Symmetry in Physics Homework 3

Lecturer: Prof. Eugene A. Lim
Year 2 Semester 2 Theoretical Physics

1. Let C_{g} be the conjugacy class of g of the group G, and Let H be a normal subgroup of G. For each $h \in H$, we can form the conjugacy class C_{h} of h of the group G. Prove that H is a union of C_{h}.
2. Let G_{1} and G_{2} be groups and f be a group homomorphism $f: G_{1} \rightarrow G_{2}$. Let H_{1} be a normal subgroup of G_{1}. Prove that if f is onto, then $f\left(H_{1}\right)$ is a normal subgroup in G_{2}.
3. Find all the proper subgroups of D_{4}. Which of these proper subgroups are normal? One of the proper subgroup is $Z_{2}=\left\{e, R^{2}\right\}$. Calculate the quotient group D_{4} / Z_{2} and construct its multiplication table.
4. Prove the trace identity. For any two square matrices A, B,

$$
\begin{equation*}
\operatorname{Tr}(A B)=\operatorname{Tr}(B A) \tag{1}
\end{equation*}
$$

5. Consider the matrix group $S U(2)$. Let $M \in S U(2)$ be a 2×2 matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), a, b, c, d \in \mathbb{C}
$$

Show that the group can be represented as

$$
M=\left(\begin{array}{cc}
a & b \\
-b^{*} & a^{*}
\end{array}\right)
$$

with the constraint $\operatorname{Re}(a)^{2}+\operatorname{Im}(a)^{2}+\operatorname{Re}(b)^{2}+\operatorname{Im}(b)^{2}=1$. Show geometrically that this describes a 3 -sphere S_{3} embedded in a 4 -dimensional cartesian space \mathbb{R}^{4}, i.e. it is a 3 -dimensional sphere in a 4-dimensional space.
6. Consider the equilateral triangle, or the 3 -gon. Let R be the symmetry operation which rotate the triangle clockwise by 120° and m be the reflection around the vertical axis through the center. Construct the multiplication table for D_{3} by using these two generators. What is the order of the Group? How many proper subgroups are there? What are the conjugacy classes of D_{3} ? How many of these classes are also subgroups (hence is a normal subgroup)? Construct a
(i) regular representation
(ii) 3×3 faithful representation
(iii) 2×2 faithful representation.
7. Consider the matrix

$$
M=\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right)
$$

where a, b, c are integers mod 4.
(i) Prove that the set of of all possible $\mathcal{M}=\{M\}$ forms a finite group under matrix multiplication, and that $|\mathcal{M}|=64$. Is this group abelian or non-abelian?
(ii) Consider a subgroup H of M where $a=c$. What is $|H|$? Is this group abelian or non-abelian?
8. Prove that $G L(n, \mathbb{R})$ is a group. Prove that $S L(n, \mathbb{R})$ is a subgroup of $G L(n, \mathbb{R})$ by explicitly constructing an isomorphism $S L(n, \mathbb{R})$ and a subset of $G L(n, \mathbb{R})$ which is also a group.
9. (Mobius Transformation) Consider now the Mobius Transform, which is a map of the extended complex plane $\tilde{\mathbb{C}}=\mathbb{C} \cup \infty$ back to itself, i.e. let $z \in \widetilde{\mathbb{C}}$ be an element of this set, the transform is a map of $\tilde{\mathbb{C}}$ back to itself in the following way

$$
f: \tilde{\mathbb{C}} \rightarrow \tilde{\mathbb{C}} ; f(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{C} .
$$

Let \mathcal{M} be the set of all possible f.
(i) What are the conditions on a, b, c, d such that $f(z)$ is a (a) translation (b) rotation around the origin
(c) contraction/expansion (or dilations) in distance from the origin, of the point z ?
(ii) Show that the set of all possible f forms a group under the group composition law $f_{1} \circ f_{2}(z)=f_{1}\left(f_{2}(z)\right)$.
(iii) Let the matrix group $S L(2, \mathbb{C})$, with $A \in S L(2, \mathbb{C})$ described by

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Suppose μ maps the elements of $S L(2, \mathbb{C})$ to \mathcal{M}, show that this map is a homomorphism and surjective.
(iv) Find $\operatorname{Ker}(\mu)$ and show that $\operatorname{Ker}(\mu)$ forms the group Z_{2}.
(v) Hence argue that the Mobius Group is the quotient group $\mathcal{M}=S L(2, \mathbb{C}) / Z_{2}$.
10. Suppose that G is a group and the set $\{D(g)\}$ is a matrix representation of the elements $g \in G$. Let B be a non-singular matrix that executes a linear transformation on the basis vectors for $D(g)$. Show that the set $\left\{B D(g) B^{-1}\right\}$ forms a new matrix representation for G by proving that it obeys all the group axioms. (In class we argue that $\{D(g)\} \sim\left\{B D(g) B^{-1}\right\}$.)
11. In class, we showed that $U(1)$ is the group of planar rotations around the origin. This rotations "traces out" a circle S_{1} drawn on \mathbb{R}^{2} - in other words the symmetry group of the circle is $U(1)$. Now, consider a donut or a "beigel/bagel (if you are American)". The donut traces out a compact surface on \mathbb{R}^{3} - topologically speaking a T_{2}. Show that the symmetry group of T_{2} is $U(1) \times U(1)$. Construct a $N=2$ Group representation of T_{2} acting on a vector space (θ, ϕ) where $0 \leq \theta<2 \pi$ and $0 \leq \phi<2 \pi$ describe points on T_{2}.

Figure 1: A 2-Torus T_{2}.
12. Let G be a group, and $D_{1}: G \rightarrow G L(N, \mathbb{C})$ be a homomorphism, and hence $D_{1}(g)$ is a matrix representation of $g \in G$. Suppose we define the set

$$
D_{2}(g)=\left[D_{1}\left(g^{-1}\right)\right]^{\dagger}
$$

where ${ }^{\dagger}$ is the Hermitian conjugate. Prove that the set $D_{2}(g)$ is also a representation of G.

