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Physical Constants

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg = 931.494 MeV c−2

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant h = 6.626× 10−34 J s

Boltzmann constant kB = 1.381× 10−23 J K−1 = 8.617 ×10−11 MeV K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 W m−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

SEE NEXT PAGE
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Useful Information

Maxwell Relations (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

,

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

,

(
∂V

∂S

)
P

=

(
∂T

∂P

)
S

.

Fundamental Equation of Thermodynamics

dE = TdS − PdV + µdN

Thermodynamic Potentials

F = E − TS , Φ = E − TS + PV , H = E + PV .

with differentials

dF = −SdT − PdV + µdN , dΦ = −SdT + V dP + µdN , dH = TdS + V dP + µdN .

Heat Capacities

CV = T

(
∂S

∂T

)
V

=

(
∂E

∂T

)
V

, CP = T

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

.

Microcanonical Ensemble Entropy
S = kb ln Ω

Canonical Partition Function and formulas

Z =
∑
r

e−βEr , Pr =
1

Z
e−βEr , 〈X〉 =

∑
r

PrXr ,

F = −kbT lnZ , S = kb
∂

∂T
(T lnZ) , Mean Energy 〈E〉 = −

(
∂ lnZ

∂β

)

SEE NEXT PAGE
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Grand Canonical Ensemble Partition Function

Z =
∑
r

e−β(Er−µNr) ,

Mean Energy 〈E〉 = −
(
∂ lnZ
∂β

)
+ µ〈N〉 , Mean Particle Number 〈N〉 =

1

β

(
∂ lnZ
∂µ

)
.

Fermi-Dirac Distribution

〈Nn〉 =
1

eβ(En−µ) + 1
.

Bose-Einstein Distribution

〈Nn〉 =
1

eβ(En−µ) − 1
.

Thermal de Broglie wavelength

λ =

√
2π~2

mkbT
.

Stirling’s Formula
lnN ! = N lnN −N .

Polylog integrals ∫ ∞
0

xn−1

ex + 1
dx = (1− 21−n)Γ(n)ζ(n) , (n > 0),

and ∫ ∞
0

xn−1

ex − 1
dx = Γ(n)ζ(n) , (n > 1),

with Riemann Zeta function

ζ(p) ≡
∞∑
n=1

1

np
,

and the Gamma function

Γ(n) ≡
∫ ∞

0

xn−1e−xdx .

The Gamma function for n > 0 integers is

Γ(n) = (n− 1)! , n ∈ N − {0} .

SEE NEXT PAGE
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Common values for half-integer Gamma functions

Γ(1/2) =
√
π , Γ(3/2) =

√
π

2
, Γ(5/2) =

3
√
π

4
, Γ(7/2) =

15
√
π

8
.

and Zeta functions

ζ(3/2) = 2.612 , ζ(2) =
π2

6
, ζ(5/2) = 1.341 , ζ(3) = 1.202 , ζ(7/2) = 1.127 .

Gaussian Integral

I =

∫ ∞
−∞

e−ax
2

dx =

√
π

a
.

Geometric Sum
n=∞∑
n=0

xn =
1

1− x
, |x| < 1 .

A derivative identity between x, y and z with a single constraint x(y, z)(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

Differential transform from f(x, y) → f(x, z) for a function f(x, y) with a constraint x =
x(y, z) (

∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

.

SEE NEXT PAGE
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SECTION A

Answer SECTION A in an answer book.
Answer as many parts of this section as you wish. Your total mark for this

section will be capped at 40.

1.1 State the Zeroth and 1st laws of Classical Thermodynamics.

[3 marks]

1.2 What is the statistical weight of an ensemble?

[3 marks]

1.3 State which of the following are exact differentials. Integrate the equation if it is
exact.

(i) dG(x, y, z) = yzdx+ zxdy + xydz.

(ii) dG(x, y) = 2xe−ydx− x2e−ydy.

(iii) dG(x, y) = (3x2 + y)dx+ 2ydy.

[9 marks]

SEE NEXT PAGE
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1.4 Suppose X and Y are extensive variables. Show that this implies that X/Y is an
intensive variable.

[6 marks]

1.5 The free energy of blackbody radiation is given by

F = −V π
2(kbT )4

45(~c)3
,

where V and T are the volume and temperature. Prove that the energy density
ρ ∝ T 4.

[8 marks]

1.6 Consider a thermodynamic system with state variables P , T and V , related by some
equation of state P (V, T ). By performing a coordinate transform from S(P, T ) →
S(T, V ), show that (

∂S

∂T

)
V

=

(
∂P

∂T

)
V

(
∂S

∂P

)
T

+

(
∂S

∂T

)
P

.

You may use any formula provided.

[6 marks]

SEE NEXT PAGE

7



6CCP3212

1.7 A lattice has 5 possible sites, each with a magnetic dipole with two possible spin
states, + and -. An energy of a + state has energy ε while the energy of a - state
has energy −ε. The total energy of the system is held by an external magnetic field
such that E = ε. What kind of statistical ensemble does this represent? Calculate
the statistical weight of this system.

[8 marks]

1.8 The Maxwell-Boltzmann distribution of a gas at temperature T is given by

f(v)e−mv
2/2kbT =

√
2

π

(
m

kbT

)3/2

v2e−mv
2/2kbT ,

where the absolute velocity is

v =
√
v2
x + v2

y + v2
z .

Suppose the particles of the gas is non-relativistic, argue that the distribution in
terms of energy E is

f(E)e−E/kbT =

√
8

π

(
m

kbT

)3/2
E

m
e−E/kbT .

Prove that the most likely energy state of each gas particle is Emax = kbT .

[8 marks]

SEE NEXT PAGE

8



6CCP3212

1.9 The Landau functional for a first order phase transition is given by

F = F0(T ) = a(T )m2 + jm3 + bm4 ,

with

a(T ) = α(T ) = α(T − Tc) +
9j2

32b
(1)

with α > 0, b > 0 and j < 0 being real constants. Find the equilibrium points of F
as a function of the order parameter m. Show that when T > Tc, there are only one
equilibrium point. Is this equilibrium point stable or unstable?

[9 marks]B

SEE NEXT PAGE
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SECTION B - Answer TWO questions
Answer SECTION B in an answer book

2) Consider an analog of the Van der Waals equation of state for a diatomic gas as follows

P =
NkbT

V − b
+
N2

V 2
a (2)

where a > 0 and b > 0 are constants. The + sign for the a term in the above equation
means that the gas has long range repulsive forces instead of long range attractive
forces for the standard Van der Waals gas.

(a) State the conditions for a system to be in a critical point.

[2 marks]

(b) Does the gas described by the equation of state above possess a critical point? If so,
find Tc, Pc and Vc as functions of N , a and b. If not, prove it.

[6 marks]

(c) The energy E of any system is given by(
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

.

In the limit of very low densities and room temperature, it is found experimentally
that the heat capacity of this gas is CV = 5/2Nkb. Show that the energy E of the
system is given by

E(T, V ) =
5

2
NkbT +

aN2

V
.

[10 marks]

(d) For a gas of fixed N , and using the fundamental equation of thermodynamics, show
that

dS =
5

2
Nkb

dT

T
+

Nkb
V − b

dV .

[6 marks]

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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(e) The isothermal compressibility of a gas is given by

KT = − 1

V

(
∂V

∂P

)
T

.

Calculate KT for this gas. Show that as V →∞, limV→∞KT → 1/P .

[6 marks]

SEE NEXT PAGE
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3) Consider a gas of ideal non-relativistic fermoins of spin-1/2 and mass mF , trapped on
a 2 dimensional surface of area A. For these quantum particles, the energy is given
by

En =
~2k2

2mF

=
4π2~2

2mFa2
(n2

x + n2
y) , k =

√
k2
x + k2

y ,

where nx, ny = 0, 1, 2, 3, . . . label the possible quantum numbers, and ni = aki/(2π).

(a) By converting the sum into an integral∑
n

→
∫
dnxdny ,

show that the density of states g(E) is given by

g(E) = g̃
2πmFA

(2π~)2
,

where g̃ = 2 for spin-1/2 fermions.

[6 marks]

(b) The fugacity of a species of particle with chemical potential µ is defined to be

z ≡ eβµ .

Show that the number density nF of the fermions on this two dimensional plane is
given by

nF ≡
〈N〉
A

= g̃λ−2
F ln(1 + z) ,

where λ =
√

2π~2/mFkbT is the thermal de Broglie wavelength.

(Hint : You may find the following integral∫ ∞
0

dx

α−1ex ± 1
= ± ln(1± α) ,

for any real constant a useful. )

[6 marks]

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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(c) Repeat the calculation for part (b), but this time for a gas of spin-0 bosons of mass
mB. Show that the number density of bosons is given by

nBλ
2
B = − ln(1− zB) , (3)

where zB is the fugacity of the boson, and λB =
√

2π~2/mBkbT .

[2 marks]

(d) At some sufficiently low temperature T∗, the fermions are non-interacting with the
exception that opposite spin fermions can pair up to form spin-0 bosons of mass
mB = 2mF , with interaction energy ∆, such that the energy of each boson is given
by

EB = −∆ +
~2k2

2mB

,

with chemical potential µB ≡ 2µ. At equilibrium with temperature T , due to the
reactions nF and nB are not conserved, but the total number density n = nF + 2nB
is conserved. Show that

nλ2
F = 2 ln(1 + z)− 4 ln(1− z2eβ∆) . (4)

[8 marks]

(e) Prove that in the limit nλ2
F � 1, almost all the fermions are paired up into bosons,

i.e.

nB ≈
1

2
n .

[8 marks]

SEE NEXT PAGE
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4) A system consists of two identical, non-interacting, spin-less particles. The system has
only 3 single particle states, labeled 1, 2 and 3, with energies ε1 = 0 < ε2 < ε3
respectively.

(a) Define what is meant by a microcanonical ensemble and a canonical ensemble.

[4 marks]

(b) Write down all the possible states and their total energies for the above system if the
particles are (i) fermions and (ii) bosons.

[8 marks]

(c) Write down the partition function for a canonical ensemble at temperature T = 1/kbβ,
for both the fermionic and bosonic cases of part (b).

[4 marks]

(d) In the low temperature limit βε3 � 1, we can neglect all but the first two leading
order terms of the partition functions derived in part (c). Compute the mean energy
densities of the fermionic system 〈EF 〉 and of the bosonic system 〈EB〉 respectively.

[8 marks]

(e) What are the mean energies of these systems in the limit as T → 0? Discuss this re-
sults in the context of the symmetric/anti-symmetric properties of bosonic/fermionic
wavefunctions.

[6 marks]

FINAL PAGE
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