King's College London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

6CCP3212 Statistical Mechanics
Examiner: Eugene Lim
Examination Period 1
(January 2023)
Time allowed: THREE hours

Candidates should answer all parts of SECTION A, which provides 40 marks out of a total of 100 for the whole paper.

Candidates should also answer BOTH questions from SECTION B. The approximate mark for each part of a question is indicated in square brackets.

Calculators may be used. The following models are permitted: Casio fx83 and Casio fx85.

DO NOT REMOVE THIS EXAM PAPER FROM THE EXAMINATION ROOM

TURN OVER WHEN INSTRUCTED
2023 © C King's College London

Physical Constants

Permittivity of free space	$\epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
Permeability of free space	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
Speed of light in free space	$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Gravitational constant	$\mathrm{G}=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Elementary charge	$\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$
Electron rest mass	$m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}$
Unified atomic mass unit	$m_{\mathrm{u}}=1.661 \times 10^{-27} \mathrm{~kg}=931.494 \mathrm{MeV} \mathrm{c}$
Proton rest mass	$m_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg}$
Neutron rest mass	$m_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
Planck constant	$\hbar=1.055 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{2}$
Boltzmann constant	$k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}=8.617 \times 10^{-11} \mathrm{MeV} \mathrm{K}{ }^{-1}$
Stefan-Boltzmann constant	$\sigma=5.670 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Gas constant	$R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Avogadro constant	$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Molar volume of ideal gas at STP	$=2.241 \times 10^{-2} \mathrm{~m}^{3}$
One standard atmosphere	$P_{0}=1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$

Useful Information

Maxwell Relations

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}, \quad\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V} \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}, \quad\left(\frac{\partial V}{\partial S}\right)_{P}=\left(\frac{\partial T}{\partial P}\right)_{S}
\end{aligned}
$$

Fundamental Equation of Thermodynamics

$$
d E=T d S-P d V+\mu d N
$$

Thermodynamic Potentials

$$
F=E-T S, \Phi=E-T S+P V, H=E+P V
$$

with differentials

$$
d F=-S d T-P d V+\mu d N, d \Phi=-S d T+V d P+\mu d N, d H=T d S+V d P+\mu d N
$$

Heat Capacities

$$
C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}, C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} .
$$

Microcanonical Ensemble Entropy

$$
S=k_{b} \ln \Omega
$$

Canonical Partition Function and formulas

$$
\begin{gathered}
Z=\sum_{r} e^{-\beta E_{r}}, P_{r}=\frac{1}{Z} e^{-\beta E_{r}},\langle X\rangle=\sum_{r} P_{r} X_{r}, \\
F=-k_{b} T \ln Z, S=k_{b} \frac{\partial}{\partial T}(T \ln Z), \text { Mean Energy }\langle E\rangle=-\left(\frac{\partial \ln Z}{\partial \beta}\right)
\end{gathered}
$$

Grand Canonical Ensemble Partition Function

$$
\mathcal{Z}=\sum_{r} e^{-\beta\left(E_{r}-\mu N_{r}\right)},
$$

Mean Energy $\langle E\rangle+\mu\langle N\rangle=-\left(\frac{\partial \ln \mathcal{Z}}{\partial \beta}\right)$, Mean Particle Number $\langle N\rangle=\frac{1}{\beta}\left(\frac{\partial \ln \mathcal{Z}}{\partial \mu}\right)$.
Fermi-Dirac Distribution

$$
\left\langle N_{\mathbf{n}}\right\rangle=\frac{1}{e^{\beta\left(E_{\mathbf{n}}-\mu\right)}+1} .
$$

Bose-Einstein Distribution

$$
\left\langle N_{\mathbf{n}}\right\rangle=\frac{1}{e^{\beta\left(E_{\mathbf{n}}-\mu\right)}-1} .
$$

Thermal de Broglie wavelength

$$
\lambda=\sqrt{\frac{2 \pi \hbar^{2}}{m k_{b} T}} .
$$

Stirling's Formula

$$
\ln N!\approx N \ln N-N, N \gg 1
$$

Polylog integrals

$$
\int_{0}^{\infty} \frac{x^{n-1}}{e^{x}+1} d x=\left(1-2^{1-n}\right) \Gamma(n) \zeta(n),(n>0)
$$

and

$$
\int_{0}^{\infty} \frac{x^{n-1}}{e^{x}-1} d x=\Gamma(n) \zeta(n),(n>1)
$$

with Riemann Zeta function

$$
\zeta(p) \equiv \sum_{n=1}^{\infty} \frac{1}{n^{p}},
$$

and the Gamma function

$$
\Gamma(n) \equiv \int_{0}^{\infty} x^{n-1} e^{-x} d x
$$

The Gamma function for $n>0$ integers is

$$
\Gamma(n)=(n-1)!, n \in \mathcal{N}-\{0\} .
$$

Common values for half-integer Gamma functions

$$
\Gamma(1 / 2)=\sqrt{\pi}, \Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}, \Gamma(5 / 2)=\frac{3 \sqrt{\pi}}{4}, \Gamma(7 / 2)=\frac{15 \sqrt{\pi}}{8} .
$$

and Zeta functions

$$
\zeta(3 / 2)=2.612, \zeta(2)=\frac{\pi^{2}}{6}, \zeta(5 / 2)=1.341, \zeta(3)=1.202, \zeta(7 / 2)=1.127
$$

Gaussian Integral

$$
I=\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} .
$$

Geometric Sum

$$
\sum_{n=0}^{n=\infty} x^{n}=\frac{1}{1-x},|x|<1
$$

A derivative identity between x, y and z with a single constraint $x(y, z)$

$$
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
$$

Differential transform from $f(x, y) \rightarrow f(x, z)$ for a function $f(x, y)$ with a constraint $x=$ $x(y, z)$

$$
\left(\frac{\partial f}{\partial x}\right)_{z}=\left(\frac{\partial f}{\partial x}\right)_{y}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z}
$$

SECTION A

Answer all parts of this section.

1.1 (i) State the postulate of equal a priori probability.
(ii) State what is an isolated system.
[6 marks] [B]
1.2 State which of the following differentials are exact and which are inexact. Find $F(x, y)$ if exact. Find $F(x, y)$
(i) $d F=\left(e^{x} y^{2}+e^{x} x y^{2}\right) d x+\left(2 e^{x} x y\right) d y$
(ii) $d F=\left(x+y^{2}\right)^{-1} d x+2 y\left(x+y^{2}\right) d y$
(iii) $d F=y^{2} d x-x y^{-3} d y$
[8 marks] [P]
1.3 A thermodynamic system has a 2 dimensional state space,
(i) Define what is meant by intensive and extensive variables.
(ii) Suppose a function of state can be described by an intensive function $F(b, Y, Z)=$ $b Y / Z$, where Y and Z are extensive variables. Argue that b must be an intensive variable.
1.4 A system of 4 non-interacting and distinguishable particles are trapped on a lattice, such that they can only occupy the three discrete energy states at $E=\epsilon, 2 \epsilon, 3 \epsilon$.
(i) What are the possible energies E of the system if the entropy is zero?
(ii) What is the entropy of the system if the energy $E=10 \epsilon$?
1.5 The Maxwell-Boltzmann distribution of a gas at temperature T is given by

$$
f(v) e^{-m v^{2} / 2 k_{b} T}=\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k_{b} T},
$$

where the absolute velocity is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}},
$$

Calculate the mean inverse velocity $\left\langle v^{-1}\right\rangle$.
1.6 The energy or the Hamiltonian of a dynamical tri-atomic particle with each atom labeled $1,2,3$ is given by

$$
H\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, q_{12}, q_{23}\right)=\frac{1}{2 m} \mathbf{p}_{1}^{2}+\frac{1}{2 m} \mathbf{p}_{2}^{2}+\frac{1}{2 m} \mathbf{p}_{3}^{2}+\frac{1}{2} \lambda q_{12}^{2}+\frac{1}{4} \alpha q_{23}^{4},
$$

where m is the mass of the atoms; $\mathbf{p}_{1}, \mathbf{p}_{2}$ and \mathbf{p}_{3} are the momenta of the atoms, λ and α are the interaction strengths; and q_{12} and q_{23} are the distance between particles $1-2$, and 2-3 respectively.
Using the equipartition theorem or otherwise, calculate the mean energy $\langle E\rangle$ for this system in equilibrium.

Solutions A

1.1

(i) All microstates are equally probably at equilibrium. [3 marks]
(ii) A system which does not interact with its surroundings either through work or heat exchange. [3 marks]

1.2

(i) Exact $F(x, y)=e^{x} x y^{2}$. [3 marks]
(ii) Exact $F(x, y)=\log \left(x+y^{2}\right)$. [3 marks]
(iii) Inexact. [2 marks]

1.3

(i) Extensive variables scale with size $X \rightarrow a X$ while intensive variables don't scale with size $a \rightarrow a$. [3 marks]
(ii) Since F is intensive, it doesn't scale, if we scale $X \rightarrow a X$ and $Y \rightarrow a Y$, then $b \rightarrow b$ to keep F intensive. [3 marks]

1.4

(i) For zero entropy, we need to find configurations of the energy where there is only one microstate. So we can have either all 4 particles occupying the ϵ state or the 3ϵ state, hence $E=4 \epsilon$ or $E=12 \epsilon$. [2 marks].
(ii) For $E=10 \epsilon$, we either have (a) 3 particles at 3ϵ and 1 particle at ϵ or (b) 2 particles at 3ϵ and 2 particles at 2ϵ. If we label (a, b, c, d) to be the energy in which particle a occupy etc, then (a) has $(1,3,3,3),(3,1,3,3),(3,3,1,3),(3,3,3,1)$, i.e. ${ }^{4} C_{1}$, while (b) has $(3,3,2,2),(3,2,3,2),(2,3,3,2),(2,3,2,3),(2,2,3,3)$, so for a total of 9 microstates. The entropy is then $S=k_{b} \log 9$. [4 marks]
1.5 Just integrate [6 marks]

$$
\begin{align*}
\left\langle v^{-1}\right\rangle & =\int_{0}^{\infty} v^{-1} f(v) e^{-m v^{2} / 2 k_{b} T} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} \int_{0}^{\infty} v e^{-m v^{2} / 2 k_{b} T} d v \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2}\left[-\frac{k_{b} T e^{-a v^{2}}}{m}\right]_{0}^{\infty} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{1 / 2} \tag{1}
\end{align*}
$$

1.6 Using the equipartition theorem, the energies for the momenta is $3 / 2 k_{b} T$ each [2 marks], for the first interaction $(1 / 2) \lambda q_{12}^{2}$ is $1 / 2 k_{b} T$ [2 marks] and for the 2 nd interaction (1/4) αq_{23}^{4} is $1 / 4 k_{b} T$ [4 marks], for a total of $21 / 4 k_{b} T$.

SEE NEXT PAGE

SECTION B - Answer BOTH questions
 Answer all parts of this section.

B2)

(a) Consider a system of 4 distinguishable non-interacting spin- $1 / 2$ particles interacting with an externel magnetic field with strength B. Each particle can have spin of either \uparrow or \downarrow, with energies $E_{\uparrow}=-m B$ and $E_{\downarrow}=m B$, where $+m$ and $-m$ are the magnetic dipole moment of a \uparrow and a \downarrow particle respectively. Suppose the energy of the system is $E_{0}=2 \mathrm{mB}$.
(i) Calculate the statistical weight of this system, $\Omega\left(E_{0}\right)$. Write down all the possible microstates.
(ii) What is the probability that any given particle has spin \downarrow ?
[2 marks]UP
(iii) Suppose we randomly pick two of the particles. We found that the first particle is \downarrow. What is the probability that the second particle has spin \uparrow ? Explain your answer.
(iv) Calculate the mean magnetic moment for this system, $\bar{\mu}$.

(b)

A binary alloy consists of N_{A} of atoms type A and N_{B} of atoms type B, with a total number of atoms $N=N_{A}+N_{B}$. The atoms form a simple cubic lattice, each atom interacting only with its neighbours with interaction energy of J. The Landau functional for this system is approximated by

$$
F=-N k_{b} T \ln 2+N\left(\frac{k_{b} T}{2}-3 J\right) x^{2}+\frac{N k_{b} T}{12} x^{4}
$$

where $x \equiv\left(N_{A}-N_{B}\right) / N$ denoting the difference fraction between the A and B atoms, is the order parameter of the system.
(i) Find the extrema of F. Show that at F turns over from being a minimum to a maximum at $x=0$ at the critical temperature of $T_{c}=6 J / k_{b}$.
(ii) Sketch the Landau functional F for the case $T>T_{c}$ and $T<T_{c}$.
[4 marks]UP
(iii) Describe what happens to the distribution of atoms A and B as the temperature is lowered from $T>T_{c}$ to $T<T_{c}$.
[5 marks]UP

Solution B2

B2 (a)

(i) The four possible microstates are $(\uparrow \downarrow \downarrow \downarrow),(\downarrow \uparrow \downarrow \downarrow),(\downarrow \downarrow \uparrow \downarrow),(\downarrow \downarrow \downarrow \uparrow)$, i.e. $\Omega(2 m B)=4$. Can also note that since we must have $3 \downarrow$ and $1 \uparrow$, the number of configurations is ${ }^{4} C_{1}=4$. [4 marks]
(ii) Since we must have $3 \downarrow$ particles and $1 \uparrow$ particle, the probability of any particles must have \downarrow is simply $P_{\downarrow}=3 / 4$. [2 marks]
(iii) WLOG, we can pick the first 2 particles of the configurations in (i). If particle 1 is \downarrow, then this restrict the number of microstates with this configuration to ($\downarrow \uparrow \downarrow \downarrow)$, $(\downarrow \downarrow \uparrow \downarrow),(\downarrow \downarrow \downarrow \uparrow)$. [2 marks] The probability that particle 2 is \uparrow is then $P=1 / 3$. [2 marks].
(iv) From (ii), $P_{\downarrow}=3 / 4$, thus $P_{\uparrow}=1-P_{\downarrow}=1 / 4$. The mean magnetic moment of the system is then

$$
\begin{equation*}
\bar{\mu}=P_{\uparrow} \times(m)+P_{\downarrow} \times(-m)=-\frac{m}{2} . \tag{2}
\end{equation*}
$$

[3 marks]
B2 (b)
(i) To find the extrema, differentiate w.r.t to x and set to zero

$$
\begin{equation*}
\frac{\partial F}{\partial x}=2 N\left(\frac{k_{b} T}{2}-3 J\right) x+\frac{N k_{b} T}{3} x^{3}=0 \tag{3}
\end{equation*}
$$

so the solutions are $x=0$ and $x= \pm \sqrt{3} \sqrt{-\frac{6 J}{k_{b} T}+1}$. If $T>6 J / k_{b}$ then there is only one solution $x=0$. [4 marks]
To find out if $x=0$ is a minimum or maximum, we take the 2nd derivative

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x^{2}}=N\left(k_{b} T-6 J\right)+N k_{b} T x^{2} . \tag{4}
\end{equation*}
$$

It's clear that this expression at $x=0$ changes from positive to negative at the critical temperature $T_{c}=6 \mathrm{~J} / k_{b}$ as asserted. [4 marks]
(ii) Sketch. [4 marks]
(iii) At $T>T_{c}$, the only equilibrium point is at $x=0$ since it is a minimum, meaning that the number of atoms $N_{A}=N_{B}$ wants to be equal. However, as we lower $T<T_{c}$, $x=0$ becomes an unstable point, and a phase transition occurrs, with x falling into one of the two stable minima $x= \pm \sqrt{3} \sqrt{\frac{6 J}{k_{b} T}-1}-N_{A}$ or N_{B} will dominate the lattice. [5 marks]

B3)

(a) N number of non-interacting distinguishable diatomic molecules are restricted on a 2 dimensional surface which span the $x-y$ direction. Each molecule can be in one of the three possible microstate (a) aligned parallel to the surface along the x direction, (b) aligned parallel to the surface along the y direction and (c) aligned perpendicular to the surface z direction. If the molecule is aligned parallel to the surface, it has energy $E_{x}=E_{y}=0$; while if it is aligned perpendicular to the surface, it has $E_{z}=\epsilon>0$. The system is in thermal equilibrium at $T>0$.
(i) What kind of statistical ensemble is this? Calculate the partition function Z for this system.
(ii) Calculate the mean energy for this system. Show that the maximum mean energy is $N \epsilon / 3$. At what temperature is this limit achieved?
(iii) What is the probability of a molecule being aligned perpendicular to the surface (i.e. in the z direction)?
(iv) Calculate the entropy S of the system as a function of ϵ, β and N. Show that the minimum S is not zero, and explain why this is so.
(b) Our universe is filled with the remnants of the radiation from the Big Bang called the Cosmic Microwave Background. This blackbody radiation is a bath of photons in thermal equilibrium at temperature $T \approx 3 \mathrm{~K}$ today. Remember that each photon has two polarisation states, and the chemical potential for photons is $\mu=0$, that the energy of a photon at frequency ω is given by $E_{\omega}=\hbar \omega$.
The density of states for a massless relativistic particle is given by

$$
g(E) d E=\frac{4 \pi V}{(2 \pi \hbar)^{3}} \frac{E^{2}}{c^{3}} d E .
$$

(i) Using the Bose-Einstein distribution, calculate the average photon density N / V in the universe in units of number per cm^{3}.

$$
[6 \text { marks }] \mathrm{P}
$$

(ii) It is predicted that, in addition to the Cosmic Microwave Background, there exists a Cosmic Neutrino Background at around $T_{\nu} \approx 2 \mathrm{~K}$ today Neutrinos are almost massless fermions and presently we believe that there are three species of neutrinos. Calculate the average neutrino density N_{ν} / V in the universe in units of number per cm^{3}. You can assume that neutrinos are massless, have zero chemical potential, and are relativistic.

Solutions B3

(a)
(i) This is a canonical ensemble [1 mark]. The partition for a single system is $Z=$ $1+1+e^{-\beta \epsilon}=2+e^{-\beta \epsilon}$ where $\beta=1 / k_{b} T$ [2 marks]. For N identical particles, it is then

$$
\begin{equation*}
Z_{N}=Z^{N}=\left(2+e^{-\beta \epsilon}\right)^{N} . \tag{5}
\end{equation*}
$$

[2 marks]
(ii) The mean energy is [3 marks]

$$
\begin{equation*}
E=-\frac{\partial \log Z^{N}}{\partial \beta}=\frac{N \epsilon}{1+2 e^{\beta \epsilon}} \tag{6}
\end{equation*}
$$

Since $T>0$ hence $\beta>0$, then $e^{\beta \epsilon} \geq 1$. Thus $E \leq N \epsilon / 3$, occuring when $\beta \rightarrow 0$ or when $T \rightarrow \infty$. [2 marks]
(iii) Since the molecules are not interacting, we can consider the subsystem of a single moelcule. The probability is then $P_{z}=(1 / Z) e^{\beta \epsilon}=1 /\left(1+2 e^{\beta \epsilon}\right)$. [3 marks]
(iv) Using the formula for entropy

$$
\begin{equation*}
S=k_{b}(\log Z+\beta E)=k_{b}\left(N \log \left(2+e^{-\beta \epsilon}\right)+\frac{\beta N \epsilon}{1+2 e^{\beta \epsilon}}\right) \tag{7}
\end{equation*}
$$

[3 marks]
For minimum entropy, $\beta \rightarrow \infty$, i.e. $T \rightarrow 0$, so $S_{\min }=k_{b} N \log 2$. It is not zero since the ground state is degenerate in the x and y directions, hence it is $\propto \log 2$. [2 marks]
(b)
(i) The Bose-Einstein distribution is

$$
\begin{equation*}
\left\langle N_{\omega}\right\rangle=\frac{1}{e^{\frac{\hbar \omega}{k_{b} T}}-1} \tag{8}
\end{equation*}
$$

Then

$$
\begin{align*}
\langle N\rangle & =\sum_{\mathbf{n}} \frac{1}{e^{\beta E}-1} \\
& =2 \int_{0}^{\infty} \frac{g(E)}{e^{\beta E}-1} d E \\
& =2 \int_{0}^{\infty} \frac{4 \pi V}{(2 \pi \hbar)^{3}} \frac{E^{2}}{c^{3}} \frac{1}{e^{\beta E}-1} d E \\
& =\frac{V}{\pi^{2}}\left(\frac{k_{b} T}{\hbar c}\right)^{3} \int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x \\
& =\frac{V}{\pi^{2}}\left(\frac{k_{b} T}{\hbar c}\right)^{3} \Gamma(3) \zeta(3) \tag{9}
\end{align*}
$$

[4 marks]. Plugging in all the numbers and being careful with units, one can then calculate that $\langle N\rangle / V \approx 1000 \mathrm{~cm}^{-3}$. [2 marks]
(ii) Since neutrinos as fermions, we use the Fermi-Dirac statistic [2 marks]

$$
\begin{equation*}
\left\langle N_{\omega}\right\rangle=\frac{1}{e^{\frac{E}{k_{b} T_{\nu}}}+1} \tag{10}
\end{equation*}
$$

Since neutrinos has 3 species vs 2 photon polarisation, and everything else remaining the same, we can immediately write down the final integral [2 marks]

$$
\begin{align*}
\langle N\rangle & =\frac{3}{2} \frac{V}{\pi^{2}}\left(\frac{k_{b} T_{\nu}}{\hbar c}\right)^{3} \int_{0}^{\infty} \frac{x^{2}}{e^{x}+1} d x \\
& =\frac{3}{2} \frac{V}{\pi^{2}}\left(\frac{k_{b} T_{\nu}}{\hbar c}\right)^{3}\left(1-2^{-2}\right) \Gamma(3) \zeta(3) \tag{11}
\end{align*}
$$

Plugging in the numbers again we get $\left\langle N_{\nu}\right\rangle / V \approx 350 \mathrm{~cm}^{-3}$. [2 marks]

