6CCP3212 Statistical Mechanics Review Problems for Thermal physics

Lecturer: Prof Eugene A. Lim
https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1) Consider the equation of state for an ideal gas

$$
\begin{equation*}
P V=N k_{b} T \tag{1}
\end{equation*}
$$

where N is the number of particles and k_{b} is the Boltzmann constant. Draw the following curves on a (i) $P-V$ phase diagram and a (ii) $T-V$ phase diagram.

- An isobaric (constant pressure) curve.
- An isothermal (constant temperature) curve.
- A isochoric (constant volume) curve.
- An isentropic (constant entropy) curve.

2) Find the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ for the following functions:

- $f(x, y)=\sqrt{x^{2}+y^{2}}$
- $f(x, y)=\frac{1}{x+y^{2}}$
- $f(x, y)=\frac{\log (x+y)}{x^{2}}$

3) Find the total derivative $d f / d t$ for the following functions

- $f(x, y)=x^{y}, x(t)=t^{2}, y(t)=t$.
- $f(x)=\log x^{2}, x(y, z)=y^{2}+z, y(t)=t^{-1}, z(t)=t$.
- $f(x, y, t)=x y t, x(t)=t^{2}, y(x, t)=x+t$.

3) For the following differentials, state whether they are exact or inexact.

- $d z=x d x+y d y$.
- $d z=y d x-x d y$.

Integrate the above equations $\int d z$ from $(x, y)=(0,0)$ to $(x, y)=(1,1)$, using

- The path $x=y$.
- The path $(x, y)=(0,0)$ to $(x, y)=(0,1)$ and then $(x, y)=(0,1)$ to $(x, y)=(1,1)$.

4) What is a closed system? What is an open system? Which of the following systems are open, and which are closed.

- An refrigerator kept at $T=273 K$.
- A car engine.
- A blender.
- A hydroelectric dam.
- A thermal flask with lid on.

5) Work done on a thermodynamic system is given by $P d V=-d W$ (the bar in d for d is explained in the first chapter of the lecture notes, but for now you don't have to worry about it). Find the work done on the an ideal gas system $P V=N k_{b} T$ to change it from $\left(P_{1}, V_{1}\right)$ to $\left(P_{2}, V_{2}\right)$ for

- An isobaric process $P=C$ where C is a constant.
- An isochoric process $V=C$ where C is a constant.
- A polytropic process is given by the following curve

$$
\begin{equation*}
P V^{n}=C \tag{2}
\end{equation*}
$$

where C is a constant and $n>1$ is the polytropic constant. Show that the work done on the system to change it from $\left(P_{1}, V_{1}\right)$ to $\left(P_{2}, V_{2}\right)$ is given by

$$
\begin{equation*}
W=\frac{P_{1} V_{1}-P_{2} V_{2}}{1-n} . \tag{3}
\end{equation*}
$$

What happens when $n=1$? Argue that your results suggest that work is path-dependent (we will prove this in Homework 1).

- An isothermal process $T=C$ where C is a constant.

6) Consider a mole of ideal gas at $T=400 K$ with equation of state $P V=N k_{b} T$ expanding reversibly and isothermally from $V=10 L$ to $V=30 L$, where L is a unit of volume. Calculate the increase in entropy S of this process.
7) A heat engine absorbs heat Q_{1} reversibly from a reservoir at $T=300 \mathrm{~K}$ and expel heat Q_{2} reversibly to a reservoir at $T=200 \mathrm{~K}$. This engine has an efficiency of 25% while doing $W=125 \mathrm{~J}$ of work in a cycle of work.

- Calculate Q_{1}.
- Calculate the change in entropy of the engine system for this single cycle of work.
- Calculate the change in the entropy for the two reservoirs, and show that the total change of entropy for the entire reservoir-engine systems is zero for a reversible process.

8) A mole of a monoatomic ideal gas are at a temperature of $T=300 \mathrm{~K}$. The gas expands reversibly and isothermally to twice its original volume. Calculate the work done by the gas, the heat supplied, and the change in internal energy.
