
6CCP3212 Statistical Mechanics Homework 5

Lecturer: Prof. Eugene A. Lim

https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1) In the lectures, we argue that the critical limit of a BEC T → Tcrit, at fixed V , the mean number of

particles and the mean energy are given by

〈Ncrit〉 =

∫ ∞
0

4
√

2πV

(2π~)3
m3/2 E1/2

eβE − 1
dE , (1)

and

〈E〉 =

∫ ∞
0

4
√

2πV

(2π~)3
m3/2 E3/2

eβE − 1
dE (2)

Compute the integrals, and show that they are

〈Ncrit〉 = 2.612
V

λ3
(3)

and

〈E〉 = 1.783
4
√

2πV

(2π~)3
m3/2(kbT )5/2 (4)

where

λ =

√
2π~2
mkbT

, (5)

is the thermal de Broglie wavelength.

2) Consider the Van der Waals equation of state for fixed N

NkbT =

(
P +

N2

V 2
a

)
(V −Nb) . (6)

(i) Express the pressure P as a function of V and T .

(ii) The critical conditions are given by (∂P/∂V )T = 0 and (∂2P/∂V 2)T = 0. Find Pc, Tc and Vc as a

function of a, b and N .

(iii) From Problem Set 1 Q6, you have shown that(
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

. (7)

Using the Van der Waals equation, and the fact that C id
V for an ideal gas is given by C id

V = (3/2)Nkb,

show that the energy for a Van der Waals gas is

E =
3

2
NkbT −

aN2

V
. (8)

Hence show that at the critical point Tc, the specific heat CV for the Van der Waals gas does not scale

with T , i.e.

CV ∝ (T − Tc)α , α = 0 . (9)

(Note you can directly derive the above relation using the results of Problem Set 1 Q3 too.)

(iv) In Problem Set 1 Q4, you were given the isothermal compressibility of a gas as

KT ≡ −
1

V

(
∂V

∂P

)
T

. (10)
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Show, at the critical point TC and VC , the isothermal compressibility of the Van der Waals gas scales as

κ ∝ (T − TC)−1 . (11)

(Hint :Recall that at the critical point (∂P/∂V )T = 0.)

3) (Landau Model of 1st Order Phase Transition). Consider the following Landau Functional

F = F0(T ) + a(T − TC)m2 +
1

2
bm4 +

1

3
cm6 , (12)

where m is the order parameter and, a > 0, b < 0 and c > 0 are real constants.

(i) Find the minima of F , and show that there are five solutions given by

m = 0 , m2 =
−b±

√
b2 − 4a(T − TC)c

2c
. (13)

(ii) Consider the case T < TC , how many of the above solutions are real and stable? Sketch F in this

regime.

(iii) Consider the case when T > TC . Show that there are only one stable solution when T > T∗ where

T∗ =
b2

4ac
+ TC . (14)

In the regime where TC < T < T∗, show that there exist three real and stable solutions given by

m = 0 , m = ±

√
−b+

√
b2 − 4a(T − TC)c

2c
. (15)

Sketch both of these cases.

(iv) Consider a system described by this Landau functional F . We start at temperature T > T∗, and

gradually cool the system down. What happens at T∗? What happens at TC? Calculate the jump in the

order parameter m when a phase transition occurs.

(v) Conversely, if we start at temperature T < TC , and gradually heat the system up. What happens

at TC? What happens at T∗? Similarly, calculate the jump in the order parameter m when a phase

transition occurs.

(vi) Calculate the latent heat for the two transitions described in (iv) and (v), and show that it is

L = (abTC)/c for the former and L = (abTC)/2c for the latter.

4) (Exact solution of the Ising Model in 1-dimension). In this problem, we solve the Ising Model

in 1D exactly. Ising solved this problem as a PhD student in 1925, but here we will follow a more general

method first devised by Kramers and Wannier in 1941. The energy or Hamiltonian of the Ising model is

given by

E = −µH
N∑
i

si − J
N∑

j,(n.n.)

Jijsisj (16)

where the spins are

si =

{
+1 , for spin up ↑
−1 , for spin down ↓

(17)

The key idea of the Kramers-Wannier method is to note that we can “wrap around” the a long line of N

nodes, by identifying the end points, such that sN+1 ≡ s1, and then take N → ∞, as shown in Fig. 1.

This is called the Ising chain. In this form, the energy can be written in the symmetric form as

E = −1

2
µH

N∑
i

(si + si+1)−
N∑

j,(n.n.)

Jijsisj . (18)
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Figure 1: (Q4) An infinitely long 1D line of nodes (left) can be “wrapped around” to itself to make an

Ising Chain (right).

(i) Show that the partition function for the Ising chain is given by

Z1D =
∑
si=±1

· · ·
∑

sN=±1

N∏
i=1

exp

[
βJsisi+1 +

βµH

2
(si + si+1)

]
. (19)

(ii) Now consider the term, for any i,

T (si, si+1) ≡ exp

[
βJsisi+1 +

βµH

2
(si + si+1)

]
. (20)

Since si = ±1 and si+1 = ±1, there are four possible values for T . Write down these four possible

values T++ = T (si = 1, si+1 = 1), T−+ = T (si = −1, si+1 = 1), T+− = T (si = 1, si+1 = −1), and

T−− = T (si = −1, si+1 = 1). We can collect all these four possibilities as a 2× 2 matrix

T =

(
T++ T−+

T+− T−−

)
. (21)

(iii) For each i, the coefficients of the matrix T depends on the si and si+1, which are summed over in

the partition function. We can also think of T as a transfer matrix, whose values depend on “input” si+1

and “output” si (you can also think of both as “inputs” if you like), and borrow the notation of quantum

mechanics to write

〈si|T |si+1〉 ≡ exp

[
βJsisi+1 +

βµH

2
(si + si+1)

]
. (22)

Show that the partition function in (i) can then be written as

Z1D =
∑
si=±1

· · ·
∑

sN=±1
〈s1|T |s2〉〈s2|T |s3〉 . . . 〈si|T |si+1〉 . . . 〈si=N |T |s1〉 . (23)

(iv) Solve the partition function in (iii), and show that it is

Z1D = Tr(TN ) . (24)

(Hint : This is a standard linear algebra trick of “completing the set” which you have learned in quantum

mechanics. Recall that in quantum mechanics, the wave function for two operators A and B can be

expressed as 〈ψ|AB|φ〉 =
∑
i〈ψ|A|i〉〈i|B|φ〉 by inserting a complete set of eigenmodes 1 =

∑
i |i〉〈i|.)

(v) Recalling that the trace of any invertible matrix M is the sum of its eigenvalues, show that the

eigenvalues for T is given by

λ± = eβJ
[
cosh(βµH)±

√
e−4βJ + sinh2(βµH)

]
. (25)
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Hence argue that the partition function is given by

Z1D = λN+ + λN− , (26)

as we have asserted in the lectures.
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