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Physical Constants

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg = 931.494 MeV c−2

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant ~ = 1.055× 10−34 J s

Boltzmann constant kB = 1.381× 10−23 J K−1 = 8.617 ×10−11 MeV K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 W m−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

SEE NEXT PAGE
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Useful Information

Maxwell Relations (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

,

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

,

(
∂V

∂S

)
P

=

(
∂T

∂P

)
S

.

Fundamental Equation of Thermodynamics

dE = TdS − PdV + µdN

Thermodynamic Potentials

F = E − TS , Φ = E − TS + PV , H = E + PV .

with differentials

dF = −SdT − PdV + µdN , dΦ = −SdT + V dP + µdN , dH = TdS + V dP + µdN .

Heat Capacities

CV = T

(
∂S

∂T

)
V

=

(
∂E

∂T

)
V

, CP = T

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

.

Microcanonical Ensemble Entropy
S = kb ln Ω

Canonical Partition Function and formulas

Z =
∑
r

e−βEr , Pr =
1

Z
e−βEr , 〈X〉 =

∑
r

PrXr ,

F = −kbT lnZ , S = kb
∂

∂T
(T lnZ) , Mean Energy 〈E〉 = −

(
∂ lnZ

∂β

)

SEE NEXT PAGE
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Grand Canonical Ensemble Partition Function

Z =
∑
r

e−β(Er−µNr) ,

Mean Energy 〈E〉+ µ〈N〉 = −
(
∂ lnZ
∂β

)
, Mean Particle Number 〈N〉 =

1

β

(
∂ lnZ
∂µ

)
.

Fermi-Dirac Distribution

〈Nn〉 =
1

eβ(En−µ) + 1
.

Bose-Einstein Distribution

〈Nn〉 =
1

eβ(En−µ) − 1
.

Thermal de Broglie wavelength

λ =

√
2π~2
mkbT

.

Stirling’s Formula
lnN ! ≈ N lnN −N , N � 1

Polylog integrals ∫ ∞
0

xn−1

ex + 1
dx = (1− 21−n)Γ(n)ζ(n) , (n > 0),

and ∫ ∞
0

xn−1

ex − 1
dx = Γ(n)ζ(n) , (n > 1),

with Riemann Zeta function

ζ(p) ≡
∞∑
n=1

1

np
,

and the Gamma function

Γ(n) ≡
∫ ∞
0

xn−1e−xdx .

The Gamma function for n > 0 integers is

Γ(n) = (n− 1)! , n ∈ N − {0} .

SEE NEXT PAGE
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Common values for half-integer Gamma functions

Γ(1/2) =
√
π , Γ(3/2) =

√
π

2
, Γ(5/2) =

3
√
π

4
, Γ(7/2) =

15
√
π

8
.

and Zeta functions

ζ(3/2) = 2.612 , ζ(2) =
π2

6
, ζ(5/2) = 1.341 , ζ(3) = 1.202 , ζ(7/2) = 1.127 .

Gaussian Integral

I =

∫ ∞
−∞

e−ax
2

dx =

√
π

a
.

Geometric Sum
n=∞∑
n=0

xn =
1

1− x
, |x| < 1 .

A derivative identity between x, y and z with a single constraint x(y, z)(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

Differential transform from f(x, y) → f(x, z) for a function f(x, y) with a constraint x =
x(y, z) (

∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

.

SEE NEXT PAGE
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SECTION A

Answer all parts of this section.

1.1 Define each term you use carefully.

(i) What is meant by the ergodic principle?

(ii) What is a diathermal walls? Draw a diagram to illustrate your answer if needed.

(iii) What is a canonical ensemble?

[9 marks]

1.2 Which of the following differentials are exact and which are inexact? Find F (x, y) if
exact. Show your work clearly.

(i) dF = (2x− yx2)e−xydx− x3e−xydy
(ii) dF = 1

y
dx.

(iii) dF = ezdx+ zdy + (xez + y)dz.

(iv) dF = lnx
xy
dx− lnx

y2
dy.

[10 marks]

1.3 A thermodynamic system has a 2 dimensional state space,

(i) Describe what is meant by intensive and extensive variables.

(ii) Suppose a function of state can be described by an extensive function F (b,X, Y ) =
Y Xb, where Y is an extensive variable and X is an intensive variables. Is b an
extensive or intensive variable? Justify your answer.

[6 marks]

SEE NEXT PAGE
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DNA is built from a sequence of bases which there are four types, A,T,G,C.

1.4 Consider the Shannon Entropy

S = −kb
∑
r

Pr lnPr .

(i) In natural DNA of primates, the four bases have nearly the same frequency P (A) =
P (T ) = P (G) = P (C). Calculate the Shannon Entropy for the DNA of primates.

(ii) The DNA of bacteria on the other hand usually is more unbalanced in its distri-
bution. Calculate the Shannon Entropy for the DNA snippet of a bacteria :

AACCTCGCGTCATCGATCTACACA.

[6 marks]

1.5

(i) Starting from S(T, V ), show that

dS =
CV
T
dT +

(
∂P

∂T

)
V

dV .

(ii) Using the result from (i), derive the following relationship(
∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P .

(iii) The equation of state of a gas can be written in the form

P = NkbT (1 +B(T )N) ,

where B(T ) is a virial coefficient which depends on the temperature T . Using the
results in (i) and (ii), calculate (∂E/∂V )T and show that it is positive as long as
∂B/∂T > 0.

[9 marks]

SEE NEXT PAGE
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Solutions A

1.1

(i) The ergodic principle states that, given sufficient time [1 mark], all accessible
phase space will be explored [2 mark].

(ii) Diathermal walls allow heat to be exchanged [2 marks] but not particles [1 mark].

(iii) The canonical ensemble is the subset of phase space [1 mark] for fixed V , N and
T . [2 marks]

1.2

(i) Exact. F = x2e−xy. [3 marks]

(ii) Inexact. [2 marks]

(iii) Exact. F = xez + yz. [3 marks]

(iv) Inexact. [2 marks]

1.3

(i) Extensive variables are those that scales with size while intensive variables don’t.
[2 marks]

(ii) If F is extensive, then F scales as F → aF [2 marks]. If Y is extensive and X
is intensive, then under this scaling F → aY X(b′), hence b′ must not scale b → b′,
meaning that b is intensive. [2 marks]

1.4

(i) Sine they are equal in probabilities, P = 1/4 for all ACTG, thus S = −kb
∑

(1/4) ln(1/4) =
kb ln 4. [2 marks]

(ii) There are 7A, 9C, 5T and 3G for a total of 24 letters. The probabilities are then
P (A) = 7/24, P (C) = 9/24, P (T ) = 5/24 and P (G) = 3/24 [ 2 marks]. The entropy
is then S = 1.32kb. [2 marks]

1.5

(i) From S(T, V ), and

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV (1)

[1 mark] and using (from rubric) (∂S/∂T )V = CV /T and (∂S/∂V )T = (∂P/∂T )V ,
we get the desired result. [2 mark]

(ii) Using the fundamental equation of thermodynamics, dE = TdS −PdV , we plug
dS from (i) into it [1 mark], to get

dE = CV dT +

[
T

(
∂P

∂T

)
V

− P
]
dV (2)
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and the coefficient of the dV term is the desired result. [2 marks]

(iii) Plugging in the equation of state into the result in (ii), we get(
∂E

∂V

)
T

= N2kbT
∂B

∂T
> 0 (3)

since N2 > 0, kb > 0, T > 0 and ∂B/∂T > 0 as given. [3 marks]

SEE NEXT PAGE
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SECTION B - Answer BOTH questions
Answer all parts of this section.

B2)

(a) Consider a single harmonic oscillator in 3 dimensions whose energy is given by

E =
p2

2m
+ V (r) , V (r) = br2 ,

where m is its mass, b > 0 is a constant and V (r) is the potential centered at the
origin with r =

√
x2 + y2 + z2.

(i) Is the potential repulsive or attractive? Explain your answer.

[4 marks]

(ii) Calculate the partition function Z for this system, demonstrating that Z ∝ b−3/2.

[8 marks]

(iii) In the limit where b→ 0, using the result from (ii) seems to suggest that Z →∞.
Is this physical? If so, justify your answer. If not, identify the correct way of taking
this limit.

[2 marks]

(iv) Suppose the potential is changed such that the energy of the system is given by

E =
p2

2m
+ br2n ,

where n > 1 is an integer. By using spherical coordinates via the transform
∫∞
−∞ d

3x =∫∞
0

4πr2dr, calculate the partition function of this system.

[Hint : one might find the integral representation of the Gamma function in the rubric
useful.]

[6 marks]

QUESTION CONTINUES ON NEXT PAGE
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(b) Four non-interacting particles with mass m are confined to a cubic box of volume V
with the energy E of each particle given by

E = ε(n2
x + n2

y + n2
z) , ε > 0

where its quantum number nx, ny and nz are non-zero positive integers. The ground
state refers to the configuration where the energy of the system is minimum.

(i) Suppose the particles are bosons. What is the energy of the ground state E0?

[3 marks]

(ii) Suppose the particles are fermions. What is the energy of the ground state E0?
Ignore spins.

[3 marks]

(iii) Assuming the system is a canonical ensemble, in the classical limit, the distinction
between fermions and bosons becomes unimportant. Explain how the classical limit
is achieved in the context of the system of 4 particles described above, and find the
approximate condition as a function of ε. You may leave the answer as an inequality.

[4 marks]

SEE NEXT PAGE
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Solution B2

B2 (a)

(i) Since b > 0, as we move away from the center r →∞ the energy E increases, and
hence the probability of finding the particle P ∝ e−βE decreases. Hence the potential
is attractive. [4 marks]

(ii) The partition function is

Z =
1

(2π~)3

∫
d3xd3pe−βp

2/2m−βbr2 . (4)

The p and x integrals are separable and thus can be done independently using the
gaussian integrals ∫

d3pe−βp
2/2m =

(
2mπ

β

)3/2

(5)

for p [3 marks] and ∫
d3xe−βb(x

2) =

(
π

βb

)3/2

(6)

for x [3 marks]. Putting them together, we get

Z =
1

(2π~)3

(
2mπ2

β2b

)3/2

(7)

[2 marks].

(iii) This is not the right way to take the limit since in the limit b→ 0, we approach
the limit with no interactions and hence the partition function should reduce to that
of the free particle Z = V (m/2πβ~2)3/2 which is finite. The right way to take the
limit is to take br2 � kbT . [2 marks]

(iv) This is a slightly long calculation, but not too hard, just have to be careful.

The p integral is as in section (ii). The x integral is then, converting r into w via the
transformation w/(βb) = r2n [1 marks], you get the integral∫ ∞

−∞
e−βb(r

2n) = 4π

∫ ∞
0

r2e−βb(r
2n)dr

= 4π

∫ ∞
0

1

2n

(
1

βb

)3/2n

w
3
2n
−1e−wdw (8)

[2 marks]. This integral is a Gamma function, which yields

2π

n
Γ

(
3

2n

)(
1

βb

)3/2n

, (9)
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[2 marks]. Putting everything together we get the final answer

Z =
1

(2π~)3
2

n
π5/2Γ

(
3

2n

)(
2mπ

β

)3/2(
1

bβ

)3/2n

(10)

. [1 mark]

SEE NEXT PAGE
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Solution (B2b)

(i) Since they are bosons, in their ground state, the quantum numbers for all the
particles are (1, 1, 1) [2 marks], so the ground state energy is 4× 3ε = 12ε. [1 mark]

(ii) Since they are fermions, pauli exclusion means that the first 4 occupied states are
(1, 1, 1), (1, 1, 2), (1, 2, 1) and (2, 1, 1) [2 marks]. This means that the ground state
energy is 3ε+ 3× 6ε = 21ε. [1 marks]

(iii) The classical limit is achieved when the temperature [1 mark] of the system
is increased such that kbT∗ � ε. In this limit, the mean energy of the system
Ē ∼ kbT∗ � ε [1 mark], hence particles can occupy states with large (nx, ny, nz) with
a large degeneracy such that the pauli exclusion is no longer important [2 mark].

SEE NEXT PAGE

14



6CCP3212

B3)

(a) Consider the problem of phase separation of a binary alloy consisting of NA of atoms
type A and NB of atoms type B, with a total number of atoms N = NA +NB. The
atoms form a simple cubic lattice, each atom interacting with only 6 of its nearest
neighbours. Each identical A−A and B−B pair interact attractively with interaction
energy −J while each alternate pair A−B interact repulsively with energy +J , where
J > 0.

(i) Argue that the minimum energy configuration of this alloy is where A atoms and
B atoms separate into two different phases. Sketch the configuration.

[4 marks]

(ii) Show that the statistical weight Ω of the system is

Ω =
N !

NA!NB!
.

[Hint : You may find the formula NCM = N !/(M !(N −M)!) useful.]

[2 marks]

(iii) Using the result in (ii) and Stirling’s approximation, calculate the entropy as a
function of N , NA and NB.

[4 marks]

QUESTION CONTINUES ON NEXT PAGE
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(iv) The order parameter x ≡ (NA−NB)/N denotes the difference fraction between
the A and B atoms. Using the order parameter, one can show that the Landau
functional for this system is approximated by (you don’t have to derive this)

F = −NkbT ln 2 +N

(
kbT

2
− 3J

)
x2 +

NkbT

12
x4.

Find the extrema of F and show that there is only one extrema when T > Tc where
the critical temperature Tc ≡ 6J/kb.

[4 marks]

(v) Show that F turns over from being a minimum to a maximum at x = 0 at the
critical temperature. Describe what happens to the distribution of atoms A and B
as the temperature is lowered from T > Tc to T < Tc.

[6 marks]

QUESTION CONTINUES ON NEXT PAGE
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(b) Consider an isolated system of N distinct non-interacting particles. Each particle can
be in any of the 3 possible energy levels with energies 0, ε, and 2ε respectively.

(i) In its ground state, which is the state of minimum energy, all the particles are in
the energy level with zero energy such that the energy E = 0. What is the entropy
S of the ground state?

[2 marks]

(ii) Suppose an amount of energy ∆E = ε is added to the ground state. What is the
entropy of this new system?

[2 marks]

(iii) Let the total energy of the system be E = 2Nε − ε. Argue that the entropy of
the system is the same as that when E = ε.

[3 marks]

(iv) Using the temperature definition T−1 = ∂S/∂E, argue that the system described
in (iii) is a system with negative temperature.

[3 marks]

FINAL PAGE
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Solutions B3

(a)

(i) At the minimum energy configuration, since A − B interaction is positive while
A − A and B − B interaction energy is negative, we want a configuration which
minimize the number of A − B interactions [2 marks]. Hence the atoms A and
B separate into two separate phases, touching only at a 2dimensional interface. [2
marks]

(ii) The total number of configuration is simply Ω = NCNA
(or Ω = NCNB

), which
immediately yields Ω = N !/(NA!(N −NA)! = N !/(NA!NB!). [2 marks]

(iii) This is a straightforward calculation. The entropy is S = kb ln Ω [1 marks], and
using Stirling’s approximation lnN ! = N lnN − N , a little bit (really!) of algebra
leads to [3 marks].

S = −Nkb(PA lnPA + PB lnPB) ,

where PA = NA/N and PB = NB/N .

(iv) To find the extrema, differentiate w.r.t to x and set to zero [1 marks]

∂F

∂x
= 2N

(
kbT

2
− 3J

)
x+

NkbT

3
x3 = 0 (11)

so the solutions are x = 0 and x = ±
√

3
√
− 6J
kbT

+ 1 [2 marks]. If T > 6J/kb then

there is only one solution x = 0. [1 marks]

(v) To find out if x = 0 is a minimum or maximum, we take the 2nd derivative [1
marks]

∂2F

∂x2
= N(kbT − 6J) +NkbTx

2. (12)

It’s clear that this expression at x = 0 changes from positive to negative at the critical
temperature Tc = 6J/kb as asserted. [2 marks]

At T > Tc, the only equilibrium point is at x = 0 since it is a minimum, meaning
that the number of atoms NA = NB wants to be equal. However, as we lower T < Tc,
x = 0 becomes an unstable point, and a phase transition occurs [ 1 mark], with x

falling into one of the two stable minima x = ±
√

3
√

6J
kbT
− 1 – either NA or NB will

dominate the lattice. [2 marks]

(b)

(i) Since all the particles must be in the 0 energy level, there is only one possible
configuration, hence the statistical weight is 1 so the entropy S = kb ln Ω = 0. [2
marks]

(ii) If E = ε, then one of the particles have energy ε while the rest has energy 0.
There are N particles, so there are N possiblities, thus S = kb lnN . [2 marks]

18



(iii) This energy corresponds to the case where all the particles are in the 2ε level
except one of them which is in the ε level. There are N particles, so there are N
possiblities, yielding S = kb lnN same as the case in (ii). [3 marks]

(iv) If we add ∆E = ε > 0 energy into the system in (iii), we get a total energy of
E = 2Nε, which means that all the particles are in the 2ε level. There is only one
possible configuration, so S = 0, i.e. ∆S < 0. Thus ∆S/∆E < 0, implying that
T < 0. [3 marks]
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