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6CCP3212

Physical Constants

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg = 931.494 MeV c−2

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant h = 6.626× 10−34 J s

Boltzmann constant kB = 1.381× 10−23 J K−1 = 8.617 ×10−11 MeV K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 W m−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

SEE NEXT PAGE
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Useful Information

Maxwell Relations (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

,

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

,

(
∂V

∂S

)
P

=

(
∂T

∂P

)
S

.

Fundamental Equation of Thermodynamics

dE = TdS − PdV + µdN

Thermodynamic Potentials

F = E − TS , Φ = E − TS + PV , H = E + PV .

with differentials

dF = −SdT − PdV + µdN , dΦ = −SdT + V dP + µdN , dH = TdS + V dP + µdN .

Heat Capacities

CV = T

(
∂S

∂T

)
V

=

(
∂E

∂T

)
V

, CP = T

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

.

Microcanonical Ensemble Entropy
S = kb ln Ω

Canonical Partition Function and formulas

Z =
∑
r

e−βEr , Pr =
1

Z
e−βEr , 〈X〉 =

∑
r

PrXr ,

F = −kbT lnZ , S = kb
∂

∂T
(T lnZ) , Mean Energy 〈E〉 = −

(
∂ lnZ

∂β

)

SEE NEXT PAGE
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Grand Canonical Ensemble Partition Function

Z =
∑
r

e−β(Er−µNr) ,

Mean Energy 〈E〉+ µ〈N〉 = −
(
∂ lnZ
∂β

)
, Mean Particle Number 〈N〉 =

1

β

(
∂ lnZ
∂µ

)
.

Fermi-Dirac Distribution

〈Nn〉 =
1

eβ(En−µ) + 1
.

Bose-Einstein Distribution

〈Nn〉 =
1

eβ(En−µ) − 1
.

Thermal de Broglie wavelength

λ =

√
2π~2

mkbT
.

Stirling’s Formula
lnN ! = N lnN −N .

Polylog integrals ∫ ∞
0

xn−1

ex + 1
dx = (1− 21−n)Γ(n)ζ(n) , (n > 0),

and ∫ ∞
0

xn−1

ex − 1
dx = Γ(n)ζ(n) , (n > 1),

with Riemann Zeta function

ζ(p) ≡
∞∑
n=1

1

np
,

and the Gamma function

Γ(n) ≡
∫ ∞

0

xn−1e−xdx .

The Gamma function for n > 0 integers is

Γ(n) = (n− 1)! , n ∈ N − {0} .

SEE NEXT PAGE
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Common values for half-integer Gamma functions

Γ(1/2) =
√
π , Γ(3/2) =

√
π

2
, Γ(5/2) =

3
√
π

4
, Γ(7/2) =

15
√
π

8
.

and Zeta functions

ζ(3/2) = 2.612 , ζ(2) =
π2

6
, ζ(5/2) = 1.341 , ζ(3) = 1.202 , ζ(7/2) = 1.127 .

Gaussian Integral

I =

∫ ∞
−∞

e−ax
2

dx =

√
π

a
.

Geometric Sum
n=∞∑
n=0

xn =
1

1− x
, |x| < 1 .

A derivative identity between x, y and z with a single constraint x(y, z)(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

Differential transform from f(x, y) → f(x, z) for a function f(x, y) with a constraint x =
x(y, z) (

∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

.

SEE NEXT PAGE
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SECTION A

Answer SECTION A in an answer book.
Answer as many parts of this section as you wish. Your total mark for this

section will be capped at 40.

1.1 State what is meant by a statistical ensemble of a system S. Define clearly each term
used in your description.

[3 marks]B

1.2 State the equipartition theorem in any of its forms.

[3 marks]B

1.3 State which of the following are exact differentials. Integrate the equation if it is
exact.

(i) dG(x, y) = 2x(y + 1)dx+ x2dy.

(ii) dG(x, y, z) = (2xe2y + z)dx+ 2e2yx2dy + xdz.

(iii) dG(x, y) = (x+ 2y)dx+ x3

3
dy.

[9 marks]P

SEE NEXT PAGE
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1.4 A gas is described by the Van der Waals equation of state given by

NkbT =

(
P +

N2

V 2
a

)
(V −Nb) .

For fixed N , a > 0, b > 0 and by arguing that a gas has to be stable under isothermal
compression, show that

T >
2aN(bN − V )2

kbV 3
.

(Hint : Consider the change in pressure with respect to changes in volume.)

[8 marks]U

1.5 Recall that the entropy of a system can be written in the Shannon form as

S = −kb
∑
i

Pi lnPi

where Pi is the probability of the i-th microstate occuring. Calculate the entropy of
a 6-sided die. Generalize the result to an n-sided die.

[6 marks]U

1.6 Consider a thermodynamic system with state variables P , T and V , related by some
equation of state P (V, T ). By performing a coordinate transform from S(P, T ) →
S(T, V ), show that (

∂S

∂T

)
V

=

(
∂P

∂T

)
V

(
∂S

∂P

)
T

+

(
∂S

∂T

)
P

.

You may use any formula provided.

[6 marks]B

SEE NEXT PAGE
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1.7 The Maxwell-Boltzmann distribution of a gas at temperature T is given by

f(v)e−mv
2/2kbT =

√
2

π

(
m

kbT

)3/2

v2e−mv
2/2kbT ,

where the absolute velocity is

v =
√
v2
x + v2

y + v2
z ,

Calculate the mean inverse velocity 〈v−1〉.

[8 marks]B

1.8 Consider a gas of non-relativistic quantum particles trapped in a 2 dimensional square
with lengths a and area A = a2. For these quantum particles, the energy is given by

En =
~2k2

2m
=

4π2~2

2ma2
(n2

x + n2
y) , k =

√
k2
x + k2

y ,

where nx, ny = 0, 1, 2, 3, . . . label the possible quantum numbers, and ni = aki/(2π).
By converting the sum into an integral∑

n

→
∫
dnxdny ,

show that the density of states g(E) is given by

g(E) = g̃
2πmA

(2π~)2
.

(Hint : You might find the following relationship∫
dk2 →

∫ 2π

0

dθ

∫ k

0

kdk .

useful.)

[8 marks]B

SEE NEXT PAGE
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1.9 Consider the following Landau Functional

F (T ) = F0(T ) + α(T − Tc)m2 + bm4 ,

where Tc is the critical temperature, and α > 0, b > 0 are constants. Find the
equilibrium points of this functional. Plot F (T ) for the two cases where T < Tc
and T > Tc. What is the order of the phase transition that this functional models?
Justify your assertion.

[9 marks]B

SEE NEXT PAGE
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Solutions

1.1 An ensemble is the space of all possible microstates consistent with some constraints.
A microstate is a point in the system’s dynamical phase space.

1.2 Either mean energy per d.o.f. per particle is 3/2kbT or〈
xk
∂H

∂xk

〉
=

1

β
= kbT (1)

are fine.

1.3 (i) Exact. G(x, y) = x2(y + 1) (ii) Exact. G(x, y, z) = e2yx2 + xz. (iii) Inexact.

1.4 Rewrite

P =
NkbT

(V −Nb)
− N2

V 2
a (2)

and then stability of gas (from bookwork) implies that
(
∂P
∂V

)
T
< 0, which gives the

required condition.

1.5 The probability of each microstate in a n-th sided die is Pi = 1/n, so S = −kb
∑

i Pi lnPi =
kbn× (1/n) lnn = kb lnn. For 6 sided die this is S = kb ln 6.

1.6 This is straight out of a homework problem. First write

dS =

(
∂S

∂P

)
T

dP +

(
∂S

∂T

)
P

dT .

And then consider S(P, T )→ S(T, V ), and the identity (given in list of formulae)(
∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

, (3)

this becomes

dS =

(
∂S

∂V

)
T

dV +

[(
∂P

∂T

)
V

(
∂S

∂P

)
T

+

(
∂S

∂T

)
P

]
dT (4)

and comparing the coefficient of dT gets the final answer.

10



1.7 Straightforward integral

〈v−1〉 =

∫ ∞
0

v−1f(v)e−mv
2/2kbT

=

√
2

π

(
m

kbT

)3/2 ∫ ∞
0

ve−mv
2/2kbTdv

=

√
2

π

(
m

kbT

)3/2
[
−kbTe

−av2

m

]∞
0

=

√
2

π

(
m

kbT

)1/2

. (5)

1.8 This is a problem from the homework. In two dimensions, the sum over all microstates
is a sum over all possible nx and ny, which we can convert into an integral∑

n

→
∫
dnxdny . (6)

And now using dE = ~2k/mdk, and dn = a/(2π)dk we have∫
dnxdny = g̃

A

(2π)2

∫
d2k

= g̃
A

(2π)2

∫
2πkdk

= g̃
A

(2π)2

∫
2π
m

~2
dE

= g̃
A

(2π~)2

∫
2πmdE (7)

where in the 2nd line we have used the fact that
∫
dk2 →

∫ 2π

0
dθ
∫ k

0
kdk, and hence

g(E) = g̃
2πmA

(2π~)2
(8)

1.9 Finding the minima by ∂F/∂m = 0, gets us the equilibrium solutions m = 0, m =
±
√
−a/2m where a = α(T − Tc). For the system to model a 2nd order phase

transition, ∂2F/∂T 2 must be discontinuous at T = Tc, and this is true since

lim
T<→Tc

∂2F

∂T 2
− lim

T>→Tc

∂2F

∂T 2
=
α2

b
, (9)

and the system is discontinuous at 2nd order.
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SECTION B - Answer TWO questions
Answer SECTION B in an answer book

2) Consider a thermodynamic system with a fixed number of particles described by the
following equation of state

P = AV T 4 ,

where A > 0 is a positive definite constant.

(a) State what is meant by a function of state.

[2 marks] B

(b) By considering the fundamental equation of thermodynamics for fixed number of
particles, show that (

∂S

∂E

)
V

=
1

T
,

(
∂S

∂V

)
E

=
P

T
.

[6 marks] U

(c) The energy E of the system is a function of state given by

E =
3

2
PV .

Express 1/T and P/T as functions of E and V , and hence using the result of (b),
show that the entropy of the system is given by

S =
4

3

(
3A

2

)1/4

V 1/2E3/4 + const .

[10 marks] U

(d) Calculate the Helmholtz Free energy F of this system as a function of V and T .

[4 marks] U,P

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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(e) Suppose a different system possesses an equation of state of the following form

P = AV T n ,

where n > 0 is some positive definite constant, with the energy given by E = (3/2)PV
as above and A > 0. Can this system be a valid thermodynamic system if n 6= 4?
Justify your assertions. (Hint :Recall that S is a function of state.)

[8 marks] U

SEE NEXT PAGE
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Solution 2

(a) A function of state is a thermodynamic quantity that is an exact function of its state
variables.

(b) From dE = TdS−PdV , we have dS = (1/T )dE+ (P/T )dV , and expressing S(E, V )
we obtain the required relationships.

(c) Simple algebra gets us

1

T
=

(
3A

2

)1/4

V 1/2E−1/4 , (10)

and
P

T
=

2

3

(
3A

2

)1/4

V −1/2E3/4 . (11)

Using (c), it is easy to see by direct integration

S =
4

3

(
3A

2

)1/4

V 1/2E3/4 + const . (12)

(d) Using F = E − TS, it is easy to show via algebra that

F =
3A

2
V 2T 4 − T

[
4

3

(
3A

2

)
V 2T 3 + const

]
. (13)

(e) S is a function of state and hence must be exact, and thus using the relationship for
exactness (one can also directly integrate but this is easier)(

∂(1/T )

∂V

)
E

=

(
∂(P/T )

∂E

)
V

(14)

we get (
3A

2

)1/n
2

n
V −1+2/nE−1/n =

2

3

(
3A

2

)1/n

V −1+2/nE−1/n

(
1− 1

n

)
(15)

which for consistency n = 4, thus the system is not valid if n 6= 4.
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3) Consider a system with two distinguishable particles. Each particle can be in one of
the two single particle energy states ε0 = 0 and ε1 = ∆. The system is in thermal
equilibirum with a heat bath of temperature T .

(a) How many microstates are there in this system? List them, and then derive the
partition function for this ensemble.

[6 marks] P

(b) Calculate the mean energy of the system, and show that it is given by

〈E〉 =
2∆e−β∆

1 + e−β∆
.

[4 marks] P

(c) Calculate the Helmholtz Free energy F and the entropy of the system S. What is S
in the low temperature limit β∆� 1? State which microstate the system would be
in at this limit.

[8 marks] U

(d) Suppose the particles are indistinguishable. State how many microstates are there for
the system if the particles are (i) bosons and (ii) fermions.

[4 marks] U

(e) Suppose each of the two distinguishable particles can be now in N + 1 single particle
energy states (instead of 2), with energies ε0 = 0, εi = ∆ for i = 1, 2, . . . , N . Derive
the partition function for this system, and calculate its entropy S. Show that the limit
when the particles are in the lowest energy state (0, 0) occurs when β∆� 1 + lnN .

[8 marks] U

SEE NEXT PAGE
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Solution 3

(a) There are four microstates (0, 0), (0,∆), (∆, 0) and (∆,∆). The partition function is

Z = (1 + e−β∆)2 (16)

using Z = Z2
1 where the single particle partition function Z1 = 1 + e−β∆.

(b) Straightforward algebra using

〈E〉 = −∂ lnZ

∂β
. (17)

(c) The Helmholtz free energy F = −kbT lnZ = −2kbT ln(1 + e−β∆). And the entropy is

S = −
(
∂F

∂T

)
V

= 2kb

[
ln(1 + e−β∆) +

β∆e−β∆

1 + eβ∆

]
. (18)

In the low temperature limit, e−β∆ → 0, so S → 0. The entropy vanishes and the
system is in the ground state (0, 0) with zero energy.

(d) (i) For Bosons, the microstates (0,∆) and (∆, 0) are indistinguishable, so the total
number of microstates is 3. (ii) For fermions, the only microstate possible is (0,∆).

(e) In this system, the partition function for a single particle is Z1 = 1 + Ne−β∆. The
astute will notice that the calculation is then exactly the same as the 2 energy level
systems, with the replacement e−β∆ → Ne−β∆, so the entropy is

S = 2kb

[
ln(1 +Ne−β∆) +

β∆Ne−β∆

1 +Neβ∆

]
. (19)

The limit for the particles to be in the ground state (0, 0) is when S → 0, and this
occurs when Ne−β∆ → 0, or β∆− lnN � 1.

16



6CCP3212

4) The energy spectrum for a simple quantum harmonic oscillator in 1D is given by

En =

(
n+

1

2

)
~ω , n = 0, 1, 2, 3, . . .

where ω is the natural frequency of the oscillator.

(a) Show that the partition function for this system is

Z1 =
e−β~ω/2

1− e−β~ω
.

[6 marks] B

(b) Consider a 3D lattice of N non-interacting atoms. Each atom can vibrate in 3
different directions, and each vibrational mode can be modeled as a single 1D simple
quantum harmonic oscillator. Derive the partition function for this system.

[2 marks] P

(c) Show that the Helmholtz Free energy for this lattice crystal of atoms is

F =
3

2
N~ω + 3NkbT ln

(
1− e−β~ω

)
.

[4 marks] P

(d) Calculate the mean energy 〈E〉.

[6 marks] P

(e) Calculate the heat capacity at constant volume CV of this system. Find the behaviour
of CV at low and high temperatures of this system and hence plot CV as a function
of T . Show that it obeys the Dulong-Petit law at high temperatures. Compare this
result to that of the (more accurately predictive) Debye model where CV ∝ T 3 at
low temperatures. What is the primary assumption of this model that does not
accurately describe the physics of a lattice of atoms?

[12 marks] U,P

FINAL PAGE
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Solution 4

(a) The partition function is

Z =
∑
n

e−βEn

= e−β~ω/2
∑
n

e−Nβ~ω

= e−β~ω/2
1

1− e−β~ω

=
1

eβ~ω/2 − e−β~ω/2
(20)

(b) Each atom has 3 degrees of freedom, and there are N such atoms. Since the atoms
are non-interacting the partition function is then a product of 3N degrees of freedom
Z = Z3N

1 .

(c) This is simple application of the formula F = −kbT lnZ, i.e.

F = −kbT lnZ

= −3NkbT ln

(
e−β~ω/2

1

1− e−β~ω

)
=

3

2
N~ω + 3NkbT ln

(
1− e−β~ω

)
. (21)

(d)

〈E〉 = −
(
∂ lnZ

∂β

)
= 3N~ω

[
1

eβ~ω − 1
+

1

2

]
(22)

(e) The heat capacity is

CV =

(
∂E

∂T

)
V

= 3Nkb(β~ω)2 eβ~ω

(eβ~ω − 1)2
. (23)

At low temperatures β~ → ∞, so eβ~ω � 1, thus CV ≈ 3Nkb(β~ω)2e−β~ω → 0. On
the other hand, at high temperatures β~ → 0, so eβ~ω ≈ 1 − β~ω and CV → 3Nkb
which is the Dulong-Petit law. The problem with this model is that the atoms
in reality cannot oscillate independently of each other as they interact strongly (in
order to form a lattice). In the limit of low temperatures, CV ∝ T−2e−~ω/kbT , so is
exponential in T instead of T 3. This is not observed in experiments.
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