Candidate number: Desk number:

King's College London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Reg- For examiner's ulations under the authority of the Academic Board.
use only

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
2	
3	
Total	

SECTION A

Answer SECTION A on the question paper in the space below each question. If you require more space, use an answer book.

Answer as many parts of this section as you wish.
The final mark for this section will be capped at 20.
1.1 Let S be a set, with $p, q \in S$ are elements related by relation \bowtie and we write $p \bowtie q$. We call \bowtie a relation on S. Describe reflexive, transitive and symmetric relations between objects in set S.
[3 marks]
Solution
Bookwork
1.2 Define what is meant by an isomorphism and a homomorphism between two groups A and B.

Consider the set H of all possible homomorphisms between A and B. If $f: A \rightarrow B$ is an isomorphism, is $f \in H$?
[3 marks]

Solution
Bookwork
1.3 Let $S=\mathbb{Z}$, the set of all integers, and \star be a binary operator between elements of S, such that

$$
a \star b=a+b+1, a, b \in S
$$

Determine whether
(i) \star is commutative,
(ii) \star is associative,
(iii) an identity exists (find it if it does), and
(iv) an inverse exists (find it if it does).
[5 marks]
Solution
(a) Commutative $a \star b=a+b+1=b \star a=b+a+1$
(b) Associative $a \star(b \star c)=a+b+2=(a \star b) \star c$
(c) Identity $\exists b$ s.t. $a \star b=b \star a=a$. Easy to show $a \star b=a=a+b+1$, i.e. $b=-1$ is the identity.
(d) Inverse $\exists b$ s.t. $a \star b=b \star a=-1$. Easy to show $a+b+1=-1$, i.e. $b=-2-a$. So the inverse for a is $-2-a$.
1.4 Let G and H be finite groups, and $G \times H$ be the product group of these two groups. Prove that $G \times H$ is abelian if and only if G and H are both abelian.
[4 marks]

Solution
Let $g_{i} \in G$ and $h_{i} \in H$, so $\left(g_{i}, h_{i}\right) \in G \times H$. For $G \times H$ to be abelian, the following

$$
\begin{equation*}
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{2}, h_{2}\right)\left(g_{1}, h_{1}\right) \forall g_{i}, h_{i} \tag{1}
\end{equation*}
$$

must be true. Calculate LHS $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)$, while RHS $\left(g_{2}, h_{2}\right)\left(g_{1}, h_{1}\right)=\left(g_{2} g_{1}, h_{2} h_{1}\right)$. For LHS $=$ RHS, $g_{1} g_{2}=g_{2} g_{1}$ and $h_{1} h_{2}=h_{2} h_{1}$ $\forall g_{1}, h_{1}$.
1.5 Let G be a group, and $a \in G$. Let $C_{G}(a)$ be the set of all elements of G which commute with the element a, i.e.

$$
C_{G}(a)=\{g \in G: a g=g a\}
$$

Prove that C_{G} is a subgroup of G.

Solution

Let $c_{1}, c_{2} \in C_{g}$, then

- Closure : $c_{1} a=a c_{1}$, multiply from the left with c_{2}, we get $c_{2} c_{1} a=c_{2} a c_{1}$, but using commutative property on the RHS, this is $\left(c_{2} c_{1}\right) a=a\left(c_{2} c_{1}\right)$, so $c_{3}=c_{1} c_{2} \in C_{g}$.
- Associativity is inherited from G.
- Identity : since e commute with everything, $e \in C_{g}$.
- Inverse : let g be the inverse of c_{1}. Now $c_{1} a=a c_{1}$, multiply from right with g, we get $c_{1} a g=a c_{1} g=a$ since $c g_{1}=e$. Multiply from the left with g, we get $g c_{1} a g=g a \Rightarrow a g=g a$, hence $g \in C_{g}$.
1.6 Consider the map $f: \mathbb{R} \rightarrow \mathbb{R}^{*}$ such that $f(x)=2^{x}$, where $\mathbb{R}^{*}=\mathbb{R}-\{0\}$ is the set of all reals excluding the zero. Show that if we use the additive group law for \mathbb{R}, and the multiplicative group law for \mathbb{R}^{*}, then f is a homomorphism. Find its kernel $\operatorname{ker}(f)$.

Is f an isomorphism? Justify your answer.
[5 marks]
Solution
It is easy to show $f(x+y)=2^{x+y}$, and $f(x) f(y)=2^{x} 2^{y}=2^{x+y}$. To find the kernel of $f(x)$, we note that the identity on \mathbb{R}^{*} is 1 , so we want to find all $x \in \mathbb{R}$ s.t.

$$
\begin{equation*}
2^{x}=1 \tag{2}
\end{equation*}
$$

with the only solution being $x=0$, so $\operatorname{ker}(f)=\{0\}$.
No it is not an isomorphism since $\operatorname{cod}(f) \subset \mathbb{R}^{*}$ (i.e. it must map to the entire \mathbb{R}^{*}. However $2^{x}>0 \forall x \in \mathbb{R}$, which is just a subset of \mathbb{R}^{*}.
1.7 Consider the following differential equation

$$
x^{2} \frac{d y}{d x}+x^{3} y^{2}-\frac{1}{x}=0 .
$$

Suppose the coordinate x undergoes a dilatation $x \rightarrow a x^{\prime}$. Find the corresponding transformation for y which leaves the equation invariant.
[5 marks]

Solution
Let $y \rightarrow b y^{\prime}$, and then substitute this into the differential equation to find

$$
\begin{equation*}
(a b) x^{\prime 2} \frac{d y^{\prime}}{d x^{\prime}}+\left(a^{3} b^{2}\right) x^{\prime 3} y^{\prime 2}-a^{-1} \frac{1}{x^{\prime}}=0 \tag{3}
\end{equation*}
$$

which means that $b=a^{-2}$ to keep the ODE invariant.

SECTION B - Answer ONE question Answer section B in an answer book

2

(i) State Lagrange's Theorem. Prove that the theorem implies that finite groups of prime order possess no proper subgroup.

> [4 marks]
(ii) Consider the following set of matrices defined by

$$
\mathcal{M}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a c \neq 0\right\}
$$

(a) Prove that \mathcal{M} forms a group under matrix multiplication. Is this group abelian or non-abelian? Justify your answer.
(b) Consider a 2-dimensional target space \mathbb{R}^{2}, spanned by coordinates (x, y) where $x, y \in \mathbb{R}$. Each element $M \in \mathcal{M}$ acts linearly on \mathbb{R}^{2} in the following way

$$
M(x, y)=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\binom{x}{y} .
$$

Find the codomain of this action. Find the subset of \mathbb{R}^{2} which remains invariant under this transformation.
(c) Consider \mathcal{M}^{\prime}, which is a subset of \mathcal{M} determined by the condition $c=1$. Show that \mathcal{M}^{\prime} is a subgroup of \mathcal{M}. Consider the action of \mathcal{M}^{\prime} on \mathbb{R}^{2}. What are the conditions on a, b such that the transformation is a dilatation on x ?
(d) Finally consider D, the set of 3×3 matrices defined by

$$
D=\left\{\left.\left(\begin{array}{ccc}
a & b & 0 \tag{4}\\
0 & c & 0 \\
0 & 0 & e^{i \theta}
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a c \neq 0 \text { and } 0 \leq \theta<2 \pi\right\} .
$$

D is a matrix group under matrix multiplication. Prove that it is isomorphic to the product group $\mathcal{M} \times U(1)$. Is D abelian? Justify your answers.
[18 marks]
(iii) For the following question, illustrate your answers.
(a) The Methane molecule CH_{4} consists of 4 Hydrogen H atoms with a central Carbon C atom. Describe the symmetry group A exhibited by CH_{4}. (b) A chemical process replaced one of the H atom with a Chlorine atom Cl , forming a Chloromethane molecule $\mathrm{CH}_{3} \mathrm{Cl}$. Describe the the symmetry group B exhibited by $\mathrm{CH}_{3} \mathrm{Cl}$.
(c) Is B a subgroup of A ? Justify your answer.
[8 marks]

SEE NEXT PAGE

Solution

(i) Bookwork.
(ii) (a) M is a group.

- Closure:

$$
M_{1} M_{2}=\left(\begin{array}{cc}
a_{1} & b_{1} \tag{5}\\
0 & c_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & c_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2} & a_{1} b_{2}+b_{1} c_{2} \\
0 & c_{1} c_{2}
\end{array}\right) \in M
$$

as $a_{1} a_{2} c_{1} c_{2} \neq 0$ as $a_{1} c_{1} \neq 0$ and $a_{2} c_{2} \neq 0$. It is not abelian, since

$$
M_{2} M_{1}=\left(\begin{array}{cc}
a_{2} & b_{2} \tag{6}\\
0 & c_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & c_{1}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2} & a_{2} b_{1}+b_{2} c_{1} \\
0 & c_{1} c_{2}
\end{array}\right) \neq M_{1} M 2
$$

- Identity is \mathbb{I}.
- Inverse exists because $a c \neq 0$, hence $\operatorname{det} M \neq 0$.
- Associative inherited.
(b) The action maps $x^{\prime} \rightarrow a x+b$ and $y^{\prime} \rightarrow c y$, which spans the entire \mathbb{R}^{2} since $a, b, c \in \mathbb{R}$. So the $\operatorname{cod}(M)=\mathbb{R}^{2}$, i.e. the action is onto. The subset of \mathbb{R}^{2} left invariant under this map $\forall a, b, c$ is the $y=0$ line since it gets map to $y^{\prime}=0$ regardless of the values of a, b, c.
(c) M^{\prime} is a subgroup of M because $c=1 \subset \mathbb{R}$. The action of M^{\prime} on (x, y) leaves $x \rightarrow a x+b$ and $y \rightarrow y^{\prime}$. For the transformation to a dilatation, $b=0$.
(d) The matrix group is $D=M \oplus U(1)$. This means that it is a product group $D=M \times U(1)$. We can rewrite the group elements as

$$
D(a, b, c, \theta)=\left\{\left(\begin{array}{ll}
a & b \tag{7}\\
0 & c
\end{array}\right), e^{i \theta}\right\}
$$

which then it is easy to show that the multiplication of $D_{1} D_{2}$ leads to

$$
D_{1} D_{2}=\left\{\left(\begin{array}{cc}
a_{1} a_{2} & a_{1} b_{2}+b_{1} c_{2} \tag{8}\\
0 & c_{1} c_{2}
\end{array}\right), e^{i \theta_{1}+i \theta_{2}}\right\}
$$

which is the same if we multiply the 3×3 parameterization together. Since M is not abelian, D is not abelian.
(iii) (a) CH_{4} has tetrahedral symmetry. This means that any interchange, or permutation, of its 4 vertices will leave the molecule invariant, hence the symmetry group is S_{4} (the group of permutations for 4 objects).
(b) $\mathrm{CH}_{3} \mathrm{Cl}$, one of the H has been swapped out for a Cl molecule, with the 3 remaining H atoms forming an equilateral triangle. The symmetry is now reduced to the discrete rotations around $C l-C$ axis, where a rotation of 120 degrees will keep the C and $C l$ atom in the same spot, while interchanging the remaining H atoms. We can also consider reflections around the $\mathrm{C}-\mathrm{Cl}$ axis. Hence the symmetry group is D_{3} (Dihedral-3) group.
(c) Since S_{3} is a subgroup of S_{4} and $D_{3} \cong S_{4}, B$ is a subgroup of A. To justify the answer, one can explicitly find the elements of S_{4} that forms D_{3} (long way). It is easy to show this geometrically - by fixing the C and one of the H of the group A, the remaining group elements form B.
3.
(i) Let Z_{4} be the order 4 cyclic group generated by a.
(a) Define what is a conjugacy class. Find all conjugacy classes of Z_{4}.
(b) State what are reducible and irreducible representations. Find all inequivalent irreducible representations of Z_{4}.
(c) Let $D_{5}: Z_{4} \rightarrow G L(4, \mathbb{C})$ be a 3×3 representation of Z_{4}, and given

$$
D_{5}(e)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), D_{5}(a)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & i
\end{array}\right)
$$

find $D_{5}\left(a^{2}\right)$ and $D_{5}\left(a^{3}\right)$. Decompose them into irreducible representations by writing D_{5} as a direct sum of irreducible representations you found in part (b).
(d) State the Orthogonality Theorem for Characters. Construct the character table for the $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$ representations of Z_{4} and verify that it satisfies the Orthogonality Theorem.
[15 marks]
(ii) Consider a rational fractional transformation parameterized by (a, b, c, d) which map points on the real line to the real line in the following way

$$
x \rightarrow x^{\prime}=\frac{a x+b}{c x+d}, a, b, c, d \in \mathbb{R}
$$

(a) Show that the maps (a, b, c, d) and $(\lambda a, \lambda b, \lambda c, \lambda d)$ for $\lambda \neq 0$ generate identical mappings.
(b) Compose two successive maps parameterized by $\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ and show that this also a rational fractional transformation.
(c) Find the set of transformations which maps x to itself (i.e. $x \rightarrow x^{\prime}=x$).
(d) Finally, show that the inverse transformation for (a, b, c, d) is given by $(\alpha d,-\alpha b,-\alpha c, \alpha a)$ where $\alpha \neq 0$, and that this transformation exists only if $a d-b c \neq 0$.
(e) Given your calculations above, comment on whether rational fractional transformations form a Lie Group. Explain your answer. You may assume that the map is associative.
[15 marks]
FINAL PAGE

Solution

(i)
(a) Conjugacy Class (Bookwork). Since Z_{4} is abelian (easily proven), it has as many conjugacy classes as its order,i.e. $\{e\},\{a\},\left\{a^{2}\right\},\left\{a^{3}\right\}$.
(b) Reducible/Irrep (Bookwork). Using Burnside's theorem, we know that there exist 4 irreps (since there are 4 classes). Since Z_{4} is abelian, all its irreps must be single dimensional. In the complex representation, the group structure means that the elements must be the 4 -th root of unity $z^{4}=1$. This have solutions

$$
\begin{align*}
& D_{1}=\{1,1,1,1\} \\
& D_{2}=\{1,-1,1,-1\} \\
& D_{3}=\{1, i,-1,-i\} \\
& D_{4}=\{1,-i,-1, i\} \tag{9}
\end{align*}
$$

(c) Can solve by brute force calculation or by realizing that $D_{5}=D_{1} \oplus$ $D_{2} \oplus D_{3}$, i.e.

$$
D_{5}\left(a^{2}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{10}\\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), D\left(a^{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -i
\end{array}\right)
$$

(d) Orthogonality Theorem for characters (Bookwork) $\sum_{\alpha}\left(\chi_{\alpha}^{m}\right)^{*}\left(\chi_{\alpha}^{m^{\prime}}\right)=$ $|G| \delta_{m m^{\prime}}$. The character table is

	e	a	a^{2}	a^{3}
$\chi\left(D_{1}\right)$	1	1	1	1
$\chi\left(D_{2}\right)$	1	-1	1	-1
$\chi\left(D_{3}\right)$	1	i	-1	$-i$
$\chi\left(D_{4}\right)$	1	$-i$	-1	i
$\chi\left(D_{5}\right)$	3	i	1	$-i$

Since the theorem applies to only irreps, ignoring D_{5}, it's clear that the theorem is obeyed.
(ii) (a) Plugging in the transform $(\lambda a, \lambda b, \lambda c, \lambda d)$ yields

$$
\begin{equation*}
x^{\prime}=\frac{a x+b}{c x+d} \tag{12}
\end{equation*}
$$

which is the same transform as (a, b, c, d) as long as $\lambda \neq 0$.
(b) Successive transform yields

$$
\begin{equation*}
x^{\prime}=\frac{a_{1} x+b_{1}}{c_{1} x+d_{1}}, x^{\prime \prime}=\frac{a_{2} x^{\prime}+b_{2}}{c_{2} x^{\prime}+d_{2}}=\frac{\left(a_{1} a_{2}+b_{2} c_{1}\right) x+\left(a_{2} b_{1}+b_{2} d_{1}\right)}{\left(a_{2} c_{2}+c_{1} d_{2}\right) x+\left(b_{1} c_{2}+d_{1} d_{2}\right)} \tag{13}
\end{equation*}
$$

which is also a rational fractional transform.
(c) We want $x^{\prime}=x$, so

$$
\begin{equation*}
\frac{a x+b}{c x+d}=x \Rightarrow c x^{2}+(d-a) x+b=0 \tag{14}
\end{equation*}
$$

and it is clear that for this to be solution $c=0, b=0$ and $a=d$. So the identity map is $(a, 0,0, a)$.
(d) To find the inverse transform, we want to map x^{\prime} back to x, so using the ansatz

$$
\begin{equation*}
x^{\prime \prime}=\frac{\alpha\left(d x^{\prime}-b\right)}{\alpha\left(-c x^{\prime}+a\right)}=\frac{x(a d-b c)}{(a d-b c)} \tag{15}
\end{equation*}
$$

so as long as $(a d-b c) \neq 0$, the map is the inverse.
(e) We have found the identity, the inverse and proved closure. Assuming associativity, the map forms a group. Since $x^{\prime}=(a, b, c, d, x)$ is analytic in all its 4 parameters, it forms a Lie Group (it is really the real projective group $\mathbb{R} \mathbb{P}^{1}$.)

