
6CCP3212 Statistical Mechanics Homework 1

Lecturer: Prof. Eugene A. Lim

https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1) (i) For the following differentials with α and β non-zero real constants, which are exact and which are

inexact? Integrate the equation if it is exact.

(a)

dG = αdx+ β
x

y
dy (1)

(b)

dG =
α

x
dx+ βdy (2)

(c)

dG = (x+ y)dx+
x2

2
dy (3)

(ii) Show that the work done on the system at pressure P

d̄W = −PdV (4)

where dV is the change in volume is an inexact differential by showing that there exists no possible

function of state for W (P, V ).

(iii) Consider the differential

dF = (x2 − y)dx+ xdy . (5)

(a) Show that this is not an exact differential. And hence integrate this equation in two different straight

paths from (1, 1)→ (2, 2) and from (1, 1)→ (1, 2)→ (2, 2), where (x, y) indicates the locations. Compare

the results – are they identical?

(b) Define a new differential with

dG ≡ dF

x2
=
(

1− y

x2

)
dx+

1

x
dy . (6)

Show that dG is exact, and find G(x, y).

2) This problem asks you to derive some derivative identities of a system with three variables x, y and z,

with a single constraint x(y, z). This kind of system is central to thermodynamics as we often use three

state variables P , V and T , with an equation of state P (V, T ) (i.e. the constraint) to describe a system.

(i) Prove the following identity (
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (7)

and hence show that for any equation of state P (V, T ) with the state variables P , V and T , the partial

derivatives are related by (
∂V

∂T

)
P

(
∂T

∂P

)
V

(
∂P

∂V

)
T

= −1 . (8)

(ii) Suppose f(x, y) is a function of x, y. Since there exists a constraint x(y, z), we can invert this to

become y(x, z), and hence execute a coordinate transform f(x, y) → f(x, z). Show that the following

identity holds in this case (
∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

. (9)

This identity allows us to go from the partial derivatives of one set of state variables to another as long

as we know the equation of state.

1



3) The heat capacities for constant pressure and constant volume as discussed in class are given by

CV = T

(
∂S

∂T

)
V

, CP = T

(
∂S

∂T

)
P

. (10)

(i) Show that they can be expressed as

CV = −T
(
∂2F

∂T 2

)
V

, CP = −T
(
∂2Φ

∂T 2

)
P

, CP =

(
∂H

∂T

)
P

. (11)

(ii) Show that the derivative of CV is given by(
∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

, (12)

hence once an equation of state P (V, T ) is known, then this can be easily calculated.

(iii) Consider the entropy S(P, T ), such that

dS =

(
∂S

∂P

)
T

dP +

(
∂S

∂T

)
P

dT . (13)

Using the result of Q2, perform the coordinate transform from S(P, T )→ S(T, V ) to show that

dS =

(
∂S

∂V

)
T

dV +

[(
∂P

∂T

)
V

(
∂S

∂P

)
T

+

(
∂S

∂T

)
P

]
dT (14)

hence (
∂S

∂T

)
V

=

[(
∂P

∂T

)
V

(
∂S

∂P

)
T

+

(
∂S

∂T

)
P

]
. (15)

Using this result, prove that the difference between the two heat capacities is

CP − CV
T

=

(
∂V

∂T

)
P

(
∂P

∂T

)
V

. (16)

Check that for an ideal gas with equation of state PV = NkbT , this relationship gives the familiar result

CP − CV = Nkb.

4) The Compressibility of a system is defined by

KT ≡ −
1

V

(
∂V

∂P

)
T

(17)

for constant T (or isothermal) compression, and

KS ≡ −
1

V

(
∂V

∂P

)
S

(18)

for constant S (or adiabatic) compression. The compressibility measures how much volume ∆V is in-

creased/reduced when the pressure is increased/decreased, for either fixed T or S.

Consider a gas immersed in a heat bath of temperature T , with two sections of volume V1 and V2

separated by a movable partition – see Fig. 1.

(i) Show by rescaling that the compressibility is an intensive quantity.

(ii) Suppose the system begins in equilibrium with total entropy S = S1 + S2 and energy E = E1 + E2.

By moving the partition adiabatically, we can increase/decrease the volumes V1 and V2 while keeping

the total volume V , the total energy E and the total entropy S fixed i.e. keeping the total system in

equilibrium. However, since the two partitions’ volumes V1 and V2 are changing, each partition is free to
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Figure 1: Figure for Problem 4

find their own equilibria at constant T . Let F1 and F2 be the Helmholtz free energies for the partitions.

Show that the total free energy of the system is additive

F = F1 + F2 , (19)

and that the total F is a constant when we move the partition adiabatically, thus

∂F

∂V1
=
∂F

∂V2
= 0 . (20)

Hence show that
∂F

∂V1
=
∂F1

∂V1
− ∂F2

∂V2
= 0 . (21)

(Hint : By take the total derivative of V = V1 + V2 and using the conservation of V , we can derive the

Jacobian
dV1
dV2

= −1 , (22)

which will be useful for the last part of this question.)

(iii) In class, we argued that at equilibrium F is a minimum. This means that

∂2F

∂V 2
1

> 0 . (23)

Use the results of section (i) and the definitions of compressibility to show that

1

V1(KT )1
+

1

V2(KT )2
> 0 (24)

in general. Since the partitions contain identical gases and KT is intensive, this means that (KT )1 =

(KT )2, and hence this proves that compressibility is always positive KT > 0 in general. Thus prove that(
∂P

∂V

)
T

< 0 , (25)

in general. (See section 5.2 of the lecture notes for a physical explanation why this inequality is a general

result.)

(iv) Using the results of Q2 and Q3, show that

CP − CV = TV KT

(
∂P

∂T

)2

V

. (26)

If T ≥ 0, then this implies that CP ≥ CV .

5) Consider a rod of initial length L0 and temperature T0. At temperature T and length L, the tension

force f of the rod is given by

f = aT 2(L− L0) (27)
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where a > 0 is a positive definite constant. One can think of this as a thermodynamic system with two

state variables T and L, where L plays the role of volume V , and f plays the role of pressure P hence

the above is an equation of state.

(i) Argue that the fundamental equation of thermodynamic for this system is given by

dE = TdS + fdL . (28)

Why is the work term d̄W = fdL positive?

(ii) Show that the equivalent Maxwell relation for this system is(
∂S

∂L

)
T

= −
(
∂f

∂T

)
L

. (29)

Compare it the usual
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

, we have gained a − sign. Can you see why?

(iii) At L = L0, we heat up the rod (i.e. d̄Q > 0), and make a measurement of the heat capacity at fixed

length CL, to find that it is CL(L0) = bT . Use your results in (ii), show that the entropy of the system

S in terms of L and T is given by

S(L, T ) = S(L0, T0) + b(T − T0)− aT (L− L0)2 . (30)

(Hint : Integrate S(L, T ) separately by fixing L0 and then T0.)

(iv) Finally, show that (
∂CL
∂L

)
T

= −2aT (L− L0) (31)

and hence calculate the heat capacity of the system as a function of T and L.

(v) If we adiabatically stretches the rod, keeping the rod in thermally isolated, does the temperature of

the rod increase or decrease?

6) Consider an ideal gas with equation of state PV = NkbT of fixed N , and with a constant heat

capacity CV = Nkbα, where α > 0 being a real positive definite constant.

(i) By considering a change of variables from E(V, S)→ E(V, T ), use the identity of Q2 to show that(
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

(32)

Use this relationship to prove that for an ideal gas with equation of state of PV = NkbT ,(
∂E

∂V

)
T

= 0 , (33)

implying that E is independent of V . As we will discuss further in Chapter 2, an ideal gas is a gas whose

particles do not interact with each other – this means that its total internal energy does not depend on

the gas density since there is no interaction energy, and hence it makes sense that E is independent of V .

(ii) Use the results of Q3 to show that

CP = Nkb(α+ 1) . (34)

(iii) Use the fundamental equation of thermodynamics to prove that

S = Nkb lnV +Nkbα lnT + const . (35)

(iv) In a reversible (adiabatic) process, dS = 0. In this case, using γ ≡ CP /CV , prove the following

familiar results

V Tα = const ⇒ TV γ−1 = another const (36)
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and,

PV γ = const . (37)

7) (The Carnot Cycle, Fig. 2). An engine is a thermodynamic system which extracts heat Q1 from a

reservoir T1, do work W , and then dumps the waste heat Q2 in to a heat sink T2 < T1. Via conservation

of energy, the total work done on the engine W = Q2 − Q1. (Note the negative, since we get net work

out of the engine.) The Carnot cycle is a thermodynamic engine which is reversible. It consists of 4

Figure 2: Problem 7 : Carnot Cycle

phases: (a) AB (isothermal expansion at T1) where heat Q1 is extracted from the heat reservoir (b) BC

(adiabatic expansion) where work is done by the engine (c) DC (isothermal compression at T2) where

the waste heat Q2 is discarded to the heat sink (d) CA (adiabatic compression) where work is done on

the engine.

(i) Since the system is reversible, the total entropy S remains constant. Show that this gives us the

relationship

Q2 =
Q1T2
T1

, (38)

and hence show that in a irreversible engine, this leads to the inequality

Q2 >
Q1T2
T1

. (39)

(ii) If we define the efficiency of an engine to be

η ≡ |W |
Q1

(40)

then use your results from (i) to show that

η ≤ T1 − T2
T1

(41)

and hence argue that the Carnot cycle is the most efficient engine theoretically possible.

(iii) Use the results of Q6(iv) to show that

VA
VB

=
VD
VC

. (42)

(iv) Specializing to the case where we use an ideal gas with the equation state PV = NkbT for the engine.

Using d̄Q = −d̄W = PdV , show that the isothermal expansion AB obeys

Q1 = NkbT1 ln
VB
VA

, (43)
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and that the isothermal compression CD obeys

Q2 = NkbT2 ln
VD
VC

. (44)

And hence show that the Clausius equality ∮
d̄Q

T
= 0 (45)

is obeyed.

8) Show that for processes at constant pressure and temperature, the Gibbs free energy evolves in time

as
dΦ

dt
< 0 . (46)

9) The Van der Waals equation of state describes a gas which is weakly interacting at long distances (we

will derive this equation of state in Chapter 3), and is given by

P =
kbT

V/N − b
− N2

V 2
a (47)

where a and b are constants. Consider a Van der Waals gas, with fixed N .

(i) Show that setting a = b = 0 recovers the ideal gas equation of state.

(ii) By considering E(V, T ), show that the differential dE for a Van der Waals gas is

dE = CV dT +
N2

V 2
adV . (48)

(Hint : use the identity you derived in Q6(i)).

(iii) Show that the heat capacity is independent of V and only dependent on T , i.e. CV (T ). (Hint : Use

the identities derived in Q3.)

(iv) By considering S(T, V ) show that the differential dS for a Van der Waals gas is

dS =
CV
T
dT +

kb
V/N − b

dV . (49)

(v) Finally, assuming that CV is also independent of time, i.e. CV = const, then the energy and entropy

is given by

E = CV T −
aN2

V
+ constant , (50)

and

S = CV lnT +Nkb ln

(
V

N
− b
)

+ const . (51)

Comparing this result to that of an ideal gas you derived in Q6, the energy E for the Van der Waals gas

is dependent on V – why?
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