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6CCP3212

Physical Constants

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg = 931.494 MeV c−2

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant ~ = 1.055× 10−34 J s

Boltzmann constant kB = 1.381× 10−23 J K−1 = 8.617 ×10−11 MeV K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 W m−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

SEE NEXT PAGE
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Useful Information

Maxwell Relations (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

,

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

,

(
∂V

∂S

)
P

=

(
∂T

∂P

)
S

.

Fundamental Equation of Thermodynamics

dE = TdS − PdV + µdN

Thermodynamic Potentials

F = E − TS , Φ = E − TS + PV , H = E + PV .

with differentials

dF = −SdT − PdV + µdN , dΦ = −SdT + V dP + µdN , dH = TdS + V dP + µdN .

Heat Capacities

CV = T

(
∂S

∂T

)
V

=

(
∂E

∂T

)
V

, CP = T

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

.

Microcanonical Ensemble Entropy
S = kb ln Ω

Canonical Partition Function and formulas

Z =
∑
r

e−βEr , Pr =
1

Z
e−βEr , 〈X〉 =

∑
r

PrXr ,

F = −kbT lnZ , S = kb
∂

∂T
(T lnZ) , Mean Energy 〈E〉 = −

(
∂ lnZ

∂β

)

SEE NEXT PAGE
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Grand Canonical Ensemble Partition Function

Z =
∑
r

e−β(Er−µNr) ,

Mean Energy 〈E〉+ µ〈N〉 = −
(
∂ lnZ
∂β

)
, Mean Particle Number 〈N〉 =

1

β

(
∂ lnZ
∂µ

)
.

Fermi-Dirac Distribution

〈Nn〉 =
1

eβ(En−µ) + 1
.

Bose-Einstein Distribution

〈Nn〉 =
1

eβ(En−µ) − 1
.

Thermal de Broglie wavelength

λ =

√
2π~2
mkbT

.

Stirling’s Formula
lnN ! ≈ N lnN −N , N � 1

Polylog integrals ∫ ∞
0

xn−1

ex + 1
dx = (1− 21−n)Γ(n)ζ(n) , (n > 0),

and ∫ ∞
0

xn−1

ex − 1
dx = Γ(n)ζ(n) , (n > 1),

with Riemann Zeta function

ζ(p) ≡
∞∑
n=1

1

np
,

and the Gamma function

Γ(n) ≡
∫ ∞
0

xn−1e−xdx .

The Gamma function for n > 0 integers is

Γ(n) = (n− 1)! , n ∈ N − {0} .

SEE NEXT PAGE
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Common values for half-integer Gamma functions

Γ(1/2) =
√
π , Γ(3/2) =

√
π

2
, Γ(5/2) =

3
√
π

4
, Γ(7/2) =

15
√
π

8
.

and Zeta functions

ζ(3/2) = 2.612 , ζ(2) =
π2

6
, ζ(5/2) = 1.341 , ζ(3) = 1.202 , ζ(7/2) = 1.127 .

Gaussian Integral

I =

∫ ∞
−∞

e−ax
2

dx =

√
π

a
.

Geometric Sum
n=∞∑
n=0

xn =
1

1− x
, |x| < 1 .

A derivative identity between x, y and z with a single constraint x(y, z)(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

Differential transform from f(x, y) → f(x, z) for a function f(x, y) with a constraint x =
x(y, z) (

∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

.

SEE NEXT PAGE
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SECTION A

Answer all parts of this section.

1.1 (i) State the postulate of equal a priori probability.

(ii) State what is an isolated system.

[6 marks] [B]

1.2 State which of the following differentials are exact and which are inexact. Find F (x, y)
if exact. Find F (x, y)

(i) dF = (exy2 + exxy2)dx+ (2exxy)dy

(ii) dF = (x+ y2)−1dx+ 2y(x+ y2)dy

(iii) dF = y2dx− xy−3dy

[8 marks] [P]

1.3 A thermodynamic system has a 2 dimensional state space,

(i) Define what is meant by intensive and extensive variables.

(ii) Suppose a function of state can be described by an intensive function F (b, Y, Z) =
bY/Z, where Y and Z are extensive variables. Argue that b must be an intensive
variable.

[6 marks] [B]

SEE NEXT PAGE
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1.4 A system of 4 non-interacting and distinguishable particles are trapped on a lattice,
such that they can only occupy the three discrete energy states at E = ε, 2ε, 3ε.

(i) What are the possible energies E of the system if the entropy is zero?

(ii) What is the entropy of the system if the energy E = 10ε?

[6 marks]U

1.5 The Maxwell-Boltzmann distribution of a gas at temperature T is given by

f(v)e−mv
2/2kbT =

√
2

π

(
m

kbT

)3/2

v2e−mv
2/2kbT ,

where the absolute velocity is

v =
√
v2x + v2y + v2z ,

Calculate the mean inverse velocity 〈v−1〉.

[6 marks]B

1.6 The energy or the Hamiltonian of a dynamical tri-atomic particle with each atom
labeled 1, 2, 3 is given by

H(p1,p2,p3, q12, q23) =
1

2m
p2
1 +

1

2m
p2
2 +

1

2m
p2
3 +

1

2
λq212 +

1

4
αq423 ,

where m is the mass of the atoms; p1, p2 and p3 are the momenta of the atoms, λ
and α are the interaction strengths; and q12 and q23 are the distance between particles
1-2, and 2-3 respectively.

Using the equipartition theorem or otherwise, calculate the mean energy 〈E〉 for this
system in equilibrium.

[8 marks]B

SEE NEXT PAGE
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Solutions A

1.1

(i) All microstates are equally probably at equilibrium. [3 marks]

(ii) A system which does not interact with its surroundings either through work or
heat exchange. [3 marks]

1.2

(i) Exact F (x, y) = exxy2. [3 marks]

(ii) Exact F (x, y) = log(x+ y2). [3 marks]

(iii) Inexact. [2 marks]

1.3

(i) Extensive variables scale with size X → aX while intensive variables don’t scale
with size a→ a. [3 marks]

(ii) Since F is intensive, it doesn’t scale, if we scale X → aX and Y → aY , then
b→ b to keep F intensive. [3 marks]

1.4

(i) For zero entropy, we need to find configurations of the energy where there is only
one microstate. So we can have either all 4 particles occupying the ε state or the 3ε
state, hence E = 4ε or E = 12ε. [2 marks].

(ii) For E = 10ε, we either have (a) 3 particles at 3ε and 1 particle at ε or (b) 2
particles at 3ε and 2 particles at 2ε. If we label (a, b, c, d) to be the energy in which
particle a occupy etc, then (a) has (1, 3, 3, 3), (3, 1, 3, 3), (3, 3, 1, 3), (3, 3, 3, 1), i.e.
4C1, while (b) has (3, 3, 2, 2), (3, 2, 3, 2), (2, 3, 3, 2), (2, 3, 2, 3), (2, 2, 3, 3), so for a
total of 9 microstates. The entropy is then S = kb log 9. [4 marks]

1.5 Just integrate [6 marks]

〈v−1〉 =

∫ ∞
0

v−1f(v)e−mv
2/2kbT

=

√
2

π

(
m

kbT

)3/2 ∫ ∞
0

ve−mv
2/2kbTdv

=

√
2

π

(
m

kbT

)3/2
[
−kbTe

−av2

m

]∞
0

=

√
2

π

(
m

kbT

)1/2

. (1)

1.6 Using the equipartition theorem, the energies for the momenta is 3/2kbT each
[2 marks], for the first interaction (1/2)λq212 is 1/2kbT [2 marks] and for the 2nd
interaction (1/4)αq423 is 1/4kbT [4 marks], for a total of 21/4kbT .
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SECTION B - Answer BOTH questions
Answer all parts of this section.

B2)

(a) Consider a system of 4 distinguishable non-interacting spin-1/2 particles interacting
with an externel magnetic field with strength B. Each particle can have spin of either
↑ or ↓, with energies E↑ = −mB and E↓ = mB, where +m and −m are the magnetic
dipole moment of a ↑ and a ↓ particle respectively. Suppose the energy of the system
is E0 = 2mB.

(i) Calculate the statistical weight of this system, Ω(E0). Write down all the possible
microstates.

[4 marks]UP

(ii) What is the probability that any given particle has spin ↓?

[2 marks]UP

(iii) Suppose we randomly pick two of the particles. We found that the first particle is
↓. What is the probability that the second particle has spin ↑? Explain your answer.

[4 marks]UP

(iv) Calculate the mean magnetic moment for this system, µ̄.

[3 marks]UP

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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(b)

A binary alloy consists of NA of atoms type A and NB of atoms type B, with a
total number of atoms N = NA + NB. The atoms form a simple cubic lattice, each
atom interacting only with its neighbours with interaction energy of J . The Landau
functional for this system is approximated by

F = −NkbT ln 2 +N

(
kbT

2
− 3J

)
x2 +

NkbT

12
x4,

where x ≡ (NA − NB)/N denoting the difference fraction between the A and B
atoms, is the order parameter of the system.

(i) Find the extrema of F . Show that at F turns over from being a minimum to a
maximum at x = 0 at the critical temperature of Tc = 6J/kb.

[8 marks]UP

(ii) Sketch the Landau functional F for the case T > Tc and T < Tc.

[4 marks]UP

(iii) Describe what happens to the distribution of atoms A and B as the temperature
is lowered from T > Tc to T < Tc.

[5 marks]UP

SEE NEXT PAGE
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Solution B2

B2 (a)

(i) The four possible microstates are (↑↓↓↓), (↓↑↓↓), (↓↓↑↓), (↓↓↓↑), i.e. Ω(2mB) = 4.
Can also note that since we must have 3 ↓ and 1 ↑, the number of configurations is
4C1=4. [4 marks]

(ii) Since we must have 3 ↓ particles and 1 ↑ particle, the probability of any particles
must have ↓ is simply P↓ = 3/4. [2 marks]

(iii) WLOG, we can pick the first 2 particles of the configurations in (i). If particle
1 is ↓, then this restrict the number of microstates with this configuration to (↓↑↓↓),
(↓↓↑↓), (↓↓↓↑). [2 marks] The probability that particle 2 is ↑ is then P = 1/3. [2
marks].

(iv) From (ii), P↓ = 3/4, thus P↑ = 1 − P↓ = 1/4. The mean magnetic moment of
the system is then

µ̄ = P↑ × (m) + P↓ × (−m) = −m
2
. (2)

[3 marks]

B2 (b)

(i) To find the extrema, differentiate w.r.t to x and set to zero

∂F

∂x
= 2N

(
kbT

2
− 3J

)
x+

NkbT

3
x3 = 0 (3)

so the solutions are x = 0 and x = ±
√

3
√
− 6J
kbT

+ 1. If T > 6J/kb then there is only

one solution x = 0. [4 marks]

To find out if x = 0 is a minimum or maximum, we take the 2nd derivative

∂2F

∂x2
= N(kbT − 6J) +NkbTx

2. (4)

It’s clear that this expression at x = 0 changes from positive to negative at the critical
temperature Tc = 6J/kb as asserted. [4 marks]

(ii) Sketch. [4 marks]

(iii) At T > Tc, the only equilibrium point is at x = 0 since it is a minimum, meaning
that the number of atoms NA = NB wants to be equal. However, as we lower T < Tc,
x = 0 becomes an unstable point, and a phase transition occurrs, with x falling into

one of the two stable minima x = ±
√

3
√

6J
kbT
− 1 – NA or NB will dominate the

lattice. [5 marks]

SEE NEXT PAGE
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B3)

(a) N number of non-interacting distinguishable diatomic molecules are restricted on
a 2 dimensional surface which span the x − y direction. Each molecule can be in
one of the three possible microstate (a) aligned parallel to the surface along the x
direction, (b) aligned parallel to the surface along the y direction and (c) aligned
perpendicular to the surface z direction. If the molecule is aligned parallel to the
surface, it has energy Ex = Ey = 0; while if it is aligned perpendicular to the surface,
it has Ez = ε > 0. The system is in thermal equilibrium at T > 0.

(i) What kind of statistical ensemble is this? Calculate the partition function Z for
this system.

[5 marks]P

(ii) Calculate the mean energy for this system. Show that the maximum mean energy
is Nε/3. At what temperature is this limit achieved?

[5 marks]UP

(iii) What is the probability of a molecule being aligned perpendicular to the surface
(i.e. in the z direction)?

[3 marks]P

(iv) Calculate the entropy S of the system as a function of ε, β and N . Show that
the minimum S is not zero, and explain why this is so.

[5 marks]U

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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(b) Our universe is filled with the remnants of the radiation from the Big Bang called
the Cosmic Microwave Background. This blackbody radiation is a bath of photons
in thermal equilibrium at temperature T ≈ 3 K today. Remember that each photon
has two polarisation states, and the chemical potential for photons is µ = 0, that the
energy of a photon at frequency ω is given by Eω = ~ω.

The density of states for a massless relativistic particle is given by

g(E)dE =
4πV

(2π~)3
E2

c3
dE .

(i) Using the Bose-Einstein distribution, calculate the average photon density N/V
in the universe in units of number per cm3.

[6 marks]P

(ii) It is predicted that, in addition to the Cosmic Microwave Background, there
exists a Cosmic Neutrino Background at around Tν ≈ 2 K today Neutrinos are
almost massless fermions and presently we believe that there are three species of
neutrinos. Calculate the average neutrino density Nν/V in the universe in units of
number per cm3. You can assume that neutrinos are massless, have zero chemical
potential, and are relativistic.

[6 marks]U

FINAL PAGE
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Solutions B3

(a)

(i) This is a canonical ensemble [1 mark]. The partition for a single system is Z =
1 + 1 + e−βε = 2 + e−βε where β = 1/kbT [2 marks]. For N identical particles, it is
then

ZN = ZN = (2 + e−βε)N . (5)

[2 marks]

(ii) The mean energy is [3 marks]

E = −∂ logZN

∂β
=

Nε

1 + 2eβε
(6)

Since T > 0 hence β > 0, then eβε ≥ 1. Thus E ≤ Nε/3, occuring when β → 0 or
when T →∞. [2 marks]

(iii) Since the molecules are not interacting, we can consider the subsystem of a single
moelcule. The probability is then Pz = (1/Z)eβε = 1/(1 + 2eβε). [3 marks]

(iv) Using the formula for entropy

S = kb(logZ + βE) = kb

(
N log(2 + e−βε) +

βNε

1 + 2eβε

)
(7)

[3 marks]

For minimum entropy, β →∞, i.e. T → 0, so Smin = kbN log 2. It is not zero since
the ground state is degenerate in the x and y directions, hence it is ∝ log 2. [2 marks]

(b)

(i) The Bose-Einstein distribution is

〈Nω〉 =
1

e
~ω
kbT − 1

(8)

Then

〈N〉 =
∑
n

1

eβE − 1

= 2

∫ ∞
0

g(E)

eβE − 1
dE

= 2

∫ ∞
0

4πV

(2π~)3
E2

c3
1

eβE − 1
dE

=
V

π2

(
kbT

~c

)3 ∫ ∞
0

x2

ex − 1
dx

=
V

π2

(
kbT

~c

)3

Γ(3)ζ(3) (9)
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[4 marks]. Plugging in all the numbers and being careful with units, one can then
calculate that 〈N〉/V ≈ 1000 cm−3. [2 marks]

(ii) Since neutrinos as fermions, we use the Fermi-Dirac statistic [2 marks]

〈Nω〉 =
1

e
E

kbTν + 1
(10)

Since neutrinos has 3 species vs 2 photon polarisation, and everything else remaining
the same, we can immediately write down the final integral [2 marks]

〈N〉 =
3

2

V

π2

(
kbTν
~c

)3 ∫ ∞
0

x2

ex + 1
dx

=
3

2

V

π2

(
kbTν
~c

)3

(1− 2−2)Γ(3)ζ(3) . (11)

Plugging in the numbers again we get 〈Nν〉/V ≈ 350 cm−3. [2 marks]
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