Symmetry in Physics Homework 4

Lecturer: Prof. Eugene A. Lim
Year 2 Semester 2 Theoretical Physics

1. Let G be a group, and D be a homomorphism $D: G \rightarrow G L(2, \mathbb{R})$, i.e. D is a representation of G, such that

$$
D: G \mapsto\left\{\left(\begin{array}{ll}
1 & 0 \tag{1}\\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\}
$$

Identify G (i.e. what group is G isomorphic to?) Is D reducible or irreducible?
Suppose that $A \in D$ acts on a 2×1 real vector (x, y) in the following way

$$
\binom{x^{\prime}}{y^{\prime}}=A\binom{x}{y}, \text { where } A=\left(\begin{array}{ll}
\alpha & \beta \tag{2}\\
\gamma & \delta
\end{array}\right)
$$

such that

$$
\begin{equation*}
a^{\prime} x^{\prime 2}+b^{\prime} y^{\prime 2}=a x^{2}+b y^{2}, a, b, a^{\prime}, b^{\prime} \in \mathrm{R} \tag{3}
\end{equation*}
$$

Find the real 2×2 matrix M, whose components are independent of $a, b, a^{\prime}, c^{\prime}$ such that

$$
\begin{equation*}
\binom{a}{b}=M\binom{a^{\prime}}{b^{\prime}} \tag{4}
\end{equation*}
$$

Finally, show that the map $A \rightarrow D(A)=M^{-1}$ is a representation of G.
2. Prove that the number of conjugacy classes of a finite Abelian group G, \mathcal{C} is equal to its order, i.e. $\mathcal{C}=|G|$. Hence deduce that all irreps of finite Abelian groups are one-dimensional.
3. Consider the Klein four-group $V_{4}=\{1, a, b, c\}$ with group laws $a^{2}=b^{2}=c^{2}=1$ and $a b=c$. Find all conjugacy classes of V_{4}. Consider a dimension 3 representation of $V_{4}, D: V_{4} \rightarrow G L(3, \mathbb{R})$, with the following matrices for the generators of V_{4}

$$
D(a)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{5}\\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), D(b)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Calculate $D(c)$. Decompose D into its irreducible components. How many inequivalent irreps are there for V_{4} ? Find them.
4. For a group G, show that for any $g_{1} \in G$ the elements $\{h\}$ such that $h g_{1} h^{-1}=g_{1}$ form a subgroup $H_{g_{1}}$ of G. Show that if $g g_{1} g^{-1}=g_{2}$ for some $g \in G$, then $H_{g_{1}}$ is isomorphic to $H_{g_{2}}$. Show that the conjugacy class of g_{1} has $|G| /\left|H_{g_{1}}\right|$ elements.
5. Some problems on homomorphisms.
(i) Show that there exist a homomorphism from S_{3}, the permutation/symmetric group of 3 objects, to S_{2}, the permutation group of 2 objects, by explicitly constructing the map. Identify its kernel.
(ii) Show that there exist a homomorphism from S_{4}, the permutation/symmetric group of 4 objects, to S_{3}, the permutation group of 3 objects, by explicitly constructing the map. Identify its kernel.
(iii) Prove that there exist no homomorphism from S_{5} to S_{4}.
6. Find all irreps of the cyclic-3 group, $Z_{3}=\left\{e, a, a^{2}\right\}$ with $a^{3}=e$.
7. Given a matrix representation of a group A, one can define for any non-singular square matrix B a similarity transform

$$
\begin{equation*}
A^{\prime}=B A B^{-1} \tag{6}
\end{equation*}
$$

Prove that the similarity transform form an equivalence class, i.e. prove that the transformation is reflexive, transitive and symmetric.
8. Consider an $N=3$ complex representation of the Dihedral-4 group D_{4},

$$
\begin{equation*}
T: D_{4} \rightarrow G L(3, \mathbb{C}) \tag{7}
\end{equation*}
$$

The representation can be generated by the following generators

$$
T(R)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{8}\\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right), T\left(m_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Check that these representations are not unitary.
(i) Using the generators, find all the other matrix representations of $T(g)$ for all $g \in D_{4}$.
(ii) Construct the Hermitian matrix H by

$$
\begin{equation*}
H=\sum_{\alpha} T_{\alpha} T_{\alpha}^{\dagger} \tag{9}
\end{equation*}
$$

(iii) Find the eigenvectors and eigenvalues of H. Using these, construct the unitary matrix U which diagonalizes H.
(iv) Hence, find \tilde{T}_{α}, the unitary representation equivalent to D_{α}.

From this information, find $F_{1}(g)$, a 1-D irreducible representation of D_{4}. Can you find another one? Deduce that

$$
\begin{equation*}
T(g)=F_{1}(g) \oplus F_{2}(g) \tag{10}
\end{equation*}
$$

where F_{2} is a 2-D irreducible representation of D_{4}. (You don't have to calculate F_{2}, but you need to prove that it is irreducible.)
9. Consider the Diheral-5 group, D_{5}, the symmetry group of the pentagon. Show that there are exactly two inequivalent 1-dimensional represntations of D_{5}. How many irreps are there of D_{5} ? What are their dimensions?
10. Consider an order 8 group G generated by two elements a and b, with the group laws $a^{4}=b^{2}=e$ and $a b=b a$.
(i) Calculate all 8 elements of G.
(ii) Consider S, a 2-D complex representation of G, i.e. $S: G \rightarrow G L(2, \mathbb{C})$ where the generators are represented by

$$
S(a)=\left(\begin{array}{cc}
1 & 0 \tag{11}\\
0 & i
\end{array}\right), S(b)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Calculate the other matrix representations for the other elements of the group G. Is this a reducible or irreducible representation?
(iii) Consider T, another 2-D complex representation of G, i.e. $T: G \rightarrow G L(2, \mathbb{C})$ where the generators are represented by

$$
T(a)=\left(\begin{array}{cc}
i & 0 \tag{12}\\
1 & 1
\end{array}\right), S(b)=\left(\begin{array}{cc}
-1 & 0 \\
i+1 & 1
\end{array}\right)
$$

Calculate the other matrix representations for the other elements of the group G. Is this a reducible or irreduicble representation?
(iv) Calculate the characters for S and T. Using this, state whether S and T are equivalent to each other.
(v) Find all the conjugacy classes of this group, and verify that the characters of the same conjugacy classes are equal.

