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NOTE: These solutions are written in great detail and you are not expected to re-
produce them (a simple few lines usually suffice); this level of detail was written to ease
you into the way in which we should approach this type of problem. We will see what
kind of syntax is expected from you in the problems classes I will be leading later in
the semester, and subsequent solutions will be written with less text and in much more
mathematical language.

Exercise 1. Consider the following maps. State which of these maps are surjective,
injective, both or none.

• A = 1, 2, 3, B = l, j, k, and f : A −→ B; f(1) = l, f(2) = j, f(3) = k.

• A = 1, 2, 3, 4, 5, B = 2, 4, 6, 8, 10, 12, and f : A −→ B; f : x 7→ 2x, ∀x ∈ A.

• A = R− 0, B = R− {0}, and f : A −→ B; f : x 7→ x+ 1/x,∀x ∈ A.

Solution: The first map is both injective and surjective (we call this kind of map a
“bijection”). The second map is injective, but it is not surjective (the map can never
output the element “12”). The third map is both surjective and injective, (first of all,
make sure it’s well-defined! - in this case it is because we are removing zero. A map is
not well-defined when the definition either outputs something which is not in the target
set, or it breaks down for certain inputs).
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Exercise 2. Let G = {−1, 1} be a set. Show that G is a group under the usual rule of
multiplication. Is it a group under the usual rule for addition?

Solution: To show whether something is a group, we must make sure it fulfills all
the conditions in the definition of a group: it must have a (unique) identity, it must be
closed under the group operation, the operation must be associative, and each element
must have a (both left and right) inverse. In this case, we can check that 1 is the identity
element: 1 · 1 = 1 and 1 · (−1) = (−1). We can also see that G is closed: you will
never get something other than 1 and -1 when multiplying its elements; it is also clearly
associative, as integer multiplication is associative by definition. Finally, we can see
that 1 is its own inverse (this is obvious because we have already established that 1 is
the identity element), and -1 is its own inverse too: (−1) · (−1) = 1(= e). Thus we
have shown that G is a group under integer multiplication. G, however, is not a group
under addition. It doesn’t have an identity (the additive identity being 0), it’s not closed
(1 + 1 = 2 which is not in G)... It does have inverses, so there’s that!.
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Exercise 3. Consider the set of complex numbers C. Let it be a Field – describe the
action and properties of the two binary operators required.

Solution: This is a good opportunity to review the field axioms (that means, the re-
quirements given in the definition for something to be a field. In order to prove that C
is a field, it comes in very handy to assume that R is a field. As you will see later in
the course, the complex numbers are an algebra over the real numbers. This means that
they are a vector space with real number coordinates which preserves the normal addition
and multiplication from the field R. It is also a field in its own right, and we will look
at it from very different perspectives depending on whether we consider it a field or a
vector space. Allons-y with the proof!:

C is a field if and only if it is a commutative group under addition and C − {0}1
is a commutative group under multiplication (check that this is indeed equivalent to the
definition given in class!) Let’s start with addition: it has an identity e = 0, it is clearly
closed (you can get this by applying the closure of R under addition on both the real and
imaginary component of any element “a + ib” of C). Finally, you get inverses in the
same way as closure: it is inherited from additive inverses in R component-wise. Com-
mutativity and associativity are also inherited from addition in R; if you want to make
sure, just show that (a+ ib) + (c+ id) = (c+ db) + (a+ ib). Associativity, as often is, is
obvious. Now for multiplication in C− {0} we can check that the multiplicative identity
is e = 1 (duh!), and the complex numbers are clearly closed under multiplication (we
can get this from the multiplication in the reals. You have to show that for two generic
complex numbers ”a+ib” and ”c+id” their product can be written as “x+ iy” for some
real numbers x and y) and the multiplicative inverses can be easily found in polar form:
let z = reiϕ be a complex number (note that this could be any complex number!), then
it’s inverse is z−1 = 1/re−iϕ. Since we didn’t specify any numerical value for z, this is
a ”proof” of inverses for every element in C. Commutativity can be proven in the same
way as for addition.

1This notation means C proofluding the set {0}.
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Exercise 4. The group of integers Nn = {0, 1, 2, 3, . . . , n − 1} is equipped with the
composition law given by the usual “addition modulo n”. Show that this forms a group.
Find the identity. Find the inverses for each element.

Solution: Here we go again. We have to show that Nn is closed and under it’s as-
sociative operation, then we have to show there is an identity element, and finally we
need to find inverses for all its elements. It is clearly closed because the domain of the
binary operation “addition modulo n” is precisely the set {0, ..., n−1}. For associativity:
[(a + b) mod n + c mod n] = [(a + b) + c] mod n (because multiplication of integers is
distributive - check the definition of the modulo operation), then the operation must be
associative because (the usual) addition of integers is associative. The identity element
is 0 (duh!) and the inverses are as follows: for any element i ∈ Nn, (i ̸= 0), i−1 = n− i.
Since 0 is the identity we already know it’s is own inverse.
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Exercise 5. Let S be a finite set of complex numbers without 0, i.e. S ⊂ C−{0}. The
algebra is specified such that for two elements z, w ∈ S, zw = wz ∈ S. Prove that the
modulus of all the elements in S is 1. Show that an identity element in S may not exist.
We now impose the condition that it must contain an identity. What is the identity?
Show that S forms a group. Given that |S| = n, prove that it is isomorphic to Zn by
finding the appropriate bijective map.

Solution: Assuming the operation they have given us is well-defined over S (which
we are essentially told in the prompt), we proceed via a proof by contradiction: Sup-
pose (to later disprove) there was some element s with a modulus different from 1. Then
s2 = s · s must have a modulus different than s, because the modulus of the product
is the product of the moduli (for two complex numbers z1andz2, |z1 · z2| = |z1||z2|), and
therefore (since they have different moduli) s ̸= s2. Similarly, s3 will have a modulus
different from both s and s2 and thus will be a different number from either; then s4 will
be a new number, same with s5, s5...., s1354432, ... (etc...). Since we are told that all these
products are in S, and there are infinitely many of them, we must conclude that S
has infinitely many elements. This is not true (we assumed at the very beginning that S
was a finite set!), so our only other assumption (that there was a number with modulus
different from 1) must be wrong. Thus we have proven that such number does not exist;
i.e. all elements of S have a modulus of 1.

To prove an identity may not exist, we just have to find a counterexample. A good
one is the set S = {eiπ/4, ei3π/4, e−iπ/4, e−i3π/4}. You can check it’s a valid S, and that
it doesn’t contain an identity!

If we impose the condition that an identity does exist, it becomes clear that the iden-
tity must be 1(= 1e0 = 1 + 0i, because that is the multiplicative identity in the complex
numbers. Under these assumptions, we get closure from the definition, and associativity
from exercise 3. We are assuming the identity exists so the only thing remaining is to
show that all the elements must contain an inverse. This is simple after noticing the
following trick: write some generic element of S as s = eiϕ (remember that the modulus
is 1 so no factor precedes the exponential), then the element s2 = ss must be in S (this
comes from our definition of S). Now notice that we can write sn as einϕ for any integer
n; since S has only finitely many elements, eventually, for some unknown number j,
we must have sj = s, because otherwise we would keep generating new numbers forever
and the group would not be finite. Now observe that sj−1 · s = sj = s · sj−1; this means
that sj−1 = 1!! It then follows that sj−2 is the inverse of s because sj−2 · s = sj−1 = 1.
This set of groups is what we call the roots of unity and, geometrically, they corre-
spond to evenly distributed points along the unit circle in the complex plane containing
the point (1, 0). Another way of picturing these groups is as the set of vertices of a
regular polygon with n sides, centered at (0, 0) and with one vertex at (1, 0). Finally,
an algebraic (rather than geometric) way of interpreting them, is as the zeros of polyno-
mials of the form p(z) = zn−1 where z is allowed to take values in the complex numbers.
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Finding the bijection to Zn is easy if you solved the exercise in the same way I did:
the bijection is simply eiaϕ 7→ a ∈ Zn (this is also intuitive when looking at S as the
vertices of a regular polygon, as this is the same representation we use for the cyclic
group Zn).
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Exercise 6. Construct the product group Z2×Z4 by finding all the group elements and
the group composition laws. You might find explicitly building a Cayley Table helpful.
What is |Z2 × Z4|? Is it isomorphic to Z6? If so, prove it. If not, explain why. Which
element has the largest order, and what is the order?

Solution: The definition of a group product is: G1×G2 = {(g1, g2) | g1 ∈ G1, g2 ∈ G2}.
Since our groups are Z2 = {0, 1} and Z4 = {0, 1, 2, 3}, our product contain all possible
combinations (a, b) where a can take values 0, 1 and b can take values 0, 1, 2, 3. I.e,
our new group is {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)}. The group oper-
ation is component-wise inherited from our parent groups Z2 and Z4, so (a, b)(c, d) =
(a + b mod2, c + d mod4). Its order is just its number of elements, so |Z2 × Z4| = 8.
Moreover, |Z2 × Z4| is not isomorphic to |Z6|, because |Z6| only has 6 elements and
therefore there are no injective maps from |Z2 × Z4| to |Z6|. The highest order ele-
ments are (0, 1), (1, 1), (0, 3) and (1, 3), which have order 4. The identity has order 1
and (1, 0), (0, 2) and (1, 2) have order 2.
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Exercise 7. 7. Find all the proper subgroups of the Klein four-group V4. Which if any
is a normal proper subgroup?

Solution: There are 2 order 4 groups: the cyclic group Z4 and Z2 × Z2. Since V4

is not the cyclic group, it must be isomorphic to Z2 × Z2
2. Now, if you read the foot-

note, you already know that the proper subgroups are exactly 3, corresponding to each
combination of the identity with one of the remaining 3 elements. Indeed, if we have
V4 = {e, a, b, c}, the proper subgroups are {e, a}, {e, b} and {e, c}. Now, to figure out
which subgroups are normal, we go back to the isomorphism with Z2 × Z2: this tells us
that V4 must be Abelian (a product of group is Abelian iff every element in the product
is Abelian. Since Z2 is famously Abelian, so is Z2 × Z2). Now, in an Abelian group,
conjugation is a trivial operation (aba−1 = baa−1 = be = b, ∀a, b), so every subgroup
is normal! (because everything is invariant under conjugation in an Abelian group).
Finally, since we have shown taht V4 is Abelian, it follows that every subgroup is normal.

2The fact that there are exactly two distinct order 4 groups [up to isomorphism] comes as a consequence
of Lagrange’s theorem: 2 is the only integer larger than 1 which divides 4, so subgroups of an order
4 group must be of order 2 or 4. If the group has 1 element of order 4, then it’s easy to see that it
must be the cyclic group with 4 elements. Otherwise all elements must be of order 2, and since there
is only 1 group of order 2, these are uniquely defined, giving rise to the only other posibility: the
Klein 4-group.
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Exercise 8. Let S = N equipped with the binary operators ⋆ such that m ⋆ n =
max(m,n). State whether (a) ⋆ is associative (b) ⋆ is commutative (c) an identity exist
(d) inverses exist.

Solution: To check if ⋆ is associative we need to show that, for any generic nat-
ural numbers a,b and c, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c). This is true because the opera-
tion max is defined via comparisons under the relation ≥ which is transitive, therefore
max(a,max(a, b)) = max(a, b, c) = max(a,max(b, c)).

To show that it is commutative, we again resort to the definition of max(a, b): if x ≥ y is
true it returns x, otherwise it returns y. Suppose (without loss of generality) that a ≥ b;
then max(a, b) = a because a ≥ b is true, and max(b, a) = a because b ≥ a is false. Thus
⋆ is commutative.

It is simple to see that identity is the smallest element of the set N. There is actu-
ally a lot of disagreement in mathematics on whether N is defined as containing the
number 0 or not. If we decide to include it, the identity is 0. Otherwise it is 1.

Clearly, inverses cannot exists: if the identity is 1 and I input the number 4 into
max(a, b), I will never get anything smaller than 4 as an output, so I will never be
able to get the identity (for those not paying attention, 1 < 4), so 4 has no inverse.
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Exercise 9. Let A = {1, 2}, B = {3, 4}, C = {5, 6}. Calculate the following Cartesian
products (a) A × B × C (b) A × B (c) B × A (d) (A × B) × C (e) A × (B × C). Is
A×B = B ×A? Is (A×B)× C = A× (B × C)?

Solution: This is just an exercise in knowing what the Cartesian product is, so in-
stead of boringly listing a bunch of sets lets talk about the geometric significance of a
Cartesian product. First of all, this exercise depends on what we mean by equality. Do
we mean equivalence of sets? equivalence up to relabeling?. Unsurprisingly, if you allow
for relabeling, all sets with the same number of elements are the same, so lets not assume
that. We could also ignore bracket structure (so ((a, b), c) = (a, b, c)), which would make
sense if our sets represent vectors. As far as this exercise is concerned, since
both bracket structure and ordering are important, all of these products are
different sets, but it is interesting to see what happens when we assign more importance
to things like ordering rather than set structure. We can use geometry to identify how
the different sets are related!

If your sets are discrete, or comparable to the real numbers R, you can think of the
Cartesian product as placing your sets along perpendicular axes and looking at the space
generated between said axes. If your sets are discrete (i.e have only finitely many ele-
ments), you can just take them to be integers along your axis, and you may reorder them
however you want!). Therefore we can think of A×B ×C as the vertices of a unit cube
centered at (1.5, 3.5, 5.5). Similarly, we can think of A × B as a unit square centered
at (1.5, 3.5). A× B a unit square centered at (3.5, 1.5). For sets (d) and (e), the order
of applying the Cartesian product essentially distinguishes how the cube is produced: we
first create a square and then ”lift” it into a cube by adding a 3rd axis, so that our
original square becomes one of the faces. Both (d) and (e) lead to the same cube, but the
original square corresponds to a different face in the cube (what I’m discussing in this
solution is not part of the course, but don’t hesitate to come to one of my office hours if
you have trouble visualising what I’m talking about!).
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