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1) (i) Bookwork.

(ii) The mean particle number is

〈N〉 =

∫ ∞
0

g(E)
1

eβ(E−µ) + 1
dE

=

∫ EF

0

g(E)dE

=

∫ EF

0

g̃
4πV

(2π~)3
E2

c3
dE

= g̃
4πV

(2π~c)3
E3
F

3
(1)

and the mean energy is

〈E〉 =

∫ ∞
0

g(E)
E

eβ(E−µ) + 1
dE

=

∫ EF

0

Eg(E)dE

=

∫ EF

0

g̃
4πV

(2π~)3
E3

c3
dE

= g̃
πV

(2π~c)3
E4
F . (2)

(iii) We can solve for EF as a function of N using (ii) to get

EF =

(
3N(2π~c)3

g̃4πV

)1/3

(3)

and then using pF = EF /c we get the answer.

(iv) From (ii),

EF =

(
N

V

)1/3(
3(π~c)3

4g̃π

)1/3

(4)

and now using PV = (1/3)E (which you can derive from the same trick as in the lecture notes section

4.3.2, or use the knowledge that for ultra-relativistic fermions, we can ignore the mass and consider it as

a massless particle, so the standard relation from the Stefan-Boltzmann relation P = ρ/3 = 1/3(E/V )),

we get

P =
1

3
g̃

π

(2π~c)3
E4
F

=
1

3
g̃

π

(2π~c)3

(
3(2π~c)3

4g̃π

)4/3(
N

V

)4/3

=
1

3

(
3

4

)4/3(
(2π~c)3

g̃π

)1/3(
N

V

)4/3

(5)

as required.

2)

1



(i) The partition function can be written down immediately

Zrot =

l=∞∑
l=0︸︷︷︸
all l

(2l + 1)︸ ︷︷ ︸
degeneracy for every l

e−β~
2l(l+1)/2I . (6)

(ii) From (i), and using kbT = β−1, we see from the partition function in (i), that in the high temperature

limit β~2/2I � 1, so only the high l limit will contribute. This means that we can express the partition

function as an integral over l

Zrot =

∫ ∞
0

(2l + 1)e−β~
2l(l+1)/2Idl

≈
∫ ∞
0

2le−β~
2l2/2Idl

=
2I

β~2
(7)

where we have used the fact that l� 1 in the 2nd line to simply the integral.

(iii) At the limit of low temperature, β~2/2I � 1, so all the high l modes get suppressed in the partition

function since e−β~
2l(l+1)/2I � 1 when l is big. Thus

Zrot → 1 . (8)

(iv) From the lecture notes Tvib = ~ω/kb, and here Trot = ~2/2Ikb

Tvib
Trot

=
2Iω

~
= 1.7× 109 (9)

and hence the rotation modes will be activated before the vibration modes.

3) This problem is a straightforward copy-pasta of the Lecture notes Section 4.3.2, with slight modifica-

tion of signs – replace the Fermi-Dirac distribution 1/(eβ(E−µ) + 1) with the Bose-Einstein distribution

1/(eβ(E−µ) − 1).

(i) Section 4.3.2.

(ii) Section 4.3.2., but replacing the expansion 1/(1 + ε) = 1 − ε + . . . with 1/(1 − ε) = 1 + ε + . . . . To

keep the terms to second order in eβµ, we see that all we need to do is to replace

Γ(p+ 1)→ Γ(p+ 1)

(
1 +

1

2p+1
eβµ
)

(10)

in the respective integrals to get

〈E〉 ≈ g̃V 3

2β

eβµ

λ3

(
1 +

1

25/2
eβµ
)
, 〈N〉 ≈ g̃V e

βµ

λ3

(
1 +

1

23/2
eβµ
)
. (11)

(iii) The equation of state can then be easily derived by using PV = (2/3)E,

PV =
2

3

3

2β
N

(
1 +

1

25/2
eβµ
)(

1 +
1

23/2
eβµ
)−1

= NkbT

(
1 +

1

25/2
eβµ
)(

1− 1

23/2
eβµ + . . .

)
= NkbT

(
1− 1

25/2
eβµ + . . .

)
= NkbT

(
1− 1

25/2
N/g̃

V
λ3 + . . .

)
, (12)
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and done.

4) The energy density up to first order is given by (from lecture notes)

E = A

[∫ EF

0

f(E)dE +
π2

6
(kbT )2f ′(EF )

]
(13)

where A is just some constants such that A
∫ EF

0
f(E)dE = E0 is the fully degenerate case. We don’t

have to keep track of A fortunately (else it is a big mess). Now using f(E) = E3/2 for energy, and

f ′(EF ) = 3/2E
1/2
F , we have

E =
2A

3
E

3/2
F

[
1 +

3

2

π2

6
(kbT )2E−2F

]
. (14)

The Fermi energy in terms of N and V is

EF =
1

2m
(2π~)2

(
4π

3

)−2/3(
N

g̃V

)2/3

(15)

which we can plug in to get

E = E0

[
1 +

(
mkbT

~2

)2
9

4

π2

6

(
4π

3

)4/3
1

(2π)4
g̃−4/3

(
V

N

)4/3
]

(16)

and plugging in the numbers with g̃ = 2 (for fermions) gets us the required answer.

5)

(i) In two dimensions, the sum over all microstates is a sum over all possible nx and ny, which we can

convert into an integral ∑
n

→
∫
dnxdny . (17)

And now using dE = ~2k/mdk, and dn = a/(2π)dk we have∫
dnxdny = g̃

A

(2π)2

∫
d2k

= g̃
A

(2π)2

∫
2πkdk

= g̃
A

(2π)2

∫
2π
m

~2
dE

= g̃
A

(2π~)2

∫
2πmdE (18)

where in the 2nd line we have used the fact that
∫
dk2 →

∫ 2π

0
dθ
∫ k
0
kdk, and hence

g(E) = g̃
2πmA

(2π~)2
(19)

which is independent of E.

(ii)

〈N〉 =

∫
g̃

2πmA

(2π~)2
1

eβE−βµ + 1
dE (20)

and

〈E〉 =

∫
g̃

2πmA

(2π~)2
E

eβE−βµ + 1
dE . (21)

(iii) We defined the Fermi energy as the surface energy of the Fermi sea of N fermions, i.e.

〈N〉 =

∫ EF

0

g̃
2πmA

(2π~)2
dE (22)
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which can be easily integrated to yield

EF =
N

A

(2π~)2

2πg̃m
(23)

(iv) The heat capacity is CV = (∂E/∂T )V , but in the low temperature limit, we are in the degenerate

limit, and hence

〈E〉 =

∫
g̃

2πmA

(2π~)2
E

eβE−βµ + 1
dE →

∫
g̃

2πmA

(2π~)2
EdE (24)

which is clearly independent of T , so CV = 0.

6)

(i) For EA = 5ε, we need to distribute the energy across 2 particles. The only possible combinations are

A(0, 5|x, x)B , A(1, 4|x, x)B , A(5, 0|x, x)B , A(4, 1|x, x)B , A(2, 3|x, x)B and A(3, 2|x, x)B , with statistical

weight Ω(EA) = 6. [3 marks]. For EB = ε, the only two possible microstates are A(x, x|0, 1)B and

A(x, x|1, 0)B , with Ω(EB) = 2 [1 mark]. Hence the total number of microstates for the joint system is

then Ω = Ω(EA)Ω(EB) = 12. [1 mark]

(ii) In thermal equilibrium, the total energy of the system is the sum of E = EA + EB = 6ε. Hence the

total number of microstates is the number of ways we can distribute 6ε across 4 particles [2 marks]. The

direct formula to calculate this is Ω = (6+4−1)!/(6!(4−1)!) = 84 which is obtuse. But a semi-bruteforce

method hinted at can be argued as follows (the first column denotes the energies of the possible microstate

configuration)

particle distribution permutations on the lattice total

6, 0, 0, 0 4C1 4

5, 1, 0, 0 4C1 × 3C1 12

4, 2, 0, 0 4C1 × 3C1 12

3, 3, 0, 0 4C2 6

4, 1, 1, 0 4C1 × 3C2 12

3, 2, 1, 0 4C1 × 3C1 × 2C1 24

2, 2, 2, 0 4C3 4

2, 2, 1, 1 4C2 6

3, 1, 1, 1 4C3 4

which adds up to 84. [5 marks]

(iii) Since the number of microstates for EA = 5ε is 12 from (i), it is then easy to calculate that the

probabilty is P = 12/84 = 1/7. [3 marks]. If the student made a mistake in (ii) and used the result to

calculate (iii) “correctly”, they should be given full marks.

7) The solution to this problem uses some of the algebraic tricks of Section 2.3.3 where we derived the

Shannon entropy. Let’s first derive some useful identities. From

Zn = 1 + e−β(En−µ) (25)

so

Nn =
1

eβ(En−µ) + 1
=
Zn − 1

Zn
⇒ 1−Nn =

1

Zn
, (26)

and

NnZn = Zn − 1 = e−β(En−µ) . (27)

Also, from β = (kbT )−1, we have
∂

∂T
= − 1

kbT 2

∂

∂β
. (28)
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Now, the entropy is

S =
∂

∂T
(kbT lnZ) = kb lnZ + kbT

∂

∂T
lnZ . (29)

The first term is

kb lnZ = kb ln
∏
n

Zn = −
∑
n

kb ln(1−Nn) . (30)

The second term is

kbT
∂

∂T
lnZ = −βkb

∂

∂β
lnZ

= −βkb
∂

∂β

(∑
n

ln(1 + e−β(En−µ))

)

= kb

(∑
n

β(En − µ)e−β(En−µ)

1 + e−β(En−µ)

)
. (31)

Now using the trick

Zn − 1 = e−β(En−µ) → ln(ZnNn) = −β(En − µ) (32)

where we have used the identity Eq. (27). So we get

kbT
∂

∂T
lnZ = −kb

(∑
n

ln(ZnNn)Zn

Zn − 1

)

= −kb

(∑
n

Nn ln(ZnNn)

)

= −kb

(∑
n

Nn ln
Nn

1−Nn

)
. (33)

In the 2nd line, we used identity Eq. (27) and the third line we used identity Eq. (26).

Putting both terms together, we get

S = −kb
∑
n

[
ln(1−Nn) +Nn ln

Nn

1−Nn

]
= −kb

∑
n

[(1−Nn) ln(1−Nn) +Nn lnNn] (34)

as required.

8) Using the results from Q1, the fermi energy is

EF =

(
3N

4πV g̃

)1/3

(2π~c) (35)

and now N = M/mp (since electron mass is very small we ignore it) and V = 4πR3/3 we get

ET = EG + EK = −3

5

GM2

R
+ (2π~c)

(
9

16π2g̃

)1/3(
M

mp

)4/3
1

R
∝ 1

R
. (36)

When ET < 0, this means that the gravitational term EG > EK , and hence gravity will dominate over

the kinetic energy, causing a collapse. This occurs at ET = 0, which gives us

MC = 5

√
5π

6g̃

(
~c
G

)3/2

m−2p . (37)

Plugging in the numbers we get MC ≈ 10M�.
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