Symmetry in Physics Homework 4

Lecturer: Prof. Eugene A. Lim

Year 2 Semester 2 Theoretical Physics

1. Let G be a group, and D be a homomorphism $D: G \to GL(2, \mathbb{R})$, i.e. D is a representation of G, such that

$$D: G \mapsto \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$
(1)

Identify G (i.e. what group is G isomorphic to?) Is D reducible or irreducible?

Suppose that $A \in D$ acts on a 2×1 real vector (x, y) in the following way

$$\begin{pmatrix} x'\\ y' \end{pmatrix} = A \begin{pmatrix} x\\ y \end{pmatrix}, \text{ where } A = \begin{pmatrix} \alpha & \beta\\ \gamma & \delta \end{pmatrix},$$
(2)

such that

$$a'x'^2 + b'y'^2 = ax^2 + by^2, \ a, b, a', b' \in \mathbb{R}.$$
 (3)

Find the real 2×2 matrix M, whose components are independent of a, b, a', c' such that

$$\begin{pmatrix} a \\ b \end{pmatrix} = M \begin{pmatrix} a' \\ b' \end{pmatrix}.$$
(4)

Finally, show that the map $A \to D(A) = M^{-1}$ is a representation of G.

2. Prove that the number of conjugacy classes of a finite Abelian group G, C is equal to its order, i.e. C = |G|. Hence deduce that all irreps of finite Abelian groups are one-dimensional.

3. Consider the Klein four-group $V_4 = \{1, a, b, c\}$ with group laws $a^2 = b^2 = c^2 = 1$ and ab = c. Find all conjugacy classes of V_4 . Consider a dimension 3 representation of V_4 , $D : V_4 \to GL(3, \mathbb{R})$, with the following matrices for the generators of V_4

$$D(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, D(b) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
(5)

Calculate D(c). Decompose D into its irreducible components. How many inequivalent irreps are there for V_4 ? Find them.

4. For a group G, show that for any $g_1 \in G$ the elements $\{h\}$ such that $hg_1h^{-1} = g_1$ form a subgroup H_{g_1} of G. Show that if $gg_1g^{-1} = g_2$ for some $g \in G$, then H_{g_1} is isomorphic to H_{g_2} . Show that the conjugacy class of g_1 has $|G|/|H_{g_1}|$ elements.

5. Some problems on homomorphisms.

(i) Show that there exist a homomorphism from S_3 , the permutation/symmetric group of 3 objects, to S_2 , the permutation group of 2 objects, by explicitly constructing the map. Identify its kernel.

(ii) Show that there exist a homomorphism from S_4 , the permutation/symmetric group of 4 objects, to S_3 , the permutation group of 3 objects, by explicitly constructing the map. Identify its kernel.

(iii) Prove that there exist no homomorphism from S_5 to S_4 .

6. Find all irreps of the cyclic-3 group, $Z_3 = \{e, a, a^2\}$ with $a^3 = e$.

7. Given a matrix representation of a group A, one can define for any non-singular square matrix B a similarity transform

$$A' = BAB^{-1} \tag{6}$$

Prove that the similarity transform form an equivalence class, i.e. prove that the transformation is reflexive, transitive and symmetric.

8. Consider an N = 3 complex representation of the Dihedral-4 group D_4 ,

$$T: D_4 \to GL(3, \mathbb{C}). \tag{7}$$

The representation can be generated by the following generators

$$T(R) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \ T(m_1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$
 (8)

Check that these representations are not unitary.

- (i) Using the generators, find all the other matrix representations of T(g) for all $g \in D_4$.
- (ii) Construct the Hermitian matrix H by

$$H = \sum_{\alpha} T_{\alpha} T_{\alpha}^{\dagger} \tag{9}$$

(iii) Find the eigenvectors and eigenvalues of H. Using these, construct the unitary matrix U which diagonalizes H.

(iv) Hence, find T_{α} , the unitary representation equivalent to D_{α} .

From this information, find $F_1(g)$, a 1-D irreducible representation of D_4 . Can you find another one? Deduce that

$$T(g) = F_1(g) \oplus F_2(g) \tag{10}$$

where F_2 is a 2-D irreducible representation of D_4 . (You don't have to calculate F_2 , but you need to prove that it is irreducible.)

9. Consider the Diheral-5 group, D_5 , the symmetry group of the pentagon. Show that there are exactly two inequivalent 1-dimensional representations of D_5 . How many irreps are there of D_5 ? What are their dimensions?

10. Consider an order 8 group G generated by two elements a and b, with the group laws $a^4 = b^2 = e$ and ab = ba.

(i) Calculate all 8 elements of G.

(ii) Consider S, a 2-D complex representation of G, i.e. $S: G \to GL(2, \mathbb{C})$ where the generators are represented by

$$S(a) = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad S(b) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$
(11)

Calculate the other matrix representations for the other elements of the group G. Is this a reducible or irreducible representation?

(iii) Consider T, another 2-D complex representation of G, i.e. $T: G \to GL(2, \mathbb{C})$ where the generators are represented by

$$T(a) = \begin{pmatrix} i & 0\\ 1 & 1 \end{pmatrix}, \quad S(b) = \begin{pmatrix} -1 & 0\\ i+1 & 1 \end{pmatrix}.$$
(12)

Calculate the other matrix representations for the other elements of the group G. Is this a reducible or irreducible representation?

(iv) Calculate the characters for S and T. Using this, state whether S and T are equivalent to each other.

(v) Find all the conjugacy classes of this group, and verify that the characters of the same conjugacy classes are equal.