{1}\right)=\chi\left(g_{2}\right)=\chi\left(g_{6}\right)=\chi\left(g_{5}\right)=0$ and $\chi(e)=2$, $\chi\left(g_{3}\right)=2 i, \chi\left(g_{4}\right)=-2, \chi\left(g_{7}\right)=-2 i$.

Since $\sum|\chi|^{2}=16>|G|$, this is a reducible representation.
(ii)
(a) A left coset space is the set of all possible left cosets $g H$, where $g \in G$.
(b) A normal subgroup H of G is one such that $g H=H g$ for all $g \in G$.
(c) If $|G / H|=2$, then there are two left cosets. Using the fact that cosets partition G, we can consider two possible cases.

Case 1: If $g \in H$ then $g H=H=H g$.
Case 2: If $g \notin H$, then $g H=G-H \equiv \bar{G}$ necessarily, i.e. in the complement of G of H. But the right coset $H g=G-H$ for the same reason, so $g H=H g$. It is necessary because there are only 2 cosets - if the index is 3 or more then this proof fails.

We have thus shown that for all $g, g H=H g$ which means that H is a normal subgroup.

