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Exercise 1. Let G be a group, and D be a homomorphism D : G → GL(2,R), i.e. D
is a representation of G, such that

D : G 7→
{(

1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
1 0
0 1

)}
Identify G (i.e. what group is G isomorphic to?). Is D reducible or irreducible?
Suppose that A ∈ D acts on a 2× 1 real vector (x, y)T in the following way(

x′

y′

)
= A

(
x
y

)
, where A =

(
α β
γ δ

)
,

such that
a′x′2 + b′y′2 = ax2 + by2, a, b, a′, b′ ∈ R. (1)

Find the real 2× 2 matrix M , whose components are independent of a, b, a′, c′ such that(
a
b

)
= M

(
a′

b′

)
. (2)

Finally, show that the map A → D(A) = M−1 is a representation of G.

Solution: The 2 × 2 identity matrix corresponds to the element e. Now, observe that
for

g =

(
0 −1
1 0

)
we have g2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
.

I.e. the third element is the square of the second one. Similarly,

g3 = gg2
(
0 −1
1 0

)(
−1 0
0 −1

)
=

(
0 1
−1 0

)
and g4 = gg3 =

(
0 −1
1 0

)(
0 1
−1 0

)
=

(
1 0
0 1

)
.

So g generates the whole set and thus G must be isomorphic to Z4.

1



This is a reducible representation. There are many ways of showing this. For example,
we know that the number M of irreducible representations of G satisfies

M∑
m=1

n2
m = |G|

And since |G| = 4 and we have at least one 1-dimensional irreducible representation (the
trivial representation), all remaining representations must be of degree 1 (22 + 1 > 4).

Using character theory, we know that for an irreducible representation, the sum of the
squares of the characters of its elements must be equal to the order of the group. In this
case, this sum equals 8, which is famously larger than 4. There are several more
ways of proving this.

For finding the real 2 × 2 matrix, we need to find, in terms of α, β, γ, δ , a matrix
which satisfies the condition a′x′2 + b′y′2 = ax2 + by2, a, b, a′, b′ ∈ R. This is done
simply by substituting x′, y′ with x, y via matrix A. If we write the components of M as
mij:

a′x′2+b′y′2 = ax2+by2a′(αx+βy)2+b′(γx+δy)2 = (m11a
′+m12b

′)x2+(m21a
′+m22b

′)y2

expanding the left-hand side:

(α2a′ + γ2b′)x2 + (β2a′ + δ2b′)y2 + 2xy(a′αβ + b′γδ)

Notice that the last term vanishes (equals 0) because A ∈ D so α = δ, β = −δ. Then,
comparing with the right-hand side, we get that m11 = α2, m12 = γ2, M21 = β2 and
m22 = δ2.

The map A → D(A) = M−1 is a homomorphism GL(2,C) → GL(2,C), and since
the composition of homomorphisms is a homomorphism, the map g 7→ D(A) is a homo-
morphism from G to GL(2,C) and thus a representation.
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Exercise 2. Prove that the number of conjugacy classes of a finite Abelian group G, C
is equal to its order, i.e. C = |G|. Hence deduce that all irreps of finite Abelian groups
are one-dimensional.

Solution: This is a classic group theory exercise! If G is Abelian, then all its ele-
ments commute. This means that if b is in the conjugacy class of a, ∃g ∈ G such that
gag−1 = b, so b = gag−1 = gg−1a = ea = a. I.e for every a ∈ G, the conjugacy class of
a is {a}.

To see that all irreducible representations of an Abelian group are one dimensional,
we use the fact that the number of irreducible representations (up to equivalence) is the
same as the number of conjugacy classes. In this case, the number of conjugacy classes
is |G|, because each class contains exactly one element; i.e. M = |G|. Thus for

M∑
m=1

n2
m = |G|

to hold we require nm = 1 ∀m. In other words, all irreducible representations must be
1-dimensional.
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Exercise 3. Consider the Klein four-group V4 = {1, a, b, c} with group laws a2 = b2 =
c2 = 1 and ab = c. Find all conjugacy classes of V4. Consider a dimension 3 repre-
sentation of V4, D : V4 → GL(3,R), with the following matrices for the generators of
V4

D(a) =

1 0 0
0 −1 0
0 0 −1

 , D(b) =

−1 0 0
0 1 0
0 0 −1

 ,

Calculate D(c). Decompose D into its irreducible components. How many inequivalent
irreps are there for V4? Find them.

Solution: We know that V4
∼= Z2 × Z2. Since Z2 is abelian, so is V4, therefore each

element is on a conjugacy class of its own (you can simply state that all groups of order
four are abelian; there are only two of them: Z4 and V4). This means that there are
exactly 4 inequivalent irreducible representations, all of which are 1-dimensional.

Since ab = c, and the representation D is a homomorphism, D(ab) = D(a)D(b) = D(c)
so

D(c) =

1 0 0
0 −1 0
0 0 −1

−1 0 0
0 −1 0
0 0 1

 =

−1 0 0
0 −1 0
0 0 1


Back to representations, other than the trivial one, there are 3 irreps. These will be of
the form g 7→ ±1 ( 7→ ±r ∈ R − {0} up to equivalence). There are exactly 3 choices:
{1, 1,−1,−1}, {1,−1, 1,−1}, and {1,−1,−1, 1}.
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Exercise 4. For a group G, show that for any g1 ∈ G the elements {h} such that
hgh−1 = g1 form a subgroup Hg1 of G. Show that if gg1g

−1 = g2 for some g ∈ G, then
Hg1 is isomorphic to Hg2. Show that the conjugacy class of g1 has |G|/|Hg1| elements.

Solution: Another classic exercise! The set of h is known as the centraliser of g1
in G. It corresponds precisely to the elements in G which commute with g1. It is then
simple to see that the identity commutes with g1, and if h commutes with g1 then so
does h−1 because h−1g1 = h−1g1hh

−1 = h−1hgh−1 = egh−1 = gh−1. Finally, it is
clearly closed because if a and b commute with g1 then abg1 = ag1b = g1ab. Since the
commutation relation is transitive, if g1 and g2 commute, the set of elements that com-
mute with g1 must be the same as the set of elements which commute with g2. The
last exercise is a trivial application of the orbit-stabiliser theorem under the conjugation
action Conj : G → G. If you do not know this theorem, we will have to take the long
route: the elements g̃ in the conjugacy class of g1 are those such that ∃g0 ∈ G where
g0g1g

−1
0 = g̃. Since all g ∈ Hg1 will conjugate into g̃ = g1, only the g ̸∈ Hg1 will result

in an element g̃ ̸= g1 in the same conjugacy class as g1. Moreover, if g0 and g are in
the same centraliser, then they will give the same g̃, therefore the amount of elements
will be equivalent to the amount of left cosets of the centraliser. I.e. |G|/|Hg1|.
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Exercise 5. Some problems on homomorphisms.

(i) Show that there exists a homomorphism from S3, the permutation/symmetric
group of 3 object, to S2, the permutation group of 2 objects, by explicitly con-
structing the map. Identify its kernel.

(ii) Show that there exists a homomorphism from S4, the permutation/symmetric
group of 4 objects, to S3, the permutation group of 3 objects, by explicitly con-
structing the map. Identify its kernel.

(iii) Prove that there exists no homomorphism from S5 to S4.

Solution: Homomorphisms send conjugacy classes to each other, so we can write the
Sn groups in terms of it’s conjugacy classes (using cycle notation): S2 has (e) and (ab),
while S3 has (e), (ab) and (abc), so we construct a homomorphism ϕ : S3 → S2 with
kerϕ = (e), (abc) and (ab)S3 7→ (ab)S2. Similarly, we can write S4 in terms of conjugacy
classes as having (e), (ab), (abc), (ab)(cd) and (abcd). Then a homomorphism ϕ : S4 → S3

can be constructed via kerϕ = (e0, (abcd), (ab), (ab)(cd) 7→ (ab)S3 and (abc) 7→ (abc)S3.
Now, notice that S4 is isomorphic to some subgroup of S5 (the permutations that keep
1 element fixed). So we can create a homomorphism if we can send everything outside
that subgroup to the identity. I.e if kerϕ = S5 − S4. In terms of conjugacy classes of
S5, this means that we need to collapse (abcde) and (abc)(de) into the kernel; but this is
impossible because the set containing (abcde) and (abc)(de) is not closed under the group
operation, and the kernel of a homomorphism must be a subgroup.
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Exercise 6. Find all irreps of the cyclic-3 group, Z3 = {e, a, a2} with a2 = e.

Solution: Since Z3 is Abelian, we already know there will be exactly three 1-dimensional
irreducible representations up to equivalence. These are, over the field C: the trivial one,
{1, ω, ω2} and {1, ω, ω2}, where ω is the cube root of 1 (ω = e2πi/3) (as a general rule,
the representations of the nth order cyclic group will be the n appropriate orderings of
the nth roots of unity e2πi/n).
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Exercise 7. Given a matrix representation for a group A, one can define for any non-
singular square matrix B a similarity transform

A′ = BAB−1

Prove that the similarity transform forms equivalence classes, i.e. prove that the trans-
formation is reflexive, transitive and symmetric.

Solution: We say A,A′ are similar if ∃B an invertible matrix such that A′ = BAB−1.
Clearly, A = 1A1 so A is similar to A and thus matrix similarity is reflexive. Now, if
A′ is similar to A, then A′ = BAB−1 and so A = B−1AB; since B−1 is an invertible
matrix, A is similar to A′. I.e. similarity is reflexive. Finally, if A′′ is similar to A′

which is similar to A, then (by substituting) A′′ = CBAB−1C−1 and since M = CB is
an invertible matrix, A′′ is similar to A, thus similarity is transitive.
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Exercise 8. Consider an N = 3 complex representation of the Dihedral-4 group D4,

T : D4 → GL(3,C).

The representation can be generated by the following generators

T (R) =

 1 0 0
1 0 −1
−1 1 0

 , T (m1) =

1 0 0
0 1 0
0 0 −1


Check that this representation is not unitary.

(i) Using the generators, find all the other matrix representations of T (g) for all g ∈
D4.

(ii) Construct the Hermitian matrix H by

H =
∑
α

TαT
†
α (3)

(iii) Find the eigenvectors and eigenvalues of H. Using these, construct the unitary
matrix U which diagonalises H.

(iv) Hence, find T̃α, the unitary representation equivalent to Dα. Can you find another
one?

Deduce that
T (g) = F1(g)⊕ F2(g) (4)

where F2 is a 2-D irreducible representation of D4. (You don’t have to calculate F2, but
you need to prove that it is irreducible).

Solution To check if this is unitary, we simply have to check whether T (g)T (g)T = 13×3.
This is not the case:

T (R)T (R)T =

 1 1 −1
1 2 −1
−1 −1 2


We can find the image of the remaining elements under this representation by matrix
multiplication: m2 = Rm, m3 = R2m, m4 = R3m. These correspond to:

m2 =

 1 0 0
1 0 1
−1 1 0

 m3 =

1 0 0
2 −1 0
0 0 1

 m4 =

1 0 0
1 0 −1
1 −1 0



R2 =

1 0 0
2 −1 0
0 0 −1

 R3 =

1 0 0
1 0 1
1 −1 0

 R4 = e =

1 0 0
0 1 0
0 0 1


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We may build H by brute forcing the sum. We can shorten the computation if we notice
that m2m

T
2 = RRT .... Hence H = 2(ee+RRT +R2R2T +R3R3T ). The resulting matrix

is

H =

8 8 0
8 20 0
0 0 12


The eigenvectors are simply the colums of the diagonalising matrix, and the corresponding
eigenvalues are {24, 12, 4}, with eigenvectors {1/2, 1, 0}, {0, 0, 1} and {−2, 1, 0}. Then,
after normalising (to ensure unitarity):

U =


1√
5

0 − 2√
5

2√
5

0 1√
5

0 1 0


This is precisely the unitary representation T̃α will be written in terms of the halved
(square root) of the diagonalised matrix

λ =

24 0 0
0 12 0
0 0 4

 .

This is simply

λ1/2 =

2
√
6 0 0

0 2
√
3 0

0 0 2


and its inverse

λ−1/2 =


1

2
√
6

0 0

0 1
2
√
3

0

0 0 1
2


So that we build the elements of the new unitary representation by R̃ = λ−1/2UTRUλ1/2

(and replace R with mi, R
2... for the remaining elements).

Finally, we use the same method of finding the squares of the characters of the ele-
ments in the representation (see exercise 1) and adding them together to see that this
is 16. Since the group is of order 8, our representation must be the direct sum of two
irreducible representations. Since it is a 3-dimensional representation, these must be a
2-dimensional and 1-dimensional representation (F1 and F2).
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Exercise 9. Consider the Dihedral-5 group, D5, the symmetry group of the pentagon.
Show that there are exactly two inequivalent 1-dimensional representations of D5. How
many irreps are there of D5? What are their dimensions?

Solution: The Dihedral group D5 is {e,R,R2, R3, R4,m1,m2,m3,m4,m5}. It has order
10 and 4 conjugacy classes: {e}, {R,R4}, {R2, R3}, and {m1,m2,m3,m4,m5}. As we
know, this means there are 4 irreducible representations up to equivalence. One of these
is the trivial representation, which sends everything to 1. For the three remaining repre-
sentations T1, T2, T3, we can do some dimension counting, because the sum of the squares
of the dimensions must add up to |D5| = 10 and the dimension of the trivial representa-
tion is 9. Finally, we can see that the only possible combination is 12+22+22 = 9. Thus
there are exactly two inequivalent 1-dimensional representations, and two 2-dimensional
ones; making a total of four irreps.
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Exercise 10. Consider an order 8 group G generated by two elements a and b, with the
group laws a4 = b2 = e and ab = ba.

(i) Calculate all 8 elements of G.

(ii) Consider S, a 2-D complex representation of G, i.e. S : G → GL(2,C) where the
generators are represented by

S(a) =

(
1 0
0 i

)
, S(b) =

(
−1 0
0 1

)
.

Calculate the other matrix representations for the other elements of the group G.
is this a reducible or irreducible representation?

(iii) Consider T , another 2-D complex representation of G, i.e. T : G → GL(2,C)
where the generators are represented by

T (a) =

(
i 0
1 1

)
, T (b) =

(
−1 0
i+ 1 1

)
.

Calculate the other matrix representations for the other elements of the group G.
Is this a reducible or irreducible representation?

(iv) Calculate the characters for S and T . Using this, state whether S and T are
equivalent to each other.

(v) Find all the conjugacy classes of this group, and verify that the characters of the
same conjugacy classes are equal.

Solution: The elements are {a, a2, a3, b, b2, ab, a2b, a3b, e}. Onwards to calculate all
the remaining elements from the generators... I’ve written so many matrices in this set
of solutions :( :(

S(a2) = S(a)S(a) =

(
1 0
0 −1

)
S(a3) = S(a)S(a2) =

(
1 0
0 −i

)

S(ab) = S(a)S(b) =

(
−1 0
0 −1

)
S(a2b) = S(a2)S(b) =

(
−1 0
0 −1

)

S(a3b) = S(a3)S(b) =

(
−1 0
0 −i

)
S(e) = S(b)S(b)

(
1 0
0 1

)
After a painful amount of /begin{pmatrix} we can see whether this is an irreducible
representation. The sum of the squares of the characters of the representation is 16,
which I have been told is greater than 8, thus the representation is not irreducible.

12



Oh great, now I get to do this all over again, I can’t wait to typeset 6 more matrix
operations... For the T representation, we get the remaining elements via multiplication
(as usual):

T (a2) = T (a)T (a) =

(
− 0

1 + i 1

)
T (a3) = T (a)T (a2) =

(
−i 0
i 1

)

T (ab) = T (a)T (b) =

(
−i 0
i 1

)
T (a2b) = T (a2)T (b) =

(
1 0
0 1

)

T (a3b) = T (a3)T (b) =

(
i 0
1 1

)
T (e) = T (b)T (b)

(
1 0
0 1

)
We do not need to compute the characters to see that this is in fact not irreducible (each
matrix appears exactly twice...), but if we add the squares of the characters (this is just
the square of the traces of the matrices, where the trace of a matrix is the sum along its
diagonal) we get 16, which after much deliberation I have concluded is larger than 8 and
you know the drill. Finally, these representations are not equivalent because even though
the square of their character sums are the same, the individual elements have different
characters (the (ab) elements gain a minus sign).

Now, characters are class functions, which means that they are constant within conju-
gacy classes (if two elements are in the same conjugacy class, then their character under
any given representation will be the same). We are being asked to verify this. Go on.
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