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1) This is a straightforward application of the integral formulas. Writing x = βE, then for the mean

particle number

〈Ncrit〉 =

∫ ∞
0
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eβE − 1
dE
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∫ ∞
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and now using Γ(3/2) =
√
π/2 and ζ = 2.612, we get the final answer.

For the mean energy, we have a similar calculation

〈E〉 =

∫ ∞
0
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(2π~)3
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eβE − 1
dE (2)

=

∫ ∞
0

1
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=
1

β5/2

4
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2πV

(2π~)3
m3/2Γ(5/2)ζ(5/2) (4)

and using Γ(5/2) = 3
√
π/4 and ζ(5/2) = 1.341 we get the final answer.

2) (i)

P =
NkbT

V −Nb
− N2

V 2
a (5)

(ii) While you can by brute force compute (∂P/∂V )T = 0 and (∂2P/∂V 2)T = 0, and then solve for Pc,

Tc and Vc as functions of a, b and N , there is a more elegant and shorter way. We first write down the

Van der Waals equation of state as a polynomial in V , i.e.

V 3 −
(
Nb+

NkbT

P

)
V 2 +

aN2

P
V − N3ba

P
= 0 (6)

But now, consider Figure 5.7 of the lecture notes – notice that for the critical isotherm Tc, (∂P/∂V )T =

0 and (∂2P/∂V 2)T = 0 means that this at the critical point, this curve is an inflection point and hence

has identical roots. Suppose Vc is this root, then the above Eq. (6) must be equivalent to (V − Vc)3 = 0.

Expanding this

(V − Vc)3 = V 3 − 3VcV
2 + 3V 2

c V − V 3
c = 0 . (7)

By comparing, order by order, the coefficients of V n between Eq. (6) and Eq. (7), we immediately get

3Vc = Nb + NkbTc/Pc, 3V 2
c = aN2/Pc and V 3

c = abN3/Pc. Dividing the last two equations, we get

Vc = 3Nb, and then pluging this back into 2nd equation we get Pc = a/27b2. Finally plugging both back

into the 3Vc equations yield the final relation kbTc = 8a/27b.

(iii) Using the Van der Waals equation of state, we can compute(
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

= −P +
NkbT

V −Nb
=
N2

V 2
a (8)
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Now expressing E(T, V ), we have

dE =

(
∂E

∂V

)
T

dV +

(
∂E

∂T

)
V

dT (9)

Integrating this equation over dV from some constant V0 to V , we get

E(T, V ) = E(T, V0) +

∫ V

V0

(
∂E

∂V

)
T

dV .

= E(T, V0) +

∫ V

V0

N2a

V 2
dV (10)

We have the freedom to choose V0. Since we are given that for the ideal gas C id
V = (3/2)Nkb, we note

that the Van der Waals equation of state becomes that of the ideal gas when V →∞, i.e.

lim
V→∞

(
NkbT

V −Nb
− N2

V 2
a

)
→ NkbT

V
(11)

we can choose V0 →∞. The integral then becomes

E(T, V ) = E(T, V0, V ) +

∫ V

V0

N2a

V 2
dV

= E(T, V0 →∞, V ) +

∫ V

∞

N2a

V 2
dV

= Eid(T, V )− N2a

V
(12)

But we are given that C id
V = (3/2)Nkb, thus Eid = (3/2)NkbT , and we get the required result

E =
3

2
NkbT −

aN2

V
. (13)

Since CV = (∂E/∂T )V , we have for the Van der Waals gas CV = (3/2)Nkb which is independent of T

and thus does not scale with Tc.

3) (i) The minima can be found by finding the roots of ∂F/∂m = 0, and we get

2a(T − TC)m+ 2bm3 + 2cm5 = m(2a(T − TC) + 2bm2 + 2cm4) = 0 (14)

There are 5 solutions with the trivial solution m = 0. Setting z = m2, we can factor the remaining terms

to find a quadratic equation

cz2 + bz + a(T − TC) = 0 , (15)

with solutions

z = m2 =
−b±

√
b2 − 4a(T − TC)c

2c
(16)

and square-root of this gives us the 4 required roots.

(ii) For T < TC , b2−4a(T−Tc)c > 0, and−b+
√
b2 − 4a(T − TC)c > 0 while−b−

√
b2 − 4a(T − TC)c < 0.

Thus only 3 real roots exists. It can be easily shown that the m = 0 solution is unstable (Figure 1.).

(iii) On the other hand for T > TC , as long as the radical b2 > 4a(T − TC)c, there are 5 real roots.

However, if b2 < 4a(T − TC)c, then we only have one real root at m = 0. It is easy to show that this is

a stable solution (you can take derivatives of F and show that m = 0 is a minima or just note that as

m→ ±∞, F →∞ so the m = 0 must be a minimum if it is the only root.) The point when this occur is
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Figure 1: T < TC .

hence T∗ = b2/4ac + TC . Thus for T > TC , there is a regime where TC < T < T∗ where they are 5 real

roots, and with the stable solutions given by

m = 0 , m = ±

√
−b+

√
b2 − 4a(T − TC)c

2c
. (17)

(To see that these are the stable solutions and not

m = 0 , m = ±

√
−b−

√
b2 − 4a(T − TC)c

2c
(18)

(i.e. - sign in the radical), you can either by bruteforce calculate the derivatives, or again realize that F

must look like Fig 2 and note that the maxima |m| must be smaller than the minima |m|, so we need +

�

�

Figure 2: TC < T < T∗.

solution for the minima.)

(iv) For question (iv) and (v), it is illustrative to plot the loci of the minima in Fig 3 Starting from T > T∗

(right hand side of the figure), we are in the m = 0 minima (red line). As we cool down (moving from

right to left), we stay in the red line since it is the only minima. At T < T∗, there are now 3 minima

(the blue lines) – however, since we start in the red line, the system still preferentially wants to stay in

the red line as it takes energy to “go over the barrier” to the blue line. We keep cooling until we reach

the end of the red line at T = TC . As we have shown in (ii), at T = TC , the m = 0 becomes unstable,

and hence the system must now “jump” to either of the blue line and undergoes a phase transition. The

change in the order parameter m is, with T = TC , is then

∆m =

√
−b
c
. (19)
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Figure 3: Loci of the minima.

(v) On the other hand, if we start with T < TC and heat up the system, we begin in either of the blue

lines. As we move from left to right of Fig 3, at T = TC , the m = 0 point becomes stable. However,

since it is still preferentially easier to stay on the blue line, nothing happens. As the temperature reaches

T = T∗ however, the blue line no longer is a minima, and the system then undergoes a phase transition

to the red line with m = 0. The change in the orde parameter is then

∆m =

√
−b
2c

. (20)

(vi) To calculate the latent heat L = T∆S, we need to calculate the change in the entropy S across the

phase transitions. The entropy S is given by

S = −
(
∂F

∂T

)
V

(21)

Since m is a function of T , there is some annoying algebra to do. A minor trick is to remember that

F (m2), i.e. it is a function of m2, so we can use

m2(T ) =
−b±

√
b2 − 4a(T − TC)c

2c
(22)

to reduce some work. Since there are multiple minima for TC < T < T∗, the two branches of S we need

to calculate is for T > TC and T < T∗. Along the red line, m = 0, so

Fred(m = 0) = F0(T ) (23)

while along the blue line for T < T∗, let m± be the two stable solutions as calculated in (iii)

m± = ±

√
−b+

√
b2 − 4a(T − TC)c

2c
, (24)

so (after a lot of algebra)

Fblue(m±) = F0(T ) +
b3 − (b2 − 4a(T − TC)c)3/2

12c2
− ab(T − TC)

2c
. (25)

(There is a tricky factorization here to write it in this nice form to get the 3/2 power, but you don’t have

to find it since what follows don’t require it.) We can then plug these into the entropy formula Eq. (21)

to get

Sred(T ) = −
(
∂Fred
∂T

)
V

≡ S0 (26)

and

Sblue(T ) = −
(
∂Fblue
∂T

)
V

= S0 −
a

2c

(
−b+

√
b2 − 4ac(T − TC)c

)
(27)
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. We can now use these to calculate the latent heat. For cooling, the transition occurs at TC , so

Lcooling = TC∆s = TC(Sred(TC)− Sblue(TC)) =
abTC
c

. (28)

Meanwhile for heating, the transition occurs at T∗ so

Lheating = T1∆s = TC(Sred(T∗)− Sblue(T∗)) =
abT∗
2c

. (29)

4) This question is really just for fun, since I don’t expect you to solve this problem in any kind of exam.

However, it is rather neat that you all have sufficient knowledge to solve a key problem in condensed

matter physics – no fancy math, just 1st year math that you have forgotten and some outside the box

thinking. The steps are laid out in the problem in detail. Here we will fill up the steps.

(i) The partition function is the sum over all possible energy states

Z =
∑
r

e−βEr . (30)

The form of Er is given by the Hamiltonian

E = −µH
N∑
i

si − J
N∑

j,(n.n.)

Jijsisj . (31)

We now need to count the energy states. The sum of the argument of an exponent becomes a product,

i.e. e
∑

i−βEi =
∏
i e
−βEi where i labels each lattice location. Meanwhile for each lattice location, each

of the spin state can be + or −, thus we need to sum over them, resulting in the requested form

Z1D =
∑
si=±1

· · ·
∑

sN=±1

N∏
i=1

exp

[
βJsisi+1 +

βµH

2
(si + si+1)

]
. (32)

Note that at this stage, we have not made use of the fact that it is a chain (i.e. sN = s1.)

(ii) The four values can be easily computed by plugging the si in the formula, to get

T =

(
eβJ+βµH e−βJ

e−βJ eβJ−βµH

)
. (33)

(iii) This part can be a bit obtuse if you are not booked up on linear algebra. Eqn (23) in the homework

problem is a direct substitution of Eqn (22) into Eqn (19), so that’s easy. The tricky bit is why we can

do the following “sum over all states” to get unity∑
si=±1

〈si−1|T |si〉〈si|T |si+1〉 = 〈si−1|T 2|si+1〉, (34)

i.e. using the familiar formula from quantum mechanics∑
i

|i〉〈i| = 1 . (35)

Assuming for now (we will prove it later) we can use this formula, then the partition function is

Z1D =
∑
si=±1

· · ·
∑

sN=±1
〈s1|T |s2〉〈s2|T |s3〉 . . . 〈si|T |si+1〉 . . . 〈si=N |T |s1〉

=
∑
s1=±1

〈s1|TN |s1〉

= TN (1, 1) + TN (−1,−1)

= Tr(TN ) , (36)
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which is as required. Note that we have made use of the “chain” nature of the Ising chain in line 2

Let’s now prove the formula. Consider the following term∑
s2=±1

〈s1|T |s2〉〈s2|T |s3〉 =
∑
s2=±1

T (s1, s2)T (s2, s3)

= T (s1,+1)T (+1, s3) + T (s1,−1)T (−1, s3)

= exp

[
βJ(s1 + s3) +

βµH

2
(2 + s1 + s3)

]
+ exp

[
−βJ(s1 + s3) +

βµH

2
(−2 + s1 + s3)

]
≡ A(s1, s3) (37)

where we have defined the new operator. Now this operator has the following matrix form

A =

(
e−2βJ+2β(µH+J) e−βµH + eβµH

e−βµH + eβµH e−2βJ+2β(µH+J)

)
(38)

and hence we can write the operator A as

〈s1|A|s3〉 = A(s1, s3) . (39)

For Eq. (34) to be true, this must be equal to

〈s1|A|s3〉 = 〈s1|T 2|s3〉 (40)

where T is the transfer matrix Eq. (33). But it is easy to show that via some algebra

T 2 = A , (41)

and our proof is complete.

(v) The eigenvalue of T are easily computed using the standard formula for 2 × 2 matrix, so I will not

show them here. Again from standard linear algebra formula for any non-degenerate square matrix A,

Tr(AN ) =
∑
i λ

N
i where λi are the eigenvalues of the A, we get the final answer.
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