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5CCP2332

SECTION A

Answer SECTION A in an answer book. Answer as many parts
of this section as you wish. Your total mark for this section will

be capped at 40.

1.1 Define what is meant by the permutation group Perm(S) for a finite
set S. State Cayley’s Theorem for finite groups.

[3 marks]

1.2 Let S be a set. Define what is meant by a partition of S.
[3 marks]

1.3 Construct the multiplication table for Z4, the cyclic group with 4 ele-
ments.

Prove that Z4 is abelian.
[5 marks]

1.4 Consider a 2 dimensional rectangle that is not a square. Find all its
symmetry operations. You may find it useful to draw a diagram to illustrate
the operations.

[4 marks]

SEE NEXT PAGE
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1.5 Let Z be the set of all integers, and ? be a binary operator between
elements of Z, such that

a ? b = a+ b+ 2 , a, b ∈ Z.
Determine whether

(i) ? is commutative,
(ii) ? is associative,
(iii) an identity exists (find it if it does),
(iv) an inverse exists (find it if it does).

[5 marks]

1.6 Consider the Klein four-group V4 = {e, a, b, c} with the group law ab = c.
A 2× 2 representation of V4 is given by

D(a) =

(
1 x
0 1

)
, D(b) =

(
1 y
0 1

)
where x 6= 0 , y 6= 0 and x 6= y.

Find the conditions on x and y such that the representation D is unfaith-
ful.

[5 marks]

1.7 Consider the following differential equation

x3
d2y

dx2
+ 3x2y2 − 1

xy
= 0.

Suppose the coordinate x undergoes a dilatation x → ax′ for a 6= 0. Find
the corresponding transformation for y which leaves the equation invariant.

[5 marks]
Solution 1.1
Perm(S) is the group of all permutations on the finite set S.
Any finite group G is isomorphic to a subgroup of Permutation Group

Perm(S) for some choice of S.
(Bookwork)
Solution 1.2
A partition of S is a collection C of subsets of S such that (a)X 6= ∅

whenever X ∈ C, (b) if X, Y ∈ C and X 6= Y then X ∩ Y = ∅, and (c) the
union of all of the elements of the partition is S.
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(Bookwork).
Solution 1.3
Let Z4 = {e, a, a2, a3}, then the multiplication table is easily constructed

as

e a2 a a3

a2 e a3 a
a a3 a2 e
a3 a e a2

(1)

Solution 1.4 The symmetries are (1) identity (2) reflection on horizontal
(3) reflection on vertical (4) rotation by 180 degrees.

Solution 1.5
(a) Commutative a ? b = a+ b+ 2 = b ? a = b+ a+ 2
(b) Associative a ? (b ? c) = a+ b+ c+ 4 = (a ? b) ? c
(c) Identity ∃b s.t. a ? b = b ? a = a. Easy to show a ? b = a = a+ b+ 2,

i.e. b = −2 is the identity.
(d) Inverse ∃b s.t. a ? b = b ? a = −2. Easy to show a + b + 2 = −2, i.e.

b = −4− a. So the inverse for a is −4− a.
Solution 1.6 It is easy to calculate

D(c) = D(a)D(b) =

(
1 x+ y
0 1

)
while D(e) is just the identity matrix.

For the representation to be unfaithful, we can set D(c) = D(e), or x =
−y.

Solution 1.7
Let y → by′, and then substitute this into the differential equation to find

(ab)x′2
d2y′

dx′2
+ 3(a2b2)x′2y′2 − a−1b−1 1

x′y′
= 0 (2)

which means that b = a−1 to keep the ODE invariant.

SEE NEXT PAGE
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SECTION B - Answer ONE question
Answer section B in an answer book

2

(i) Consider the set of all square matrices of the form

A =

(
a b
0 c

)
,

where a, b, c are integers obeying addition modulo 5 (i.e. (3 + 6) mod 5 = 4
and (1 + 4) mod 5 = 0 etc).

(a) Prove that for a 6= 0 and c 6= 0, the set of all possible A’s forms a group
G under matrix multiplication.

How many elements are there in this group?
[4 marks]

(b) Let G be a finite group and H be a subgroup. Define what is meant by
the left coset of an element g ∈ G of H.

[2 marks]

(c) Consider the subset of the group G given by the condition b = a− c.
Show that this subset forms an abelian subgroup H of G.
What is |H|?

[4 marks]

(d) How many distinct left cosets of H are in G? State any theorem(s) that
you may use.

[2 marks]

(e) Find all elements of G whose square is the identity. Prove that this subset
cannot be a subgroup of G. State any theorem(s) you use.

[8 marks]

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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2

(ii) Consider three coloured balls and three coloured boxes, both having the
same set of colours, red (1), green (2) and blue (3). The balls are first put in
matching colour boxes (i.e. red ball in red box, green ball in green box etc.).

(a) We now swap the contents of the red and green boxes, and then swap the
contents of the red and blue boxes. Write these operations as permutation
operators of the permutation group of 3 objects S3.

State what are the colours of the balls in each coloured box at the end of
these two operations.

[3 marks]

(b) Now, suppose you are allowed to make a pair-wise swap of the contents of
two boxes only once, showed that given the remaining possible permutations
you cannot restore the balls back into their original boxes (i.e. red in red,
blue in blue etc.).

[3 marks]

(c) Suppose at this stage, additionally you are given an orange box with a
orange ball inside and a yellow box with a yellow ball inside. Suppose you
are still only allowed to make a pair-wise swap of the contents of each pair
of boxes at most once, show given these two additional balls and boxes, that
you can restore all five balls to the boxes of their respective colours.

Hint: Note that the addition of 2 more boxes and balls means that we are
now considering permutations of 5 objects, thus the initial permutation P is
given by

P ∗ =

(
1 2 3 x y
2 3 1 x y

)
where x labels orange and y labels yellow. Then find any sequence of pair-wise
permutations which, when composed, give the identity.

[4 marks]
Solution

(i)

(a) The left coset of g ∈ G of H is the set constructed by acting on all the
elements of H = {e, h1, h2, . . .} from the left with g, i.e.

Lg(H) = {ge, gh1, gh2, . . .} ≡ gH.
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(b) Associativity is inherited. Inverses exists because det(A) = ac 6= 0 since
a 6= 0 and c 6= 0. Id is simply identity matrix. Finally, matrix multiplication
imply

A1A2 =

(
a1a2 a1b2 + b1c2

0 c1c2

)
and since a1a2, a1b2 + b1 + c2 and c1c2 modulo 5 are ∈ {0, 1, 2, 3, 4}, closure
is proven.

Since a 6= 0, c 6= 0 but there are no conditions on b, the total number of
elements are 4× 4× 5 = 80.

(c) To show that H is abelian, calculate

A1A2 =

(
a1a2 a1b2 + b1c2

0 c1c2

)
, A2A1 =

(
a2a1 a2b1 + b2c1

0 c2c1

)
.

Then it is easy to show that

a1b2 + b1c2 = a1(a2 − c2) + (a1 − c1)c2 = a1a2 − c1c2

and
a2b1 + b2c1 = a2(a1 − c1) + (a2 − c2)c1 = a1a2 − c1c2,

thus A1A2 = A2A1, i.e. H is an abelian group.
Since b is no longer an independent variable, |H| = 4× 4 = 16.

(d) Let G/H be the set of all left cosets of H of G, and |G/H| be the index
(i.e. the total number of left cosets). Then Lagrange Theorem states that

|G| = |G/H||H|.

Thus using this theorem it is easy to show that |G/H| = 80/16 = 5, i.e.
there are 5 distinct left cosets of H of G.

(e) First calculate

AA =

(
a2 ab+ bc
0 c2

)
=

(
1 0
0 1

)
giving the conditions a2 = 1,c2 = 1 and b(a + c) = 0. Now a2 = 1 implies
that a = {1, 4}, since 12 = 1 and 42 mod 5 = 16 mod 5 = 1. For b, we go
through all the possibilities:

• a = 1,c = 1 : a+ c = 2 so b = 0.
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• a = 1,c = 4 : a+ c = 0 so b = {0, 1, 2, 3, 4}.

• a = 4,c = 1 : a+ c = 0 so b = {0, 1, 2, 3, 4}.

• a = 4,c = 4 : a+ c = 3 so b = 0.

This gives a total number of 12 elements. However, |G| = 80 is not divisible
by 12, and hence Lagrange’s Theorem states that this subset cannot be a
subgroup of G.

(ii)

(a) The permutation operators are

P1 =

(
1 2 3
2 1 3

)
and

P2 =

(
1 2 3
3 2 1

)
(b) To restore P to the identity, we need to find its inverse P−1

P−1 =

(
1 2 3
3 1 2

)
.

To construct P−1 out of pair-wise permutations require

P−1 = (PaPb)
−1 = P−1b P−1a

but we know that the inverse of any pair-wise permutation is itself, i.e. P 2
a = e

implying P−1a = Pa and similarly for Pb. Since we are only allowed a single
use of each permutation (by the statement of the problem), this is impossible.

(c) While there are no mechanical way of finding the answer except by brute-
force, this problem is not as hard as it looks as there are more than one
solution. Two possible sequence of permutations using cyclic notation are

σ = (xy)(x1)(x2)(y3)(x3)(y1)

or
σ = (xy)(x1)(y2)(y3)(x2)(y1)

both which gives

P ∗σ =

(
1 2 3 x y
1 2 3 x y

)
.

This problem is a toy version of the so-called Futurama Theorem. Google it!
SEE NEXT PAGE
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3.

(i) Consider the matrix group SO(2). The elements M ∈ SO(2) whose
elements are real obey the condition MTM = e, with detM = 1.

(a) Let x be the parameter of the group SO(2). By considering the following
2× 2 matrix,

M =

(
a x
b c

)
,

show that every matrix in M(x) ∈ SO(2) can be written in the form

M±(x) =

(
±
√

1− x2 x

−x ±
√

1− x2

)
.

[4 marks]

(b) SO(2) is the rotation group on a 2-dimensional plane. Argue that the
elements of M+ and M− cover distinct halves of the group respectively, and
hence prove that

M+ ∪M− = SO(2).

[4 marks]

(ii) Consider the Lie group HT (1, 1) whose elements are represented by the
set of 2× 2 real matrices

L(a, b) =

(
a b
0 1

)
where a 6= 0.

(a) By acting L(a, b) on the vector space parameterized by

V (x) =

(
x
1

)
,

show that M(a, b) generates the transformation x→ ax+ b.
[2 marks]

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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3.

(b) Show, by expanding around the identity of the group, that the generators
for the Lie Algebra ht(1, 1) are given by

Xa =

(
1 0
0 0

)
, Xb =

(
0 1
0 0

)
.

[6 marks]

(c) Find the structure constant(s) for the algebra ht(1, 1).
[4 marks]

(iii) Consider the Dihedral-4 group D4.

(a) Define what is meant by the order of an element of a group.
Find the order of all the elements of D4.

[5 marks]

(b) Prove thatD4 is non-abelian, and find the dimensions of all the irreducible
representations of D4. State any theorem(s) that you use.

[5 marks]
Solution

(i)

(a) The conditions on M mean that a2 +x2 = 1, b2 + c2 = 1 and ab+ cx = 0,
while detM = 1 gives the condition ac− bx = 1. The first condition means
that a = ±

√
1− x2. The 3rd condition gives ab = −cx, and now using the

unitary determinant condition we get

1 = ac− bx = ac− (−cx/a)x = (c/a)(a2 + x2) =
c

a
(3)

which can be fulfilled if b = −x and a = c, giving the required form.

(b) Since the SO(2) is the rotation group, we can parameterize it in the usual
way using the angular parameter 0 < θ ≤ 2π

M(θ) =

(
cos θ sin θ
− sin θ cos θ

)
.

By comparing the θ parameterization to the x parameterization, it is clear
that since

√
1− x2 > 0 by construction while cos θ > 0 for 0 < θ ≤ π and
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cos θ < 0 for π < θ ≤ 2π, we can see that M− and M+ cover distinct halves
of the rotation group.

(ii)

(a) It is easy to show that

L(a, b)V (x) =

(
ax+ b

1

)
≡
(
x′

1

)
hence it maps x→ ax+ b.

(b) Noting that L(1, 0) is the identity, we can then Taylor expand around it

L(a, b) = L(1, 0) +
∂L

∂a

∣∣∣∣
a=1,b=0

δa+
∂L

∂b

∣∣∣∣
a=1,b=0

δb

where the generators are

Xa =
∂L

∂a

∣∣∣∣
a=1,b=0

=

(
1 0
0 0

)
, Xb =

∂L

∂b

∣∣∣∣
a=1,b=0

=

(
0 1
0 0

)
.

(c) The structure constants can be computed by taking the commutator

[Xa, Xb] = Xa , [Xb, Xa] = −Xa

so Ca
ab = 1, Ca

ba = −1 and the rest zeroes.

(iii)

(a) The order n of an element of a group a ∈ G is such that an = e. D4 has
4 mirror reflections mi for i = 1, 2, 3, 4 where m2

i = e, a rotation by 90◦, R
where R4 = e, a rotation by 180◦, R2 where (R2)2 = e, and a rotation by
270◦, R3 where (R3)3 = e. So D4 has 5 elements of order 2 (mi and R2), 1
element of order 4 (R), 1 element of order 3 (R3) and the identity.

(b) It is easy to show that D4 is non-abelian by finding a counter example,
e.g. Rm1 6= m1R.

To find the number and dimensionality of the representations, we first
note that there must exist the trivial representation of dimension one. Now
using Burnside’s theorem, we know that the sum of the square of the dimen-
sions of the representations ni must be equal to |G|, i.e.∑

n2
i = |G| = 8
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.
The only possibility that this could occur is 1 + 1 + 1 + 1 + 22 = 8, i.e.

there must exist 4 1-d irrep. and 1 2-d irrep.

FINAL PAGE
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