Symmetry in Physics Homework 2

Lecturer: Eugene A. Lim
2022 Year 2 Semester 2 Theoretical Physics
https://nms.kcl.ac.uk/eugene.lim/teach/symmetry/symroot.html

1. (Cosets). Suppose H is a subset of G. Consider $b \in G$ but $b \notin H$ then does the set of all left cosets $\{b H\}$ forms a Group? If so, prove it. If not, explain why. Suppose now H is a normal subgroup of G, does the left Coset Space form a group? If so, prove it.
2. Show that there exist a bijection between the left coset space and the right coset space of the normal subgroup H in G.
3. Suppose G is a group, $g \in G$ is an element of G whose order is n. Show that n divides $|G|$. (Hint : show that g generates a cyclic subgroup of G, and then use Lagrange's theorem).
4. Let X and Y be discrete and finite sets, and Y is a proper subset of $X, Y \subset X$. Consider the following map

$$
j: \operatorname{Perm}(\mathrm{Y}) \rightarrow \operatorname{Perm}(\mathrm{X}) ;(j(f))(x)=\left\{\begin{array}{c}
f(x), \text { if } x \in Y \tag{1}\\
j(f))(x)=x, \text { otherwise }
\end{array}\right.
$$

Show that j is an isomorphism of $\operatorname{Perm}(Y)$ into a subgroup of $\operatorname{Perm}(X)$.
5. Consider the quaternion group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ with the group composition laws

$$
\begin{equation*}
-1=i^{2}=j^{2}=k^{2}=i j k \tag{2}
\end{equation*}
$$

Show that $i=j k=-k j, j=k i=-i k, k=i j=-j i$. What is the order of this Group? Prove that it is not isomorphic to the Dihedral group D_{4}. Construct the product group $Z_{2} \times V_{4}$. Is $Q_{8} \cong Z_{2} \times V_{4}$. If so prove it, if not explain.
6. Suppose X and Y are subgroups of the finite group G. Consider the set $X Y=\{x y \mid x \in X, y \in Y\}$.
(a) Suppose that $a, b, c, d \in G$ and $a b=c d$. Prove that there is a unique $h \in G$ such that $c=a h$ and $d=h^{-1} b$.
(b) Suppose that $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$. Show that $x_{1} y_{1}=x_{2} y_{2}$, iff $\exists a \in X \cap Y$ such that $x_{2}=x_{1} a$ and $y_{2}=a^{-1} y_{1}$.
(c) Show that $X \cap Y$ is a subgroup of G.
(d) Show that

$$
\begin{equation*}
|X Y|=\frac{|X||Y|}{|X \cap Y|} \tag{3}
\end{equation*}
$$

(e) Now let $|G|=256$. Suppose that $|X|=|Y|=32$. Show that $|X \cap Y| \geq 4$, and that there are at most four possible values of $|X \cap Y|$. You may state any theorems you use in this calculation.
7. Prove that every subgroup of a finite cyclic subgroup Z_{n} is also a cyclic subgroup.
8. In class, we showed that the set of integers \mathbb{Z} forms a group under the additive operation. Consider the map

$$
\begin{equation*}
\tau: \mathbb{Z} \rightarrow \mathbb{Z} ; \tau(x)=-x \forall x \in \mathbb{Z} \tag{4}
\end{equation*}
$$

Show that τ is an isomorphism from the additive group of \mathbb{Z} to itself.
9. (Logarithms). Let T be the set of all integer powers of 10, i.e. $T=\left\{10^{z} \mid z \in \mathbb{Z}\right\}$. Show that T forms a group under the usual multiplicative operator. Show that this group is isomorphic to the additive group of \mathbb{Z}, by finding the isomorphism ϕ. Show that the inverse map ϕ^{-1} is the logarithm $\log _{10}$.
10. Consider the Tetrahedron. Explain why the symmetry group of the tetrahedron is the symmetric group S_{4}, i.e. it is the permutation group of 4 objects. Geometrically describe all symmetry operations. Is D_{3} a subgroup of S_{4} ? Find the isomorphic map if it is. Explain if it is not.
11. Prove the theorem that all prime ordered finite groups are cyclic groups.
12. Let H_{1}, H_{2} be normal subgroups of G. Prove that the intersection $H_{1} \cap H_{2}$ is also a normal subgroup of G. (Hint: First prove that the intersection of two subgroups is also a subgroup. Then prove that the normality property gets inherited.)

