Symmetry in Physics Homework 1

Lecturer: Eugene A. Lim
2022 Year 2 Semester 2 Theoretical Physics
Week $1+2$
https://nms.kcl.ac.uk/eugene.lim/teach/symmetry/symroot.html

1. Consider the following maps. State which of these maps are surjective, injective, both or none?

- $A=\{1,2,3\}, B=\{l, j, k\}$, and $f: A \rightarrow B ; f(1)=l, f(2)=j, f(3)=k$.
- $A=\{1,2,3,4,5\}, B=\{2,4,6,8,10,12\}$, and $f: A \rightarrow B ; f: x \mapsto 2 x \forall x \in A\}$.
- $A=\mathbb{R}-\{0\}, B=\mathbb{R}-\{0\}$, and $f: A \rightarrow B ; f: x \mapsto x+1 / x \forall x \in A$.

2. Let $G=\{-1,1\}$ be a set. Show that G is a group under the usual rule of multiplication. Is it a group under the usual rule for addition?
3. Consider the set of complex numbers \mathbb{C}. Let it be a Field - describe the action and properties of the two binary operators required.
4. The group of integers $N_{n}=\{0,1,2,3, \ldots, n-1\}$ is equipped with the composition law given by the usual "addition modulo n ". Show that this forms a group. Find the identity. Find the inverses for each element.
5. Let S is a finite set of complex numbers without 0 , i.e. $S \in \mathbb{C}-\{0\}$. The algebra is specified such that for two elements $z, w \in S, z w=w z \in S$. Prove that the modulus of all the elements in S is 1. Show that an identity element in S may not exist. We now impose the condition that it must contain an identity. What is the identity? Show that S forms a group. Given that $|S|=n$, prove that it is isomorphic to Z_{n} by finding the appropriate bijective map.
6. Construct the product group $Z_{2} \times Z_{4}$ by finding all the group elements and the group composition laws. You might find that explicitly building a Cayley Table helpful. What is $\left|Z_{2} \times Z_{4}\right|$? Is it isomorphic to Z_{6} ? If so, prove it. If not, explain why. Which element has the largest order, and what is the order?
7. Find all the proper subgroups of the Klein four-group V_{4}. Which if any is a normal proper subgroup?
8. Let $S=\mathbb{N}$ equipped with the binary operators \star such that $m \star n=\max (m, n)$. State whether (a) \star is associative $(\mathrm{b}) \star$ is commutative (c) an identity exist (d) inverses exist.
9. Let $A=\{1,2\}, B=\{3,4\}, C=\{5,6\}$. Calculate the following Cartesian products (a) $A \times B \times C$ (b) $A \times B$ (c) $B \times A(\mathrm{~d})(A \times B) \times C$ (e) $A \times(B \times C)$. Is $A \times B=B \times A$? Is $(A \times B) \times C=A \times(B \times C)$?
