
6CCP3212 Statistical Mechanics Review Problems for Thermal physics

Lecturer: Prof Eugene A. Lim

https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1) Consider the equation of state for an ideal gas

PV = NkbT (1)

where N is the number of particles and kb is the Boltzmann constant. Draw the following curves on a (i)

P − V phase diagram and a (ii) T − V phase diagram.

• An isobaric (constant pressure) curve.
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• An isothermal (constant temperature) curve.
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• A isochoric (constant volume) curve.
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• An isentropic (constant entropy) curve.
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2) Find the partial derivatives ∂f/∂x and ∂f/∂y for the following functions:

• f(x, y) =
√
x2 + y2

Use chain rule:
∂f

∂x
=

x√
x2 + y2

∂f

∂y
=

y√
x2 + y2

• f(x, y) = 1
x+y2

Use chain rule:
∂f

∂x
= − 1

(x+ y2)2
∂f

∂y
= − 2y

(x+ y2)2

• f(x, y) = log(x+y)
x2

Use quotient rule:
∂f

∂x
=

1

x4(x+ y)

∂f

∂y
=

1

x2(x+ y)

3) Find the total derivative df/dt for the following functions
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• f(x, y) = xy, x(t) = t2, y(t) = t.

To find the total derivative we repeatedly apply the chain rule.

df

dt
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

= 2yxy−1t+ xy log x

= 2t2t + t2t log t2

We could also subtitute in the expressions to get f(t) and then differentiate but this approach

usually requires less algebra.

• f(x) = log x2, x(y, z) = y2 + z, y(t) = t−1, z(t) = t.

Using the same idea:

df

dt
=

∂f

∂x

[
∂x

∂y

∂y

∂t
+

∂x

∂z

∂z

∂t

]

=
2

x

[
− 2yt−2 + 1

]

=
−4t−3 + 2

t−2 + t

• f(x, y, t) = xyt, x(t) = t2, y(x, t) = x+ t.

Lets do this one by sustituing in the expressions for x and y.

f(t) = t2(t2 + t)t

= t5 + t4

df

dt
= 5t4 + 4t3

3) For the following differentials, state whether they are exact or inexact.

• dz = xdx+ ydy.

A differential dz = P (x, y)dx+Q(x, y)dyis exact if it there is a function z(x, y) such that P (x, y) =
∂z
∂x and Q(x, y) = ∂z

∂y . This can only be the case if and only if ∂P
∂y = ∂2z

∂y∂x = ∂2z
∂z∂y = ∂Q

∂x for any

well behaved function. We can use the first and last terms of the previous equations to check if a

differential is exact.

dz = P (x, y)dx+Q(x, y)dy = xdx+ ydy

So we must have:
∂P

∂y
=

∂Q

∂x
which is satisfied as both are zero.

• dz = ydx− xdy.

For this we have
∂P

∂y
= 1 and

∂Q

∂x
= −1, so dz is an inexact differential.

Integrate the above equations
∫
dz from (x, y) = (0, 0) to (x, y) = (1, 1), using

• The path x = y.

• The path (x, y) = (0, 0) to (x, y) = (0, 1) and then (x, y) = (0, 1) to (x, y) = (1, 1).

We will start with dz = xdx+ ydy along the path x = y which we can parameterise by t = x = y.∫
xdx+ ydy = 2

∫ 1

0

tdt = 1
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For (x, y) = (0, 0) to (x, y) = (0, 1) we have:∫
xdx+ ydy =

∫ 1

0

tdt =
1

2

For (x, y) = (0, 1) to (x, y) = (1, 1) we have:∫
xdx+ ydy =

∫ 1

0

tdt =
1

2

so for the full path (x, y) = (0, 0) to (x, y) = (0, 1) and then (x, y) = (0, 1) to (x, y) = (1, 1) we

get 1, the same as the path x = y which is to be expected as we know that line integrals of exact

differentials are path independent.

Now we integrate dz = ydx− xdy along the path x = y.∫
ydx− xdy =

∫ 1

0

tdt−
∫ 1

0

tdt = 0

For (x, y) = (0, 0) to (x, y) = (0, 1) we have:∫
ydx− xdy =

∫ 1

0

tdt =
1

2

For (x, y) = (0, 1) to (x, y) = (1, 1) we have:∫
ydx− xdy =

∫ 1

0

dt = 1

and we see that the integral of an in exact differential is path dependent.

4) What is a closed system? What is an open system? Which of the following systems are open, and

which are closed.

A closed system cannot exchange matter with it’s surroundings but it can exchange energy via heat and

work. An open system can exchange both matter and energy with it’s surrounding.

• An refrigerator kept at T = 273K: closed.

• A car engine: open, requires fuel and produces exhaust

• A blender: closed.

• A hydroelectric dam: open, requires a constant stream of running water.

• A thermal flask with lid on: closed.

5) Work done on a thermodynamic system is given by PdV = −d̄W (the bar in d for d̄ is explained in

the first chapter of the lecture notes, but for now you don’t have to worry about it). Find the work done

on the an ideal gas system PV = NkbT to change it from (P1, V1) to (P2, V2).

To calculate the work done on the system we will integrate W =
∫ V2

V1
−PdV along a reversible path, i.e.

the system must be at equilibrium along all points in the path.

• An isobaric process P = C where C is a constant.

An isobaric process occurs at a constant pressure. Since P is constant the integral is trival and we

get W = −P (V2 − V1).
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• An isochoric process V = C where C is a constant.

An isochoric proccess occurs at a constant volume: dV = 0 =⇒ d̄W = −PdV = 0. Thus, the

total work done is zero.

• A polytropic process is given by the following curve

PV n = C (2)

where C is a constant and n > 1 is the polytropic constant. Show that the work done on the system

to change it from (P1, V1) to (P2, V2) is given by

W =
P1V1 − P2V2

1− n
. (3)

What happens when n = 1? Argue that your results suggest that work is path-dependent (we will

prove this in Homework 1).

We begin by using the equation of state to express the pressure as a function of volume in the

integral and doing the integration to find the work done.

W = −
∫ V2

V1

PdV

= −C

∫ V2

V1

V −ndV

= − C

1− n

[
V 1−n

]V2

V1

= − 1

1− n

[
V2P2 − V1P1

]

=
P1V1 − P2V2

1− n
.

When n = 1 the integration above is no longer valid. The equation of state will become equivalent

to the ideal gas law at a constant temperature. We will tackle that case in the next part of this

question. Since we can vary the path taken between the initial and final conditions (described by

the equation of state) by changing n and we know that the work done also depends on n, we can

thus deduce that the work done is path dependent.

• An isothermal process T = C where C is a constant.

For an isothermal expansion we have PV = NkbT = NkbC for some constant C. We can calculate

the work writing P in terms of V and integrating along the path parameterised by V .

W = −
∫ V2

V1

PdV

= −NkbC

∫ V2

V1

1

V
dV

= −NkbC log
V2

V1

6) Consider a mole of ideal gas at T = 400K with equation of state PV = NkbT expanding reversibly

and isothermally from V = 10L to V = 30L, where L is a unit of volume. Calculate the increase in

entropy S of this process.

The key to this question is realising that the change in internal energy ∆U for this process is zero sine

it’s an ideal gas. Since an ideal gas consists only interacting when they collide, the internal energy only

depends on the temperature, which is constant, therefore the internal energy also remains constant. The
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first law states ∆U = Q+W = T∆S +W = 0. So we can use this to calculate the change in entropy S

if we know W and T . We can use our result from the last question to calculate W .

S = −W

T

= Nkb log
V2

V1

= R log 3

= 8.31JK−1 × 1.01 = 9.13JK−1

7) A heat engine absorbs heat Q1 reversibly from a reservoir at T = 300K and expel heat Q2 reversibly

to a reservoir at T = 200K. This engine has an efficiency of 25% while doing W = 125J of work in a

cycle of work.

• Calculate Q1.

The efficiency η = 0.25 is defined as the ratio of the energy you get out and the energy you put in.

η =
W

Q1
=⇒ Q1 = 4W = 500J

• Calculate the change in entropy of the engine system for this single cycle of work.

For one complete cycle the change in internal energy is zero, so by the first law we must have:

Q1 −Q2 = W =⇒ Q2 = 375J

To calculate the change in entropy we must be careful about signs. The entropy change for a heat

transfer is given by ∆S = Q
T .

So for the the whole cycle we have:

∆Sengine =
Q1

T1
− Q2

T2

=
500

300
JK−1 − 375

200
JK−1 = −0.208JK−1

• Calculate the change in the entropy for the two reservoirs, and show that the total change of entropy

for the entire reservoir-engine systems is zero for a reversible process.

This can be calculated similarly, using the same sign convention for the the heats (+ve corresponding

heat is going into the system).
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∆Sreservoir 1 = −Q1

T1
= −500

300
JK−1 = −1.67JK−1

∆Sreservoir 2 = +
Q2

T2
=

375

200
JK−1 = 1.88JK−1

Summing the entropy changes for the engine and both reservoirs, we get:

∆Stotal = ∆Sengine +∆Sreservoir 1 +∆Sreservoir 2 = 0

which is what is expected for a reversible cycle due to Clausius’ theorem.

8) A mole of a monoatomic ideal gas are at a temperature of T = 300 K. The gas expands reversibly and

isothermally to twice its original volume. Calculate the work done by the gas, the heat supplied, and the

change in internal energy.

This question is similar to 6. The change in internal energy is zero and we can use our derived expression

for the work done on an ideal gas in an isothermal expansion and obtain the heat supplied using the first

law.

W = −RT log
V2

V1

= −8.31JK−1 × 300K× log 2

= −1730J

From the first law we know Q = −W , so the heat supplied is Q = 1730J
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