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Exercise 1. Suppose H is a subset of G. Consider b ∈ G but b ̸∈ H; then does the
set of all left cosets {bH} form a group? If so, prove it. If not. explain why. Suppose
nowH is a normal subgroup of G, does the left Coset Space form a group? If so, prove it.

Solution: Consider a subset H which contains the identity. Then the set of left cosets
{bH} might not have an identity! To exemplify this, let H be the set containing only the
identity e. Then b1H · b2H = b1H ∀b1 ̸= e (i.e. b2H is an identity) iff b1 · e · b2 · e = b1 · e
∀b1 ̸= e. This implies that b1 · b2 = b1 ∀b1 ̸= e, which is only true if b2 = e. But by
assumption b2 ̸∈ H so b2 ̸= e! Therefore {bH} does not have an identity and is thus not
a group.

If H is a normal subgroup, then (in particular) it contains the identity e. It also implies
that gH = Hg ∀g ∈ G. Therefore bH · b−1H = Hb · b−1H = HeH = eH because H is
closed. But e ∈ H so eH ̸∈ {bH} and so {bH} is not closed so it is not a group (note
that we don’t actually need the left-right coset identity to prove this; it only makes things
easier. H being any subgroup is already enough for {bH} to not be a group).
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Exercise 2. Show that there exists a bijection between the left coset space and the right
coset space of a normal subgroup H ≤ G.

Solution: Let H ≤ G be normal. Then g−1·h·g = h ∀g ∈ G, h ∈ H. Suppose a ∈ gH for
some g ∈ G. Then a = g ·h for some h ∈ H. But g ·h = g ·(g−1 ·h·g) = (g ·g−1)·h·g = h·g
so a ∈ gH ⇔ a ∈ Hg thus gH = Hg. Since we did not specify g, this is true ∀g ∈ G.
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Exercise 3. Suppose G is a group, g is an element of G whose order is n. Show that n
divides |G|.

Solution: This is a famous corollary of Lagrange’s theorem (a corollary is a state-
ment which follows easily from some other result. It comes from the Latin ”corollarium”
which means a gift or a gratuity). Consider the subset S = {gk | k ∈ N} . Since g has
order n, we have that S has n elements and gn = e ∈ S. S is obviously closed, and for
gj ∈ S, we have an inverse gn−j. Thus S is a subgroup of G with n elements and by
Lagrange’s theorem n = |S| divides |G|.
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Exercise 4. Let X and Y be discrete and finite sets, and Y be a proper subset of X
(Y ⊂ X). Consider the following map:

j : Perm(Y ) → Perm(X); (j(f))(x) =

{
f(x) , if x ∈ Y

x , otherwise
(1)

Show that j is an isomorphism of Perm(Y ) into a subgroup of Perm(X)

Solution: This is just a trivial application of the first isomorphism theorem, but lets
solve the exercise without invoking it! The image of j is the set of permutations which
keep X − Y constant, and j is injective by construction (if two permutations of Y dis-
agree in some element y ∈ Y then they will also disagree in y ∈ X). We simply need to
show that this image is a group and that j is a homomorphism. Have S = Im(j). Then
e ∈ S because the identity permutation is constant ∀x ∈ (X −Y ). Also, j(f)−1 = j(f−1)
because they are the identity outside Y and inverses inside Y . Finally, Im(j) is clearly
closed because PermY is closed and outside Y all elements are the identity. j is a ho-
momorphism because j(f1 · f2) = f1 · f2 = j(f1) · j(f2) in Y and e · e = e = j(e) outside
Y (yes, I am abusing the notation of e, but as long as we all know which identities we
are talking about we are fine).
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Exercise 5. Consider the quaternion group Q8 = {±1,±i,±j,±k} with the group
composition laws

− 1 = i2 = j2 = k2 = ijk (2)

Show that i = jk = −kj, j = ki = −ik, k = ij = −ji. What is the order of this Group?
Prove that it is not isomorphic to the Dihedral group D4. Construct the product group
Z2 × V4. Is Q82 × V4? If so, prove it; if not, explain.

Solution: The order of the group is obviously 8 (it has 8 elements). To show that
the roots of unity i, j, k anticommute (commute with a negative sign), we notice that
−a = a−1 ∀a ∈ Q8 (this can be done by process of elimination) and then manipulate
equation 2: jk = −(−1)jk = −(i2)jk = −i(ijk) = −i(−1) = i and −kj = −(−ijk)kj =
ij(kk)j = ij(−1)j = −ijj = −i(−1) = i. This process can be repeated by cyclically
replacing i, j, k to get the same anticommuting relation for the remaining products. We
have been a bit sloppy because I am assuming that (−1) is in the center of Q8 (i.e. that
it commutes with every other element). You can try showing that on your own, or you
can arrive to the same result purely through multiplying by inverses and building up a
Cayley table.

To prove that Q8 is not isomorphic to D4 it suffices to show that they have different
subgroups. Indeed, all non-trivial elements of Q8 have order 4, but D4 has order 2 el-
ements. To see if Q8

∼= Z2 × V4 we can notice that the latter is the product of two
Abelian groups is therefore Abelian. Since Q8 anticommutes it is not Abelian and thus
they cannot be isomorphic.
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Exercise 6. Suppose X and Y are subgroups of the finite group G. Consider the set
XY {xy|x ∈ X, y ∈ Y }.
(a) Suppose that a, b, c, d ∈ G and ab = cd. Prove that there is a unique h ∈ G such
that c = ah and d = h−1b.
(b) Suppose that x1, x2 ∈ X and y1, y2 ∈ Y . Show that x1y1 = x2y2 iff ∃a ∈ X ∩Y such
that x2 = x1a and y2 = a−1y1.
(c) Show that X ∩ Y is a subgroup of G. (d) Show that

|XY | = |X||Y |
|X ∩ Y |

(3)

(e) Now let |G| = 256. Suppose that |X| = |Y | = 32. Show that |X ∩ Y | ≥ 4, and that
there are at most four possible values of |X ∩ Y |. You may state any theorems you use
in this calculation.

Solution: (a) We need to prove existence and uniqueness. Existence: let ab = cd;
then cdd−1 = a(bd−1) = c and (bd−1)−1b = db−1b = d, so bd−1 is one such h. Unique-
ness: suppose both h1, h2 ∈ G satisfy the assumed condition. Then c = ah1 = ah2
so cd = (ah1)(h

−1
2 b) = (ah1)(h

−1
1 b) = ab so h1h

−1
2 = e and since inverses are unique

h1 = h2.

(b) Well, from (a), since all the steps we took are reversible, we have already shown
that ab = cd iff h = bd−1 satisfies c = ah and d = h−1b. We only need to show
that h = y1y

−1
2 is in X ∩ Y . Since h is the product of elements in Y it is clear that

h ∈ Y . But h must also be in X because it is the product of elements in X: x2 = x1h so
x−1
1 x2 = eh = h.

(c) It is a well-known fact that the intersection of two subgroups is a subgroup, but we
need to prove it. First note that X ∩Y is not empty because it contains at least the iden-
tity e. To show that it is a subgroup, it remains to show that ∀a, b ∈ X ∩Y, ab−1 ∈ X ∩Y
(if you haven’t seen this in lectures, you can check from the group actions that these are
indeed the necessary and sufficient conditions for a subset to be a group: it contains the
identity and for any two elements, the product of the first with the inverse of the second
is also in the subset). Let a, b ∈ X ∩ Y . Then ab−1 ∈ X because both a, b ∈ X and X
is a subgroup. By the exact same argument, ab−1 ∈ Y and therefore ab−1 ∈ X ∩ Y so
X ∩ Y is a subgroup of G.

(d) |X||Y | corresponds to the number of possible combinations xy where x ∈ Xandy ∈ Y
with disregard for group structure. |XY | however, corresponds to the possible combina-
tions xy where x ∈ Xandy ∈ Y up to group equivalence! So how many combinations
are we missing in |XY |? Well, for every two equivalent combinations x1y1 = x2y2
we have exactly one unique element in X ∩ Y , so basic combinatorics tells us that
|X||Y | = |XY ||X ∩ Y |. Rearranging, we get the desired result.
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(e) Lagrange’s theorem here we go! 256 = 28 so all subgroups of G must have or-
der 2n for n ∈ {0, 1, 2, 3, 4, 5}. Since |X| = 32 and by definition of the intersec-
tion, |X ∩ Y | ≤ |X|, |X ∩ Y | ∈ 2, 4, 8, 16, 32. Now, |XY | ≤ |G| so from equation 3
|X ∩ Y | ≥ |X||Y |/|G| = 210/28 = 4 and thus the only four possible values are 4, 8, 16, 32
as required.
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Exercise 7. prove that every subgroup of a finite cyclic subgroup Zn is also a cyclic
subgroup.

Solution Any element g ∈ Zn can be written as zk for some z ∈ Zn which gener-
ates Zn. Have S be a subgroup of Zn. Then if S contains zi and zj, it must contain zp

where p is the greatest common divisor of i, j. Thus if s0 = zi is the element with the
largest order in S and |S| > |s0| then there must be another element s1 = zj ∈ S which
is not a product of s0. This means that there is some element s2 = zp ∈ S where p < i
(because p divides i non-trivially). Then |zp| > |zi| = |z0| which is a contradiction. Thus
|z0| = |S| so |z0| generates S and S is cyclic.
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Exercise 8. In class, we showed that the set of integers Z forms a group under the
additive operation. Consider the map

τ : Z → Z; τ(x) = −x ∀x ∈ Z (4)

Show that τ is an isomorphism from the additive group Z to itself.

Solution: NB: An isomorphism from an object to itself is called an Automorphism,
and the set of automorphisms of any mathematical object is a group under composition
of maps!

Anyways, this map is injective because it sends each element to its inverse and inverses
are unique, and surjective because every group element is an inverse of some element in
the group. To show it is a homomorphism, have a, b ∈ Z. Then τ(a + b) = −(a + b) =
−a− b = τ(a) + τ(b) as required.
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Exercise 9. Let T be the set of all integer powers of 10, i.e. T = {10z|z ∈ Z}. Show
that T forms a group under the usual multiplicative operation. Show that this group
is isomorphic to the additive group of Z, by finding the isomorphism ϕ. Show that the
inverse ϕ−1 is the logarithm log10.

Solution: Under real multiplication, T has an identity (100 = 1) and is closed (10a ·
10b = 10a+b where a, b ∈ Z =⇒ (a + b) ∈ Z from the closure of Z under addition).
the unique inverse of some 10a ∈ T is 10−a so that 10a−a = 1 as required. Thus T is a
group under integer multiplication.

Consider the map ϕ : Z → T ; ϕ(z) = 10z. This map is injective because the expo-
nential map is injective, and surjective by construction because we have defined T to be
the image of ϕ. Moreover, it is a group homomorphism because ∀a, b ∈ Z, ϕ(a) · ϕ(b) =
10a · 10b = 10a+b = ϕ(a+ b). Thus ϕ is a group isomorphism and T,Z are isomorphic.

Since ϕ is bijective, the inverse map ϕ−1 such that ϕ−1◦ϕ = IdZ→T and ϕ◦ϕ−1 = IdT→Z.
Consider the map log10 : T → Z; we can see that log10 ◦ϕ(z) = log10(10

z) = z ∀z ∈ Z
and ϕ ◦ log10(10a) = ϕ(a) = 10a ∀10a ∈ T as required. Thus log10 is the inverse of ϕ.
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Exercise 10. Consider the Tetrahedron. Explain why the symmetry group of the tetra-
hedron is the symmetric group S4, i.e. it is the permutation group of 4 objects. Geomet-
rically describe all symmetry operations. Is D3 a subgroup of S4? Find the isomorphic
map if it is. Explain if it is not.

Solution: The geometric symmetries of a tetrahedron are the group of transformations
of 3-dimensional euclidean space that map the tetrahedron to itself. Since a tetrahedron
is uniquely defined by its vertices, this corresponds to the group of transformations which
send the set of vertices to itself. I.e. all possible ways of rearranging the set of vertices.
Since a tetrahedron has 4 vertices, this group must be the set of permutations of 4 ele-
ments S4.

There are two types of transformations a tetrahedron is symmetric under: rotations
and mirrorings (and the combination of both). Since non-trivial rotations in 3D keep
a single line invariant, they may keep at most one vertex in place. Mirrorings, on the
other hand, may keep two vertices in place, as their invariant corresponds to a whole
plane. (This is all under the assumption that the tetrahedron is centered at the origin
and these rotations and mirrorings are by the origin too. Thus out of the 24 elements
in S4, the identity is just the ”null” rotation; the 8 3-cycles (i.e. (123)) are rotations;
the 6 transpositions (i.e.(12)) are mirrorings; the 3 double-transpositions (i.e. (12)(34))
are combinations of 2 mirrorings by different planes and the 6 4-cycles (i.e. (1234)) are
combinations of a rotation and a mirroring.

D3 is a subgroup of S4 because it corresponds to the rigid transformations of a triangle
(i.e. the subset of S4 containing all the transformations which leave some specific vertex
fixed). An isomorphism can be constructed as follows: choose an element from the set of
4 elements, for example {4}, then consider the map ϕ : D3 → T4 the subset (subgroup!
- you can check this) of S4 which keeps {4} invariant. Then have ϕ((abc)) = (abc)(4).
You can check that this is indeed a valid isomorphism.
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Exercise 11. Prove the theorem that all prime orer finite groups are cyclic groups.

Solution: This is another famous corollary of Lagrange’s theorem:

By Lagrange’s theorem, prime ordered groups may only have subgroups of order 1 or
of the order of the group. The generator of an element is a subgroup, thus every element
in a prime ordered group either only generates itself or generates the whole group. The
identity element is the unique element in a group which only generates itself (every other
element at least generates the identity), thus every non-trivial element must generate the
whole group and so the group is cyclic.
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Exercise 12. LetH1, H2 be normal subgroups of G. Prove that the intersection H1∩H2

is also a normal subgroup of G. (Hint: First prove that the intersection of two subgroups
is also a subgroup. Then prove that the normality property gets inherited).

Solution: We already proved that the intersection of two subgroups in the solutions
for Exercise 6 (refer to that proof if you want to reproduce it here). It remains to show
that the intersection is normal. There are many alternative (and equivalent) definitions
of what a normal subgroup is, and any of them can be used to prove this statement.

Fancy proof: (this is fancy because it proves both that the intersection is a group
and that it is normal at the same time) A subgroup is normal iff it is a union of conju-
gacy classes in G. Since distinct conjugacy classes are non-intersecting, H1 ∩H2 must
be either empty or a union of conjugacy classes. We know it is not empty because it
contains the identity, therefore it is firstly a group and secondly a normal subgroup.

Alternate proof: (this is less powerful because it only proves normality, and you would
have to prove that the intersection is a group beforehand) A subgroup is normal iff ev-
ery of its elements is invariant under conjugation by any element in the group. Let
x ∈ H1∩H2 and have g ∈ G. Then, since in particular x ∈ H1, gxg

−1 = x so, assuming
H1 ∩H2 is a subgroup, it is normal.
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