
6CCP3212 Statistical Mechanics Homework 2

Lecturer: Prof. Eugene A. Lim

https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1) (Paramagnet and negative temperature.) Consider a lattice of N non-interacting magnetic spin-

1/2 dipoles with spins ↑ and ↓. Under an external magnetic field H > 0 that is parallel with the spin ↑
direction, some of the dipoles will be parallel ↑ or anti-parallel ↓ with the magnetic field, with the energy

E↑ = −µH ,E↓ = µH , (1)

where µ is the magnetic moment per dipole.

(i) Consider the ensemble of microstates such that there are fixed n↑ and n↓ dipoles. Show that the

energy of the system as a function of n↑ is

E = µH(N − 2n↑) . (2)

What ensemble does this define?

(ii) Express the statistical weight of the system as a function of n↑ and hence show that the entropy of

the system is given by

S(n↑) = kb[N lnN − n↑ lnn↑ − (N − n↑) ln(N − n↑)] . (3)

(iii) Compare this result to the one we obtained in class by considering the partition function

S = kbN [ln 2 + ln cosh(βµH)− βµH tanh(βµH)] , (4)

which we obtained by calculating the partition function and using S = kb(lnZ+βĒ). Why is it different

from our result above?

(iv) Calculate the temperature of the system

1

T
= − kb

2µH
ln
N − n↑
n↑

. (5)

and hence show that the temperature is negative when n↑ < N/2. Explain why this is so, by comparing

this result to the case of the canonical ensemble with some fixed, positive T we studied in class (this is

hard, but give it a shot before looking at the solutions!)

2) A deck of cards have 4 suits (♥, ♠, ♦, ♣) of 13 cards each (from A, 2, 3, . . . , 10, J , Q, K) for a total

of 52 cards.

(i) Let Ω be the total number of possible unique ways a deck of cards be shuffled. By considering each

unique shuffled deck as a microstate, Ω is then the statistical weight of the system. Calculate Ω for a

deck of cards.

(ii) Consider two suits of 13 cards each, which are then shuffled together. What is the statistical weight

of the shuffled decks if (a) the suits are different (say ♦ and ♣) and (b) the suits are identical (say ♦ and

♦)?

(iii) Finally if we combine two identical decks of cards of 4 suits each, argue that the statistical weight of

the combined deck is given by

ΩT =
1

252
(104!) . (6)

3) For a canonical ensemble, the partition function is given by

Z =
∑
r

e−βEr (7)
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where r labels the microstates, and Er is the energy of microstate r.

(i) The mean energy is the ensemble average

〈E〉 = −∂ lnZ

∂β
. (8)

The energy deviation from mean for each microstate is defined as ∆Er ≡ 〈E〉 − Er. Show that the

ensemble average of the square deviation is

〈∆E2〉 =

(
∂2 lnZ

∂β2

)
. (9)

(Hint : Use the fact that the ensemble average of linear terms is also linear, i.e. 〈X + Y 〉 = 〈X〉+ 〈Y 〉.)
(ii) In class, we show that the fluctuation 〈∆E2〉 = CV kbT

2. Argue that

〈
√

∆E2〉
〈E〉

∼ 1√
N

. (10)

(H int : Show that CV is an extensive quantity. )

4) Consider a 1-dimensional quantum simple harmonic oscillator. From your quantum mechanics course,

you learned that the energy spectrum is given by

En =

(
n+

1

2

)
~ω , (11)

where ω > 0 is the characteristic frequency of the oscillator, and n = 0, 1, 2, . . . is the principal quantum

number. The oscillator is in thermal contact with a heat bath of temperature T .

(i) Write down the partition function of this ensemble.

(ii) Consider the low temperature case, kbT � ~ω. Argue that only the states with small n are expected

to be occupied. If we assume that only the n = 0 and n = 1 states are occupied, calculate (a) the ratio of

r ≡ P1/P0 (i.e. the ratios of the probabilities) and (b) the mean energy 〈E〉 of the oscillator as a function

of temperature and r.

(iii) Consider now the general case where the temperatures can be of any amplitude. Show that the

partition function in this case can be written as

Z =
e−~ω/2kbT

1− e−~ω/kbT
. (12)

(H int : The geometric series
∑∞

0 xn = 1/(1− x) may be useful.)

Using this result, calculate the Helmholtz free energy F and the entropy S, and hence show that the

ensemble average of the energy is

E =
~ω
2

+
~ω

e~ω/kbT − 1
. (13)

(iv) Again considering the general case, use the results of (iii) to show that the heat capacity is

CV =

(
∂E

∂T

)
V

= kb

(
~ω
kbT

)2
e~ω/kbT

(e~ω/kbT − 1)2
. (14)

(v) Now consider the high temperature limit kbT � ~ω. Use the result in (iv) to show that the heat

capacity in this limit is

CV = kb . (15)

(H int : You might want to expand ex for x� 1.)

If we consider a solid withN particles which can vibrate in 3 dimensions, this results in the heat capacity of

CV = 3Nkb, which is known as the Dulong-Petit law – a result which was first observed experimentally.

The derivation that you have just done is proposed by Einstein.
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5) A quantum mechanical particle in a 3-D infinite square well with 0 ≤ x, y, z ≤ a has eigenstates with

energy

E =
~2π2

2ma2
(p2 + q2 + r2) , (16)

where p, q, r ∈ Z (i.e. positive integers).

(i) Suppose we put in N such non-interacting particles in the same box which are indistinguishable.

Argue that each microstate of this system is parameterized by 3N integers.

(ii) Let G(E) be the number of microstates with energy less than E. Show that, for E � ~2π2/(2ma2),

G(E) = cE(3N/2) (17)

for some positive constant c.

(H int: In the limit E � ~2π2/(2ma2), one can consider the quantum numbers (p, q, r) as coordinates,

with each grid point in this coordinate a possible microstate. So one can define R2
0 = p2 + q2 + r2, and

compute the total number of coordinates as a 3D sphere via a volume integral.)

6) In class, we showed that the entropy of a canonical ensemble is given by

S = kb

(
lnZ − β ∂ lnZ

∂β

)
, (18)

where the partition function is

Z =
∑
r

e−βEr . (19)

(i) Show that the entropy can be expressed as

S = kb
∂

∂T
(T lnZ) . (20)

(ii) If we allow the volume of the canonical ensemble to change, the partition function Z is then a function

of both β and V , i.e. Z(β, V ). We have shown in class that Helmholtz free energy is given by

F = −kbT lnZ . (21)

Using this and the identity we derived in Chapter 1

P = −
(
∂F

∂V

)
T

, (22)

show that this leads to the relation

P =
1

β

∂ lnZ

∂V
. (23)

(iii) The partition function Z for a system of magnetic dipoles is a function of β and its magnetic field

H. We can define the work done on the system to be

d̄W = −µdH (24)

where µ is the mean magnetic moment. Using the results in (ii), show that

µ =
1

β

∂ lnZ

∂H
. (25)

Argue that (µ,H) forms a conjugate pair of state variables.

7) (The grand canonical ensemble.) The grand canonical ensemble is the set of microstates at

constant V , T and µ, with the partition function

Z =
∑
r

e−β(Er−µNr) (26)
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and probability per microstate r

Pr ≡
e−β(Er−µNr)

Z
. (27)

(i) Show that the mean particle number and its dispersion with ∆N ≡ 〈N〉 −Nr are given by

〈N〉 ≡
∑
r

PrNr =
1

β

∂ lnZ
∂µ

, (28)

and

〈∆N2〉 =
1

β2

∂2 lnZ
∂µ2

=
1

β

∂〈N〉
∂µ

. (29)

(ii) In class, we showed that

dS = β(−d̄W + dE − µdN) . (30)

Show that this implies the thermodynamical definition of the chemical potential

µ =

(
∂E

∂N

)
V,S

. (31)

(iii) Suppose a system consists of i non-interacting species, with N (i) particles per species and corre-

sponding chemical potential µi. This system is immersed into an environment B with temperature T and

particles N
(i)
B such that the total N

(i)
0 = N

(i)
B +N

(i)
r is conserved. The partition function of this system

is given by

Z =
∑
r

e−β(Er−
∑

i µiN
(i)
r ) . (32)

Show that the chemical potential is given by

µi = −T

(
∂SB

∂N
(i)
0

)
E0,{N(i)

0 }

(33)

where {N (i)
0 } = {N (1)

0 , N
(2)
0 , N

(3)
0 , . . . } is the set of all particle species and SB = kb ln ΩB(E0−Er, N (1)

0 −
N

(1)
r , N

(2)
0 −N (2)

r , . . . , N
(i)
0 −N

(i)
r ).

8) The nuclei of atoms of a crystalline solid have spin 1 that are non-interacting. The spin-statistics

theorem then tells us that each nuclei can take 3 possible spin states, +, 0,−. In the presence of an

ellipsoidal electric charge distribution, each nuclei obtain the following energies

E− = E+ = ε , E0 = 0 . (34)

(i) Consider a single nucleus in a “bath” of nuclei with fixed temperature T . Calculate the probabilities

P0, P± of the three spin states. What are the most likely states when kbT � ε and when kbT � ε?

(ii) Calculate the mean energy of a single nucleus and show that it is

E1 =
2ε

eβε + 2
. (35)

(iii) Consider a lattice of N such nuclei. Write down the partition function of the system and hence

calculate the mean energy EN , and entropy S of the system.

(iv) Using your results in (iii), show that the entropy of a lattice of N nuclei in the high temperature

limit kbT � ε is S = kb ln 3N . What is the entropy of the low temperature limit kBT � ε? Explain this

result in terms of the microcanonical ensemble.
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