Candidate number:

Desk number:

King's College London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

6CCP3212 Statistical Mechanics
Examiner: Dr Eugene Lim
Examination Period 2
(Summer 2019)
Time allowed: THREE hours

Candidates may answer as many parts as they wish from SECTION A, but the total mark for this section will be capped at 40 .

Candidates should also answer TWO questions from SECTION B. No credit will be given for answering a further question from this section. The approximate mark for each part of a question is indicated in square brackets.

Calculators may be used. The following models are permitted: Casio fx83 and Casio fx85.

DO NOT REMOVE THIS EXAM PAPER FROM THE EXAMINATION ROOM

TURN OVER WHEN INSTRUCTED 2019 © C King's College London

Physical Constants

Permittivity of free space	$\epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
Permeability of free space	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
Speed of light in free space	$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Gravitational constant	$\mathrm{G}=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Elementary charge	$\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$
Electron rest mass	$m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}$
Unified atomic mass unit	$m_{\mathrm{u}}=1.661 \times 10^{-27} \mathrm{~kg}=931.494 \mathrm{MeV} \mathrm{c}$
Proton rest mass	$m_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg}$
Neutron rest mass	$m_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
Planck constant	$h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{2}$
Boltzmann constant	$k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}=8.617 \times 10^{-11} \mathrm{MeV} \mathrm{K}{ }^{-1}$
Stefan-Boltzmann constant	$\sigma=5.670 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Gas constant	$R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Avogadro constant	$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Molar volume of ideal gas at STP	$=2.241 \times 10^{-2} \mathrm{~m}^{3}$
One standard atmosphere	$P_{0}=1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$

Useful Information

Maxwell Relations

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}, \quad\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V} \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}, \quad\left(\frac{\partial V}{\partial S}\right)_{P}=\left(\frac{\partial T}{\partial P}\right)_{S}
\end{aligned}
$$

Fundamental Equation of Thermodynamics

$$
d E=T d S-P d V+\mu d N
$$

Thermodynamic Potentials

$$
F=E-T S, \Phi=E-T S+P V, H=E+P V
$$

with differentials

$$
d F=-S d T-P d V+\mu d N, d \Phi=-S d T+V d P+\mu d N, d H=T d S+V d P+\mu d N
$$

Heat Capacities

$$
C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}, C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} .
$$

Microcanonical Ensemble Entropy

$$
S=k_{b} \ln \Omega
$$

Canonical Partition Function and formulas

$$
\begin{gathered}
Z=\sum_{r} e^{-\beta E_{r}}, P_{r}=\frac{1}{Z} e^{-\beta E_{r}},\langle X\rangle=\sum_{r} P_{r} X_{r}, \\
F=-k_{b} T \ln Z, S=k_{b} \frac{\partial}{\partial T}(T \ln Z), \text { Mean Energy }\langle E\rangle=-\left(\frac{\partial \ln Z}{\partial \beta}\right)
\end{gathered}
$$

Grand Canonical Ensemble Partition Function

$$
\mathcal{Z}=\sum_{r} e^{-\beta\left(E_{r}-\mu N_{r}\right)},
$$

Mean Energy $\langle E\rangle+\mu\langle N\rangle=-\left(\frac{\partial \ln \mathcal{Z}}{\partial \beta}\right)$, Mean Particle Number $\langle N\rangle=\frac{1}{\beta}\left(\frac{\partial \ln \mathcal{Z}}{\partial \mu}\right)$.
Fermi-Dirac Distribution

$$
\left\langle N_{\mathbf{n}}\right\rangle=\frac{1}{e^{\beta\left(E_{\mathbf{n}}-\mu\right)}+1} .
$$

Bose-Einstein Distribution

$$
\left\langle N_{\mathbf{n}}\right\rangle=\frac{1}{e^{\beta\left(E_{\mathbf{n}}-\mu\right)}-1} .
$$

Thermal de Broglie wavelength

$$
\lambda=\sqrt{\frac{2 \pi \hbar^{2}}{m k_{b} T}} .
$$

Stirling's Formula

$$
\ln N!=N \ln N-N
$$

Polylog integrals

$$
\int_{0}^{\infty} \frac{x^{n-1}}{e^{x}+1} d x=\left(1-2^{1-n}\right) \Gamma(n) \zeta(n),(n>0)
$$

and

$$
\int_{0}^{\infty} \frac{x^{n-1}}{e^{x}-1} d x=\Gamma(n) \zeta(n),(n>1)
$$

with Riemann Zeta function

$$
\zeta(p) \equiv \sum_{n=1}^{\infty} \frac{1}{n^{p}},
$$

and the Gamma function

$$
\Gamma(n) \equiv \int_{0}^{\infty} x^{n-1} e^{-x} d x
$$

The Gamma function for $n>0$ integers is

$$
\Gamma(n)=(n-1)!, n \in \mathcal{N}-\{0\} .
$$

Common values for half-integer Gamma functions

$$
\Gamma(1 / 2)=\sqrt{\pi}, \Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}, \Gamma(5 / 2)=\frac{3 \sqrt{\pi}}{4}, \Gamma(7 / 2)=\frac{15 \sqrt{\pi}}{8} .
$$

and Zeta functions

$$
\zeta(3 / 2)=2.612, \zeta(2)=\frac{\pi^{2}}{6}, \zeta(5 / 2)=1.341, \zeta(3)=1.202, \zeta(7 / 2)=1.127
$$

Gaussian Integral

$$
I=\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} .
$$

Geometric Sum

$$
\sum_{n=0}^{n=\infty} x^{n}=\frac{1}{1-x},|x|<1
$$

A derivative identity between x, y and z with a single constraint $x(y, z)$

$$
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
$$

Differential transform from $f(x, y) \rightarrow f(x, z)$ for a function $f(x, y)$ with a constraint $x=$ $x(y, z)$

$$
\left(\frac{\partial f}{\partial x}\right)_{z}=\left(\frac{\partial f}{\partial x}\right)_{y}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z} .
$$

SECTION A

Answer SECTION A in an answer book.

Answer as many parts of this section as you wish. Your total mark for this section will be capped at 40 .
1.1 State what is meant by a statistical ensemble of a system S. Define clearly each term used in your description.
1.2 State the equipartition theorem in any of its forms.
[3 marks]B
1.3 State which of the following are exact differentials. Integrate the equation if it is exact.
(i) $d G(x, y)=2 x(y+1) d x+x^{2} d y$.
(ii) $d G(x, y, z)=\left(2 x e^{2 y}+z\right) d x+2 e^{2 y} x^{2} d y+x d z$.
(iii) $d G(x, y)=(x+2 y) d x+\frac{x^{3}}{3} d y$.
1.4 A gas is described by the Van der Waals equation of state given by

$$
N k_{b} T=\left(P+\frac{N^{2}}{V^{2}} a\right)(V-N b) .
$$

For fixed $N, a>0, b>0$ and by arguing that a gas has to be stable under isothermal compression, show that

$$
T>\frac{2 a N(b N-V)^{2}}{k_{b} V^{3}} .
$$

(Hint: Consider the change in pressure with respect to changes in volume.)
1.5 Recall that the entropy of a system can be written in the Shannon form as

$$
S=-k_{b} \sum_{i} P_{i} \ln P_{i}
$$

where P_{i} is the probability of the i-th microstate occuring. Calculate the entropy of a 6 -sided die. Generalize the result to an n-sided die.
1.6 Consider a thermodynamic system with state variables P, T and V, related by some equation of state $P(V, T)$. By performing a coordinate transform from $S(P, T) \rightarrow$ $S(T, V)$, show that

$$
\left(\frac{\partial S}{\partial T}\right)_{V}=\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial S}{\partial P}\right)_{T}+\left(\frac{\partial S}{\partial T}\right)_{P}
$$

You may use any formula provided.
1.7 The Maxwell-Boltzmann distribution of a gas at temperature T is given by

$$
f(v) e^{-m v^{2} / 2 k_{b} T}=\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k_{b} T},
$$

where the absolute velocity is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}},
$$

Calculate the mean inverse velocity $\left\langle v^{-1}\right\rangle$.
1.8 Consider a gas of non-relativistic quantum particles trapped in a 2 dimensional square with lengths a and area $A=a^{2}$. For these quantum particles, the energy is given by

$$
E_{\mathbf{n}}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{4 \pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}\right), k=\sqrt{k_{x}^{2}+k_{y}^{2}},
$$

where $n_{x}, n_{y}=0,1,2,3, \ldots$ label the possible quantum numbers, and $n_{i}=a k_{i} /(2 \pi)$. By converting the sum into an integral

$$
\sum_{\mathbf{n}} \rightarrow \int d n_{x} d n_{y}
$$

show that the density of states $g(E)$ is given by

$$
g(E)=\tilde{g} \frac{2 \pi m A}{(2 \pi \hbar)^{2}} .
$$

(Hint: You might find the following relationship

$$
\int d k^{2} \rightarrow \int_{0}^{2 \pi} d \theta \int_{0}^{k} k d k
$$

useful.)
1.9 Consider the following Landau Functional

$$
F(T)=F_{0}(T)+\alpha\left(T-T_{c}\right) m^{2}+b m^{4},
$$

where T_{c} is the critical temperature, and $\alpha>0, b>0$ are constants. Find the equilibrium points of this functional. Plot $F(T)$ for the two cases where $T<T_{c}$ and $T>T_{c}$. What is the order of the phase transition that this functional models? Justify your assertion.

Solutions

1.1 An ensemble is the space of all possible microstates consistent with some constraints. A microstate is a point in the system's dynamical phase space.
1.2 Either mean energy per d.o.f. per particle is $3 / 2 k_{b} T$ or

$$
\begin{equation*}
\left\langle x_{k} \frac{\partial H}{\partial x_{k}}\right\rangle=\frac{1}{\beta}=k_{b} T \tag{1}
\end{equation*}
$$

are fine.
1.3 (i) Exact. $G(x, y)=x^{2}(y+1)$ (ii) Exact. $G(x, y, z)=e^{2 y} x^{2}+x z$. (iii) Inexact.
1.4 Rewrite

$$
\begin{equation*}
P=\frac{N k_{b} T}{(V-N b)}-\frac{N^{2}}{V^{2}} a \tag{2}
\end{equation*}
$$

and then stability of gas (from bookwork) implies that $\left(\frac{\partial P}{\partial V}\right)_{T}<0$, which gives the required condition.
1.5 The probability of each microstate in a n-th sided die is $P_{i}=1 / n$, so $S=-k_{b} \sum_{i} P_{i} \ln P_{i}=$ $k_{b} n \times(1 / n) \ln n=k_{b} \ln n$. For 6 sided die this is $S=k_{b} \ln 6$.
1.6 This is straight out of a homework problem. First write

$$
d S=\left(\frac{\partial S}{\partial P}\right)_{T} d P+\left(\frac{\partial S}{\partial T}\right)_{P} d T
$$

And then consider $S(P, T) \rightarrow S(T, V)$, and the identity (given in list of formulae)

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{z}=\left(\frac{\partial f}{\partial x}\right)_{y}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z} \tag{3}
\end{equation*}
$$

this becomes

$$
\begin{equation*}
d S=\left(\frac{\partial S}{\partial V}\right)_{T} d V+\left[\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial S}{\partial P}\right)_{T}+\left(\frac{\partial S}{\partial T}\right)_{P}\right] d T \tag{4}
\end{equation*}
$$

and comparing the coefficient of $d T$ gets the final answer.
1.7 Straightforward integral

$$
\begin{align*}
\left\langle v^{-1}\right\rangle & =\int_{0}^{\infty} v^{-1} f(v) e^{-m v^{2} / 2 k_{b} T} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} \int_{0}^{\infty} v e^{-m v^{2} / 2 k_{b} T} d v \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2}\left[-\frac{k_{b} T e^{-a v^{2}}}{m}\right]_{0}^{\infty} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{1 / 2} \tag{5}
\end{align*}
$$

1.8 This is a problem from the homework. In two dimensions, the sum over all microstates is a sum over all possible n_{x} and n_{y}, which we can convert into an integral

$$
\begin{equation*}
\sum_{\mathbf{n}} \rightarrow \int d n_{x} d n_{y} \tag{6}
\end{equation*}
$$

And now using $d E=\hbar^{2} k / m d k$, and $d n=a /(2 \pi) d k$ we have

$$
\begin{align*}
\int d n_{x} d n_{y} & =\tilde{g} \frac{A}{(2 \pi)^{2}} \int d^{2} k \\
& =\tilde{g} \frac{A}{(2 \pi)^{2}} \int 2 \pi k d k \\
& =\tilde{g} \frac{A}{(2 \pi)^{2}} \int 2 \pi \frac{m}{\hbar^{2}} d E \\
& =\tilde{g} \frac{A}{(2 \pi \hbar)^{2}} \int 2 \pi m d E \tag{7}
\end{align*}
$$

where in the 2nd line we have used the fact that $\int d k^{2} \rightarrow \int_{0}^{2 \pi} d \theta \int_{0}^{k} k d k$, and hence

$$
\begin{equation*}
g(E)=\tilde{g} \frac{2 \pi m A}{(2 \pi \hbar)^{2}} \tag{8}
\end{equation*}
$$

1.9 Finding the minima by $\partial F / \partial m=0$, gets us the equilibrium solutions $m=0, m=$ $\pm \sqrt{-a / 2 m}$ where $a=\alpha\left(T-T_{c}\right)$. For the system to model a 2 nd order phase transition, $\partial^{2} F / \partial T^{2}$ must be discontinuous at $T=T_{c}$, and this is true since

$$
\begin{equation*}
\lim _{T_{<} \rightarrow T_{c}} \frac{\partial^{2} F}{\partial T^{2}}-\lim _{T_{>} \rightarrow T_{c}} \frac{\partial^{2} F}{\partial T^{2}}=\frac{\alpha^{2}}{b}, \tag{9}
\end{equation*}
$$

and the system is discontinuous at 2 nd order.

SECTION B - Answer TWO questions
 Answer SECTION B in an answer book

2) Consider a thermodynamic system with a fixed number of particles described by the following equation of state

$$
P=A V T^{4}
$$

where $A>0$ is a positive definite constant.
(a) State what is meant by a function of state.
(b) By considering the fundamental equation of thermodynamics for fixed number of particles, show that

$$
\left(\frac{\partial S}{\partial E}\right)_{V}=\frac{1}{T}, \quad\left(\frac{\partial S}{\partial V}\right)_{E}=\frac{P}{T} .
$$

(c) The energy E of the system is a function of state given by

$$
E=\frac{3}{2} P V
$$

Express $1 / T$ and P / T as functions of E and V, and hence using the result of (b), show that the entropy of the system is given by

$$
S=\frac{4}{3}\left(\frac{3 A}{2}\right)^{1 / 4} V^{1 / 2} E^{3 / 4}+\text { const }
$$

(d) Calculate the Helmholtz Free energy F of this system as a function of V and T.

QUESTION CONTINUES ON NEXT PAGE
 SEE NEXT PAGE

(e) Suppose a different system possesses an equation of state of the following form

$$
P=A V T^{n}
$$

where $n>0$ is some positive definite constant, with the energy given by $E=(3 / 2) P V$ as above and $A>0$. Can this system be a valid thermodynamic system if $n \neq 4$? Justify your assertions. (Hint:Recall that S is a function of state.)
[8 marks] U

Solution 2
(a) A function of state is a thermodynamic quantity that is an exact function of its state variables.
(b) From $d E=T d S-P d V$, we have $d S=(1 / T) d E+(P / T) d V$, and expressing $S(E, V)$ we obtain the required relationships.
(c) Simple algebra gets us

$$
\begin{equation*}
\frac{1}{T}=\left(\frac{3 A}{2}\right)^{1 / 4} V^{1 / 2} E^{-1 / 4} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P}{T}=\frac{2}{3}\left(\frac{3 A}{2}\right)^{1 / 4} V^{-1 / 2} E^{3 / 4} . \tag{11}
\end{equation*}
$$

Using (c), it is easy to see by direct integration

$$
\begin{equation*}
S=\frac{4}{3}\left(\frac{3 A}{2}\right)^{1 / 4} V^{1 / 2} E^{3 / 4}+\text { const } \tag{12}
\end{equation*}
$$

(d) Using $F=E-T S$, it is easy to show via algebra that

$$
\begin{equation*}
F=\frac{3 A}{2} V^{2} T^{4}-T\left[\frac{4}{3}\left(\frac{3 A}{2}\right) V^{2} T^{3}+\mathrm{const}\right] . \tag{13}
\end{equation*}
$$

(e) S is a function of state and hence must be exact, and thus using the relationship for exactness (one can also directly integrate but this is easier)

$$
\begin{equation*}
\left(\frac{\partial(1 / T)}{\partial V}\right)_{E}=\left(\frac{\partial(P / T)}{\partial E}\right)_{V} \tag{14}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left(\frac{3 A}{2}\right)^{1 / n} \frac{2}{n} V^{-1+2 / n} E^{-1 / n}=\frac{2}{3}\left(\frac{3 A}{2}\right)^{1 / n} V^{-1+2 / n} E^{-1 / n}\left(1-\frac{1}{n}\right) \tag{15}
\end{equation*}
$$

which for consistency $n=4$, thus the system is not valid if $n \neq 4$.
3) Consider a system with two distinguishable particles. Each particle can be in one of the two single particle energy states $\epsilon_{0}=0$ and $\epsilon_{1}=\Delta$. The system is in thermal equilibirum with a heat bath of temperature T.
(a) How many microstates are there in this system? List them, and then derive the partition function for this ensemble.
[6 marks] P
(b) Calculate the mean energy of the system, and show that it is given by

$$
\langle E\rangle=\frac{2 \Delta e^{-\beta \Delta}}{1+e^{-\beta \Delta}}
$$

(c) Calculate the Helmholtz Free energy F and the entropy of the system S. What is S in the low temperature limit $\beta \Delta \gg 1$? State which microstate the system would be in at this limit.
[8 marks] U
(d) Suppose the particles are indistinguishable. State how many microstates are there for the system if the particles are (i) bosons and (ii) fermions.
[4 marks] U
(e) Suppose each of the two distinguishable particles can be now in $N+1$ single particle energy states (instead of 2), with energies $\epsilon_{0}=0, \epsilon_{i}=\Delta$ for $i=1,2, \ldots, N$. Derive the partition function for this system, and calculate its entropy S. Show that the limit when the particles are in the lowest energy state $(0,0)$ occurs when $\beta \Delta \gg 1+\ln N$.
[8 marks] U

Solution 3

(a) There are four microstates $(0,0),(0, \Delta),(\Delta, 0)$ and (Δ, Δ). The partition function is

$$
\begin{equation*}
Z=\left(1+e^{-\beta \Delta}\right)^{2} \tag{16}
\end{equation*}
$$

using $Z=Z_{1}^{2}$ where the single particle partition function $Z_{1}=1+e^{-\beta \Delta}$.
(b) Straightforward algebra using

$$
\begin{equation*}
\langle E\rangle=-\frac{\partial \ln Z}{\partial \beta} \tag{17}
\end{equation*}
$$

(c) The Helmholtz free energy $F=-k_{b} T \ln Z=-2 k_{b} T \ln \left(1+e^{-\beta \Delta}\right)$. And the entropy is

$$
\begin{align*}
S & =-\left(\frac{\partial F}{\partial T}\right)_{V} \\
& =2 k_{b}\left[\ln \left(1+e^{-\beta \Delta}\right)+\frac{\beta \Delta e^{-\beta \Delta}}{1+e^{\beta \Delta}}\right] . \tag{18}
\end{align*}
$$

In the low temperature limit, $e^{-\beta \Delta} \rightarrow 0$, so $S \rightarrow 0$. The entropy vanishes and the system is in the ground state $(0,0)$ with zero energy.
(d) (i) For Bosons, the microstates $(0, \Delta)$ and $(\Delta, 0)$ are indistinguishable, so the total number of microstates is 3 . (ii) For fermions, the only microstate possible is $(0, \Delta)$.
(e) In this system, the partition function for a single particle is $Z_{1}=1+N e^{-\beta \Delta}$. The astute will notice that the calculation is then exactly the same as the 2 energy level systems, with the replacement $e^{-\beta \Delta} \rightarrow N e^{-\beta \Delta}$, so the entropy is

$$
\begin{equation*}
S=2 k_{b}\left[\ln \left(1+N e^{-\beta \Delta}\right)+\frac{\beta \Delta N e^{-\beta \Delta}}{1+N e^{\beta \Delta}}\right] . \tag{19}
\end{equation*}
$$

The limit for the particles to be in the ground state $(0,0)$ is when $S \rightarrow 0$, and this occurs when $N e^{-\beta \Delta} \rightarrow 0$, or $\beta \Delta-\ln N \gg 1$.
4) The energy spectrum for a simple quantum harmonic oscillator in 1D is given by

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, n=0,1,2,3, \ldots
$$

where ω is the natural frequency of the oscillator.
(a) Show that the partition function for this system is

$$
Z_{1}=\frac{e^{-\beta \hbar \omega / 2}}{1-e^{-\beta \hbar \omega}} .
$$

[6 marks] B
(b) Consider a 3D lattice of N non-interacting atoms. Each atom can vibrate in 3 different directions, and each vibrational mode can be modeled as a single 1D simple quantum harmonic oscillator. Derive the partition function for this system.
(c) Show that the Helmholtz Free energy for this lattice crystal of atoms is

$$
F=\frac{3}{2} N \hbar \omega+3 N k_{b} T \ln \left(1-e^{-\beta \hbar \omega}\right) .
$$

(d) Calculate the mean energy $\langle E\rangle$.
[6 marks] P
(e) Calculate the heat capacity at constant volume C_{V} of this system. Find the behaviour of C_{V} at low and high temperatures of this system and hence plot C_{V} as a function of T. Show that it obeys the Dulong-Petit law at high temperatures. Compare this result to that of the (more accurately predictive) Debye model where $C_{V} \propto T^{3}$ at low temperatures. What is the primary assumption of this model that does not accurately describe the physics of a lattice of atoms?

Solution 4

(a) The partition function is

$$
\begin{align*}
Z & =\sum_{n} e^{-\beta E_{n}} \\
& =e^{-\beta \hbar \omega / 2} \sum_{n} e^{-N \beta \hbar \omega} \\
& =e^{-\beta \hbar \omega / 2} \frac{1}{1-e^{-\beta \hbar \omega}} \\
& =\frac{1}{e^{\beta \hbar \omega / 2}-e^{-\beta \hbar \omega / 2}} \tag{20}
\end{align*}
$$

(b) Each atom has 3 degrees of freedom, and there are N such atoms. Since the atoms are non-interacting the partition function is then a product of $3 N$ degrees of freedom $Z=Z_{1}^{3 N}$.
(c) This is simple application of the formula $F=-k_{b} T \ln Z$, i.e.

$$
\begin{align*}
F & =-k_{b} T \ln Z \\
& =-3 N k_{b} T \ln \left(e^{-\beta \hbar \omega / 2} \frac{1}{1-e^{-\beta \hbar \omega}}\right) \\
& =\frac{3}{2} N \hbar \omega+3 N k_{b} T \ln \left(1-e^{-\beta \hbar \omega}\right) . \tag{21}
\end{align*}
$$

(d)

$$
\begin{align*}
\langle E\rangle & =-\left(\frac{\partial \ln Z}{\partial \beta}\right) \\
& =3 N \hbar \omega\left[\frac{1}{e^{\beta \hbar \omega}-1}+\frac{1}{2}\right] \tag{22}
\end{align*}
$$

(e) The heat capacity is

$$
\begin{equation*}
C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}=3 N k_{b}(\beta \hbar \omega)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}} \tag{23}
\end{equation*}
$$

At low temperatures $\beta \hbar \rightarrow \infty$, so $e^{\beta \hbar \omega} \gg 1$, thus $C_{V} \approx 3 N k_{b}(\beta \hbar \omega)^{2} e^{-\beta \hbar \omega} \rightarrow 0$. On the other hand, at high temperatures $\beta \hbar \rightarrow 0$, so $e^{\beta \hbar \omega} \approx 1-\beta \hbar \omega$ and $C_{V} \rightarrow 3 N k_{b}$ which is the Dulong-Petit law. The problem with this model is that the atoms in reality cannot oscillate independently of each other as they interact strongly (in order to form a lattice). In the limit of low temperatures, $C_{V} \propto T^{-2} e^{-\hbar \omega / k_{b} T}$, so is exponential in T instead of T^{3}. This is not observed in experiments.

