Symmetry in Physics Homework 5

Lecturer: Prof Eugene A. Lim

1. Let G be a group and the homomorphisms $D: G \rightarrow G L\left(N_{1}, \mathbb{C}\right)$ and $T: G \rightarrow G L\left(N_{2}, \mathbb{C}\right)$ be two matrix representations of G. Consider the reducible representations $M_{1}=D \oplus T$ an $M_{2}=T \oplus D$. Show that the characters are the same for both reducible representations, and hence prove that there exists a similarity transform B that transforms M_{1} to M_{2}.
2. Consider the matrix group $S O(3)$, acting on \mathbb{R}^{3}, i.e. the usual 3 dimensional Euclidean space with Cartesian coordinates labeled by (x, y, z). Show that this action is analytic, and hence $S O(3)$ forms a Lie Group.
3. Consider the circle, S_{1}, parameterized by the coordinate θ such that $0 \leq \theta<2 \pi$. Consider a transformation T which maps the circle to itself as follows

$$
\begin{equation*}
T: \theta \rightarrow \theta^{\prime} ; \theta^{\prime}=\theta+k+f(\theta), 0 \leq k<2 \pi \tag{1}
\end{equation*}
$$

(i) Argue that since $0 \leq \theta^{\prime}<2 \pi, f(\theta)$ is periodic, i.e. $f(\theta+2 \pi)=f(\theta)$.
(ii) Show that, insisting that T is one-to-one requires an additional condition $f(\theta): d f(\theta) / d \theta>-1$ to be imposed everywhere on S_{1}.
(iii) Show that the set of transformations $T(\theta)$ forms a group.
(iv) Is this a Lie Group? Justify your answers.
4. In an n-dimensional linear vector space, two coodinate systems x^{i} and y^{i} are related by a linear basis transformation

$$
\begin{equation*}
y^{j}=M_{i}{ }^{j} x^{i} \tag{2}
\end{equation*}
$$

where $M_{i}{ }^{j}$ can be represented by an $n \times n$ square matrix. Show that the derivatives are related by the same transformation $M_{i}{ }^{j}$, i.e.

$$
\begin{equation*}
\frac{\partial}{\partial x^{i}}=\frac{\partial y^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}=M_{i}^{j} \frac{\partial}{\partial y^{i}} \tag{3}
\end{equation*}
$$

(Don't forget to use the Einstein summation convention to sum over indices. In this problem, the location of the indices (superscript/subscript) do not matter.)
5. In class, we claim that the exponentiation of a square matrix A is defined by

$$
\begin{equation*}
e^{A} \equiv \sum_{k=0}^{\infty} \frac{1}{k!} A^{k} \tag{4}
\end{equation*}
$$

where $A^{0}=\mathbb{I}$. By expanding the RHS of the following equation

$$
\begin{equation*}
e^{A}=\lim _{m \rightarrow \infty}\left(\mathbb{I}+\frac{1}{m} A\right)^{m} \tag{5}
\end{equation*}
$$

show that it is equivalent to the first definition of e^{A} we discussed in class. Prove that

$$
\begin{equation*}
\operatorname{det}\left(e^{A}\right)=\lim _{m \rightarrow \infty}\left[\operatorname{det}\left(\mathbb{I}+\frac{1}{m} A\right)\right]^{m} \tag{6}
\end{equation*}
$$

Now show that,

$$
\begin{equation*}
\operatorname{det}\left(\mathbb{I}+\frac{1}{m} A\right)=1+\frac{1}{m} \operatorname{Tr}(A)+\mathcal{O}\left(1 / m^{2}\right)+\ldots \tag{7}
\end{equation*}
$$

where ... indicate terms at higher orders in $1 / m$. Substituting this result equation (7) into equation (6), derive the identity

$$
\begin{equation*}
\operatorname{det}\left(e^{A}\right)=e^{T r(A)} \tag{8}
\end{equation*}
$$

6. In class, we show that the 2-D representation for $S O(2)$ can be obtained by exponentiating the generator

$$
X=\left(\begin{array}{cc}
0 & -1 \tag{9}\\
1 & 0
\end{array}\right)
$$

Show that

$$
X^{2 n}=(-1)^{n}\left(\begin{array}{ll}
1 & 0 \tag{10}\\
0 & 1
\end{array}\right)
$$

Using this result, prove that the exponentiation can be broken into even and odd powers as follows

$$
\begin{equation*}
\exp (\theta X)=\mathbb{I}+\sum_{n=1}^{\infty} \frac{(-1)^{n} \theta^{2 n}}{(2 n)!} \mathbb{I}+\sum_{n=0}^{\infty} \frac{(-1)^{n} \theta^{2 n+1}}{(2 n+1)!} X \tag{11}
\end{equation*}
$$

and hence show that the exponentiation recovers the matrix operator for $S O(2)$

$$
\begin{equation*}
\exp (\theta X)=\cos (\theta) \mathbb{I}+\sin (\theta) X \tag{12}
\end{equation*}
$$

7. Prove that the commutator $[A, B]=A B-B A$ obeys the Jacobi Identity

$$
\begin{equation*}
[[A, B], C]+[[B, C], A]+[[C, A], B]=0 \tag{13}
\end{equation*}
$$

8. Consider the differential equation

$$
\begin{equation*}
y \frac{d y}{d x}+x^{\alpha} y-x y^{\beta}=0 \tag{14}
\end{equation*}
$$

where α, β are integers. Consider the transformations $x \rightarrow a x, y \rightarrow a^{-2} y$ where $a \in \mathbb{R}-\{0\}$. What are the values of α, β for which this transformation leaves the above equation invariant?
9. Let K_{i} be the Lie Algebra of $S O(3)$. Show by computing the structure constants that the $l=1$ triplet representation of K_{i} can be represented by the following matrices

$$
K_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{15}\\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), K_{+}=\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right), K_{-}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right)
$$

11. (Hard.) As discussed in class, $S L(2, \mathbb{C})$ are complex 2×2 matrices with determinant +1 . Matrices of this group M have structure

$$
M=\left(\begin{array}{ll}
\alpha & \beta \tag{16}\\
\gamma & \delta
\end{array}\right), \quad \operatorname{det}(M)=\alpha \delta-\beta \gamma=1
$$

Consider a matrix X paramaterized by

$$
X(x, y, z, t)=\left(\begin{array}{cc}
t+z & x-i y \tag{17}\\
x+i y & t-z
\end{array}\right)
$$

(i) Show that, if we define $\mathbf{x}=(x, y, z)$ as the usual 3-vector, and the dot product \cdot as the usual 3-D vector dot product, we can express X as

$$
X(x, y, z, t)=t\left(\begin{array}{ll}
1 & 0 \tag{18}\\
0 & 1
\end{array}\right)+\sigma \cdot \mathbf{x}
$$

where $\sigma=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ are the usual Pauli spin Matrices

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{19}\\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and t is the time coordinate.
(ii) Show that X is Hermitian.
(iii) Show that the most general 2×2 hermitian matrix can be written in the form of the decomposition equation (17).
(iv) If $M \in S L(2, \mathbb{C})$, consider the transformation $X\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)=M^{\dagger} X(x, y, z, t) M$, i.e. a transform X by an element of $S L(2, \mathbb{C})$ leaves X in the form equation (18). Show that this transformation leaves the metric $\left(t^{2}\right)-x^{2}-y^{2}-z^{2}$ invariant. (Hint: Consider the determinants.)
(v) How are the new space-time coordinates $\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$ related to the original coordinates (x, y, z, t) ? I.e. calculate $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ as functions of (x, y, z, t) and $(\alpha, \beta, \gamma, \delta)$, using the condition $\alpha \delta-\beta \gamma=1$.
(vi) Find the subgroup of $S L(2, \mathbb{C})$ which leaves $t^{\prime}=t$ in the transformation defined in (iv). Show that this subgroup is $S U(2)$. (Hint : Consider the conditions on $(\alpha, \beta, \gamma, \delta)$ such that $t^{\prime}=t$.)
(vii) (Optional : Lorentz Transformation) Let $H \in S U(2)$, show that H can be represented by the exponentiation of the Pauli matrices

$$
\begin{equation*}
H=\exp \left(\frac{i}{2} \sigma \cdot \theta\right) \tag{20}
\end{equation*}
$$

where $\theta=\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$ is rotation angles along the x, y, z axes respectively. Consider the hermitian matrix K, i.e. $K^{\dagger}=K$, given by

$$
\begin{equation*}
K=\exp \left(\frac{1}{2} \sigma \cdot \mathbf{b}\right) \tag{21}
\end{equation*}
$$

where $\mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)$ is a real vector in 3-D Euclidean space. Show that

$$
\begin{equation*}
M=K H \tag{22}
\end{equation*}
$$

i.e. elements of $S L(2, \mathbb{C})$ can be "factored" into a unitary matrix H (which is a subgroup of $S U(2)$ and a hermitian matrix K). (Note : The form $M=K H$ means that the set of all possible K forms a coset space $K \in S L(2, \mathbb{C}) / S U(2)$. Is this a group?)

Consider the case $b_{x}=b_{y}=0$. Calculate the transformation

$$
\begin{equation*}
K^{\dagger} X(x, y, z, t) K=X\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right) \tag{23}
\end{equation*}
$$

and show that it is the Lorentz transformation law for a boost along the z direction.

