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Exercise 1. Let Cg be the conjugacy class of g ∈ G, and let H be a normal subgroup
of G. For each h ∈ H, we can form the conjugacy class Ch of h ∈ G. Prove that H is a
union of the conjugacy classes of its elements Ch.

Solution: Cg contains g ∀g ∈ G because ege−1 = ege = g, so the union of all Ch,
h ∈ H contains H (because it contains all h). It remains to show that the union of
conjugacy classes is contained in H (if two sets contain each other then they are the
same set). Now, the union is contained in H iff every element in the union is con-
tained in H. Have h0 ∈ H and consider Ch0: every element is of the form gh0g

−1 for
some g ∈ G, so it is contained in (gH)g−1. Since H is normal, this us the same as
(Hg)g−1 = H(gg−1 = H. Thus every element of Ch0 ins in H so every Ch is contained
in H (∀h ∈ H) and so their union is contained in H.
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Exercise 2. Let G1 and G2 be groups and f be a group homomorphism f : G1 → G2.
Let H1 be a normal subgroup of G1. Prove that if f is onto, then f(H1) is a normal
subgroup in G2.

Solution: Onto means surjective. Suppose H1 is normal. Then gH1g
−1 = H1 ∀g ∈ G1.

Since f is a group homomorpism, H2 = f(H1) = (gH1g
−1) = f(g)f(H1)f(g

−1) =
f(g)H2f(g)

−1. Thus we have shown that aH2a
−1 = H2 for every a that can be written

as a = f(g) for some g ∈ G1. Since f is surjective, every element of G2 is of this form,
so our condition holds for every element in G2. I.e. H2 is normal in G2.
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Exercise 3. Find all the proper subgroups of D4. Which of these proper subgroups are
normal? One of the proper subgroups is Z2 = {e,R2}. Calculate the quotient group
D4/Z2 and construct its multiplication table.

Solution: You can solve this exercise in any presentation of D4 (note: presentation
̸= representation). As someone who studied group theory in a Mathematics degree, I am
used to the cycle presentation (elements of D4 are of the form (abcd)). The wording of
the exercise makes me think it wants us to do it using the rotation + mirror (mirror
= rotation) presentation (elements are Ri, mj). The proper subgroups are, firstly, the
ones generated by its generators: R gives {e,R,R2, R3} (isomorphic to Z4) ans mi gives
{e,m1}, ..., {e,m4}. Since R2 is self-inverse, we have {e,R2} (these are all isomorphic
to Z2). The remaining subgroups contain both rotations and mirrors. Any such subgroup
containing R or R3 must contain Z4, so if in addition it contains a mirror by Lagrange’s
theorem it must be the entire group (there are no divisors of 8 larger than 4). Therefore
we are only missing subgroups containing mirrors and R2. These are {e,m1, R

2,m3}
and {e,m2, R

2,m4} (because m3 = R2m1 and m4 = R2m2), which are isomorphic to the
Klein 4-group V4.

{e,R,R2, R3} is normal because conjugating by mirrors sends rotations to each other.
{e,R2} is the centre of D4 so it is clearly normal. The remaining copies of Z2 are not
normal because mirrors do not commute with all rotations. The copies of V4 are normal
because mirrors anti-commute with rotations and (R1, R3) are inverses of each other, so
RjmiR

j−1 = R2mi = mi+2, and mirrors commute.

The quotient group D4/Z2 is the set of left cosets {gZ2|g ∈ D4}. The exercise asks
us to look at the quotient with a particular copy of Z2 (the centre {e,R2}). The distinct
elements are {e,R2} (eZ2), {R,R3} (RZ2 = R3Z2), {m1,m3} (m1Z2 = m3Z2) and
{m2,m4} (m2Z2 = m4Z2). This is the Klein 4-group with {e,R2} as the identity; i.e.
every element is self-inverse and the product of two non-identity elements gives the third
non-identity element (this should be enough for you to fill in the Cayley table).
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Exercise 4. Prove the trace identity. For any two square matrices A,B,

Tr(AB) = Tr(BA) (1)

Solution: The trace of a matrix is Tr(MN×N ) =
∑N

i=1Mii. If M is a product of
matrices, we can substitute Mii with the appropriate sum of products: Tr(ABN×N ) =∑N

i=1

∑N
j=1AijBji. Assuming these are matrices over either the reals or the complex

numbers, the entries are elements of a commutative field, thus the order of the summa-
tion and the ordering of the product are up to choice. Moreover, since the summations
are both over the same range, the indices (and summations) can be swapped, so that we
end up with

∑N
i=1

∑N
j=1BijAji = Tr(BA)
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Exercise 5. Consider the matrix group SU(2). Let M ∈ SU(2) be a 2× 2 matrix

M =

(
a b
c d

)
, a, b, c, d ∈ C

Show that The group can be represented as

M =

(
a b

−b∗ a∗

)
with the constraint Re(a)2+Im(a)2+Re(b)2+Im(b)2 = 1. Show geometrically that this
describes a 3-sphere S3 embedded in a 4-dimensional Cartesian space R4.

Solution: SU(2) is the group of 2× 2 unitary matrices over C. In particular, since its
matrices are unitary, MM † = 1 and Det(M) = 1 ∀M ∈ SU(2) (this constraint on the
determinant already hints towards a geometric object with radius r = 1!). Expanding the
unitarity constraint on some generic M ∈ SU(2):

MM † =

(
a b
c d

)(
a∗ c∗

b∗ d∗

)
=

(
1 0
0 1

)
= 12×2

This implies that a2 + b2 = 1 and ac∗ = −bd∗, which in particular implies that Re(a)2+
Im(a)2+Re(b)2+Im(b)2 = 1 as required. Moreover, since M is unitary it must have or-
thonormal rows/columns. Pick a and b; then the remaining row is uniquely defined by
a vector normal to (a, b). This means that, given a and b, any solution to ac∗ = −bd∗

must be the unique solution. Since d∗ = a and c∗ = −b is a solution, it must be the only
one.

Thus we can write our matrix as

M =

(
a b

−b∗ a∗

)
for some a and b fulfilling Re(a)2+Im(a)2+Re(b)2+Im(b)2 = 1.

Finally, writing a = x+ iy and b = z+ iw yields x2+ y2+ z2+w2 = 1 for x, y, z, w ∈ R;
the equation of a 3-sphere (there are 3 degrees of freedom because the 4th coordinate is
uniquely determined by the other three 1− (x2 + y2 + z2) = w) embedded in R4.
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Exercise 6. Consider the equilateral triangle, or he 3-gon. Let R be the symmetry
operation which rotates the triangle clockwise by 120 ◦ and m be the reflection around
the vertical axis through the center. Construct the multiplication table for D3 by using
these two generators. What is the order of the Group? How many proper subgroups
are there? What are the conjugacy classes of D3? How many of these classes are also
subgroups (hence normal subgroups)? Construct the following:

(i) A regular representation.

(ii) A faithful 3× 3 representation.

(iii) A faithful 2× 2 representation.

Solution: D3 is a group of order 6, which in this presentation can be written as
{e,R,R2,m1,m2,m3} where m2 = Rm1 and m3 = R2m1. Naturally, rotations are
cyclic and reflections (mirrors) are self-inverse. Thus the table is:

e R R2 m1 m2 m3

R R2 e m2 m3 m1

R2 e R m3 m1 m2

m1 m3 m2 e R2 R
m2 m1 m3 R e R2

m3 m2 m1 R2 R e

Its proper subgroups, following the same argument as in exercise 3, are {e,R,R2},
{e,m1}, {e,m2}, {e,m3}. The conjugacy classes are {e} ( no more single-element
classes because the centre of D3 is trivial), the rotations {R,R2} and the mirrors {m1,m2,m3}
(you can figure out this from the Cayley table). Again, following the same argument as
in exercise 3, the only normal subgroup is {e,R,R2}.

A (left) regular representation is constructed by writing the generators in terms of 6× 6
matrices (with the remaining elements coming from matrix multiplication of the gener-
ators) given by left translation. In this case:

U(e) = 16×6 U(R) =



0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 U(m1) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



A 3 × 3 faithful representation can be famously constructed through the action of D3

on the vertices of an equilateral triangle. You can check this action is indeed faithful,
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and it only remains to write the explicit matrix form. The identity is clearly 13×3. If the
corners are A,B,C. Then R is such that it sends (A,B,C) to (C,A,B) and m1 is such
that it sends (A,B,C) to (A,C,B). This gives:

R =

0 0 1
1 0 0
0 1 0

 m1 =

1 0 0
0 0 1
0 1 0


where the remaining elements are derived through matrix multiplication.

A faithful 2 × 2 representation may be had by looking at the action of D3 on the co-
ordinates of the vertices. This can be done with any triangle but for simplicity let us
have one centered at (0, 0) with vertices (0, 1), (−1,−1) and (1,−1). Then e is the iden-
tity matrix, R is a rotation by 120 ◦ and the mirror is a flipping of the x-coordinate:
(A,C,B). This gives:

R =

(
cos(120) sin(120)
−sin(120) cos(120)

)
m1 =

(
−1 0
0 1

)
where again, the remaining elements are uniquely defined trough matrix multiplication
of the generators.
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Exercise 7. Consider the matrix

M =

1 0 0
a 1 0
b c 1


where a, b, c are integers mod 4.

(i) Prove that the set of all possible M = {M} forms a finite group under matrix
multiplication, and that |M| = 64. Is this group abelian or non-abelian?

(ii) Consider a subgroup H of M where a = c. What is |H|? Is this group abelian or
non-abelian?

Solution Since the only possible values of a, b, c, d are {0, 1, 2, 3}, there are 43 = 64
distinct matrices which can be built through these construction, hence |M | = 64. The
determinant of a lower-triangular matrix is always its trace, which in this case is 1, so
we have good reason to think that inverses exist. The set is clearly closed and inverses
are given by a → −a, c → −c, b → ac− b. Associativity is inherited from matrix multi-
plication and the identity is clearly in the group. The group cannot be abelian because the
lower-left element inherits the full expression of matrix multiplication, which is famously
non-commutative.

If a = c then the set is uniquely defined by choosing a and b, so there are only 42 = 16
elements. I.e |H| = 16. Under this condition the group does become abelian because the
product in the lower-left element becomes symmetric in its inputs.
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Exercise 8. Prove that GL(n,R) is a group. Prove that SL(n,R) is a subgroup of
GL(n,R) by explicitly constructing an isomorphism between SL(n,R) and a subset of
GL(n,R) which is also a group.

Solution: GL(n,R) is the set of invertible n× n matrices over R under matrix multi-
plication. By definition, every element has an inverse, and associativity and the identity
are inherited from matrix multiplication. For closure, since real matrices are closed, we
just have to make sure that the product of two invertible matrices is invertible. This is
clearly true as (AB)−1 = B−1A−1 so GL(n,R) is a group.

SL(n,R) is the subset of GL(n,R) with matrices of unit determinant. Honestly, I don’t
really understand the isomorphism part because SL(n,R) is set theoretically contained
in GL(n,R). To show it is a subgroup, we simply need to show it is closed, contains
inverses and contains the identity. 1n×n has determinant 1, and since the product of the
determinants is the determinant of the product, SL(n,R) is closed in GL(n,R). Every
element in GL(n,R) has an inverse and the determinant of the inverse is the multiplica-
tive inverse of the determinant so all inverses of elements in SL(n,R) have determinant
1 and thus are in SL(n,R).
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Exercise 9. (Mobius Transformation) Consider now the Mobius Transform, which
is a map of the extended complex plane C̃ = C ∪ ∞ back to itself, i.e let z ∈ C̃ be an
element of this set, the transform is a map of C̃ back to itself in the following way

f : C̃ → C̃; f(z) =
az + b

cz + d
, a, b, c, d ∈ C

Let M be the set of all possible f .

(i) What are the conditions on a, b, c, d such that f(z) is a (a) translation (b) rotation
around the origin (c) contraction/expansion (or dilations) in distance from the
origin, of the point z?

(ii) Show that the set of all possible f forms a group under the group composition law
f1 ◦ f2(z) = f1(f2(z)).

(iii) Let the matrix group SL(2,C) with A ∈ SL(2,C) be described by

A =

(
a b
c d

)
.

Suppose µ maps the elements of SL(2,C) to M, show that this map is a homo-
morphism and surjective.

(iv) Find Ker(µ) and show that Ker(µ) forms the group Z2.

(v) Hence argue that the Mobius Group is the quotient group M = SL(2,C)/Z2.

Solution: (i)For a rotation, we need c = b = 0, |a/d| = 1 so that f(z) = eiϕz.
For a translation, c = 0, a = d so that f(z) = z + b. For a dilation, c = b = 0, a, d ∈ R∗

so that f(z) = Az where A ∈ R.

(ii) The identity is given by a = d = 1, b = c = 0. For closure and identities, just
brute force the composition law by explicitly calculating f1(f2(z)). Associativity comes
from composition of maps.

(iii) You need to verify that for A1, A2 ∈ SL(2,C) the entries of the product A3 = A1A2

correspond to the four numbers defining the map f3 = f1 ◦ f2 (just some straightforward
rearranging). This is enough to show that µ is a group homomorphism. It is clearly sur-
jective by construction of this presentation (every matrix is written in terms of a, b, c, d
from the definition of some f). Note that µ is not injective, because it sends f1 defined
through a, b, c, d and f2 defined through 2a, 2b, 2c, 2d to the same matrix.

(iv) The kernel of a map is the preimage of the identity. This is clearly the set of f
such that a = d and b = c = 0 where az/d = a. I.e. the identity and f−1 defined through
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a = d = −1 and b = c = 0. The kernel of a homomorphism is always a group (this
is a famous theorem) and so it must be isomorphic to the only group with 2 elements: Z2

(v) The First Isomorphism Theorem (damn this is one beautiful theorem) says that if
µ : X → Y is a homomorphism then the map µ̃ : X/ ker(µ) → Im(µ), µ̃(a ker(µ)) = µ(a),
∀a ∈ A is an isomorphism. Here X/ ker(µ) is SL(2,C)/Z2 and the image of µ is M; so
M is isomorphic to SL(2,C)/Z2.
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Exercise 10. Suppose that G is a group and the set {D(g)} is a matrix representation
of the elements g ∈ G. Let B be a non-singular matrix that executes a linear trans-
formation on the basis vectors for D(g). Show that the set {BD(g)B−1} forms a new
matrix representation for G by proving that it obeys all the group axioms.

Solution: Consider the set {BD(g)B−1} under matrix multiplication. Associativity
is inherited from the operation, and the identity is as required (BD(e)B−1 = BIB−1 =
BB−1 = 1). Same goes for inverses: BD(g)D(g−1)B−1 = 1 = BD(g)B−1BD(g−1)B−1.
Closure is inherited from {D(g)} by the exact same argument as inverses.
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Exercise 11. In class, we showed that U(1) is the group of planar rotations around
the origin. These rotation “trace out” a circle S1 embedded on R2 - in other words, the
symmetry group of the circle is U(1). Now consider a torus T2. Show that the symmetry
group of T2 is U(1)× U(1). Construct an N = 2 group representation fo T2 acting on a
vector space (θ, ϕ) where 0 ≤ θ ≤ 2π and ≤ ϕ ≤ 2π describe points on T2.

Solution: Note: T2 is a topological object called a compact surface. We know a
whole lot about these kinds of objects and one of the first key results you will learn in an
introduction to topology course is that, using a tool called edge words, which constructs
homeomorphisms (the topological equivalent of an isomorphism) between compact sur-
faces and simplicial complexes (a glorified version of polygons), you can find a complete
classification of compact surfaces. The original proof was given by Henry Poincare
over 150 years ago and was extremely complex, but the new proof is visually so simple it
can be explained to a child. The result is that any compact surface (any finite 2D surface
which does not have an end (i.e. the surface of a sphere, but not a square) is either a
glue-ing of spheres, a glue-ing of torii (plural of torus) or a glue-ing of real projective
planes RP2 (like a disk where every time you go to the edge you reappear at the other
side). Cool!!

From your geometrical intuition, you might be able to figure out that a torus is just
a circle translated along another circle, hence S1 ×S1. We can formalise this by consid-
ering the representation on the vector space generated by (θ, ϕ): If eiθ, eiϕ is a point in
T2 (the first coordinate is the angle along the cross-sectional circle and the second coor-
dinate is the angle along the principal-plane circle). Note that this is, in terms of set,
showing that T2 = S1 × S1. But since the Cartesian product respect group structure, the
symmetry group of T2 must be precisely S1×S1. We can write the action of U(1)×U(1)
on our vector space via: (

eiα 0
0 eiβ

)(
eiθ

eiϕ

)
=

(
ei(θ+α)

ei(ϕ+β)

)
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Exercise 12. Let G be a group, and D1 : G → GL(N,C) be a homomorphism, and
hence D1(g) a matrix representation of g. Suppose we define the set

D2(g) = [D1(g
−1)]†

where † denotes the Hermitian conjugate (i.e. conjugate-transpose). Prove that the set
D2(g) is also a representation of G.

Solution: This is a repetition of question 7, where instead of using the algebraic prop-
erties of matrix multiplication you use the algebraic properties of Hermitian conjugates.
Come see me in my Wednesday office hours if you cannot figure this out from the solu-
tions of question 7.
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