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1) From

(i) Bookwork.

(ii) The partition function is

Zrot =
1

(2π~)2

∫ π

0

dθ

∫ 2π

0

dφ

∫
dpφdpθ e

−βHrot(pφ,pθ)

=
1

(2π~)2

∫ π

0

dθ

∫ 2π

0

dφ

∫
dpφdpθ e

−(β/2I)(p2θ+p
2
φ sin−2 θ) . (1)

We first do the momentum integrals since they are just gaussian integrals,∫
dθe−(β/2I)p

2
θ =

√
2Iπ

β
,

∫
dφe−(β/2I)p

2
φ sin−2 θ =

√
2Iπ sin2 θ

β
(2)

so

Zrot =
2π

(2π~)2
2I

β

∫ π

0

sin θdθ︸ ︷︷ ︸
1

∫ 2π

0

dφ︸ ︷︷ ︸
2π

=
1

~2
2I

β

=
2IkbT

~2
. (3)

(iii) The Hamiltonian in terms of the canonical variables pz and z is

Hvib =
p2z
2m

+
1

2
mω2z2 (4)

so the partition function is

Zvib =
1

2π~

∫
dzdpze

−β(p2z/2m+mω2z2/2)

=
1

2π~

√
2mπ

β

√
2π

mω2β

=
kbT

~ω
. (5)

(iv) Given Z, the energy is

〈E〉 = −∂ lnZ

∂β
(6)

and since it is derivative of a log, the coefficient is simply the power of the T term in the partition

functions, so the powers of T for the translation, rotation and vibration partition functions are T 3/2, T

and T , the energies are simply

Etrans =
3

2
kbT , Erot = kbT , Evib = kbT . (7)

2) From

λ =

√
2π~2
mkbT

= β1/2

√
2π~2
m

(8)
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then
∂λ

∂β
=

λ

2β
(9)

and thus

Ē = −∂ lnZ

∂β
= N

∂

∂β
lnλ3 =

3N

2β
. (10)

Plugging this in

S = kb(lnZ + βĒ)

= kb

(
N ln

V

λ3
− lnN ! +

3N

2

)
= kb

(
N ln

V

λ3
−N lnN +N +

3N

2

)
= Nkb

[
ln

(
V

Nλ3

)
+

5

2

]
. (11)

3)

(i) To find the maximum, we take the derivative and set it to zero to solve for vmax

∂

∂v

[√
2

π

(
m

kbT

)3/2

v2e−mv
2/2kbT

]
= 0 (12)

which gives

e−mv
2/2kbT

(
2v − m

kbT
v3
)

= 0 (13)

and hence vmax =
√

2kbT/m.

(ii) Using a ≡ m/2kbT to save ink, and also keeping the big proportionality constant intact because those

are going to cancel at the end, we integrate by parts

〈v〉 =

∫ ∞
0

vf(v)e−mv
2/2kbT

=

√
2

π

(
m

kbT

)3/2 ∫ ∞
0

v3e−mv
2/2kbT dv

=

√
2

π

(
m

kbT

)3/2
[
−e
−av2

2a2
(1 + av2)

]∞
0

=

√
2

π

(
m

kbT

)3/2
1

2a2
. (14)

Meanwhile,

〈v−1〉 =

∫ ∞
0

v−1f(v)e−mv
2/2kbT

=

√
2

π

(
m

kbT

)3/2 ∫ ∞
0

ve−mv
2/2kbT dv

=

√
2

π

(
m

kbT

)3/2
[
−e
−av2

2a

]∞
0

=

√
2

π

(
m

kbT

)3/2
1

2a
. (15)

Thus the ratio
〈v−1〉

(〈v〉)−1
=

1

4a3
× 2

π

(
m

kbT

)3

=
4

π
. (16)
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(iii)

(a) 〈vx〉 = 0 by symmetry (else there is a net movement to the x direction).

(b) 〈v2y〉 = kbT/m by equipartition theorem (since 〈mv2x/2〉 = (1/2)kbT ).

(c) 〈v2vx〉 = 〈(v2x + v2y + v2z)〉vx〉 = 〈v3x + v2yvx + v2zvx〉 = 0 using 〈v2yvx〉 = 〈v2y〉〈vx〉 = 0 by symmetry.

(d) 〈(vx + bvy)2〉 = 〈v2x + b2v2y + 2bvxvy〉 = (kbT/m)(1 + b2) where the last term is zero by symmetry

again.

(e) 〈(v3xv2y)〉 = 0 by symmetry.

(f) 〈(v2xv2y)〉 = 〈v2x〉〈v2y〉 = (kbT/m)2.

4)

(i) Taking derivative

d

dr

[
4ε

[(σ
r

)12
−
(σ
r

)6]]
= −4ε

[
12

r

(σ
r

)12
− 6

r

(σ
r

)6]
= 0 (17)

it’s easy to see that this occurs when

rmin =

(
1

2

)−1/6
σ . (18)

(ii) The calculation is very similar to that of the hardcore-London potential that used in the lecture notes.

r0 → σ , (19)

and do the I integral for the limit from 0 to σ, which is easily done∫ σ

0

f(r)d3r = 4π

∫ σ

0

(
e−βU(r) − 1

)
r2dr . (20)

But now, as r � σ, the term of U that dominates is the (σ/r)12 term, and as r → 0, e−(σ/r)
12 → 0, thus

f(r)→ −1 just like the hardcore potential in the lectures. Thus we will get the Van der Waals equation

of state, with the new variables σ and ε, i.e. the a and b coefficients are now

a ≡ 16πσ3ε

3
, b ≡ 2πσ3

3
. (21)

[Thanks to Frankie Palmer for pointing out an error in the solution of a previous version.]

5)

(i) The partition function for a single particle is

Z1 =
1

(2π~)2

∫
d2x︸ ︷︷ ︸
A

d2pe−βp
2/2m

=
A

(2π~)2

(
2mπ

β

)
=

A

λ2
(22)

where we have used the gaussian integral
∫∞
−∞ e−ax

2

dx =
√
π/a twice in the 2nd line. The total partition

function is then

Z =
1

N !

∏
N

Z1 =
1

N !

(
A

λ2

)N
. (23)

(ii) The Helmholtz free energy is F = −kbT lnZ = −kbTN(lnA − ln(N !λ2)), and the pressure is given

by (note that the “Volume” is now simply the area A)

P = −
(
∂P

∂A

)
T

=
NkbT

A
(24)
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6)

(i) This is trivial.

(ii) The partition function for a single particle is

Z1 =
1

(2π~)3

∫
d3pd3x e−βpc

=
V

(2π~)3

∫
d3p e−βpc

=
V

(2π~)3

∫ ∞
0

(4π)p2dp e−βpc

=
4πV

(2π~)3

[
−1

β3c3
e−βpc(2 + 2βpc+ β2p2c2)

]∞
0

=
V

π2

(
kbT

~c

)3

, (25)

where in the 4th line we integrate by parts twice. Thus the partition function for N such non-interacting

particles is

Z =
∏
N

Z1 =
1

N !

[
V

π2

(
kbT

~c

)3
]N

. (26)

(iii) The Helmholtz free energy is F = −kbT lnZ, and the equation of state is then

P = −
(
∂F

∂V

)
T

= kbT

(
∂ lnZ

∂V

)
T

= kbT

(
∂N lnV

∂V

)
T

=
NkbT

V
. (27)

7)

(i) This calculation is identical to the lecture notes for the derivation of the Van der Waals force. The

Helmholtz free energy is

F = Fid − kbT × I (28)

with

I =
N2

2V

∫
d3f(r) (29)

and

f(r) = e−βU(r) − 1 . (30)

Note that since the potential only has a hard core, f(r) = 0 for r > r0, so the only part of the integral I

that has support is ∫ r0

∞
f(r)d3r =

∫ r0

0

4πr2(−1)dr = −4πr30
3

. (31)

Comparing this to the Van der Waals case, we see that this imply that the Van der Waals coefficients are

a = 0 , b =
2πr30

3
. (32)

So the equation of state is hence

kbT =
PV

N

(
1 +

N

V
b

)−1
. (33)
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Expressing it as a virial expansion
P

kbT
=
N

V

(
1 +

N

V
b

)
(34)

which is 2nd order in N/V with the Virial coefficient b.

(ii) In 2-dimensions, instead of a hard core, we have a hard disc. The partition function of ideal 2D gas is

given by Q5, so we can calculate the corresponding Fid = −kbT lnZ. Using the results from the lecture

notes, we can split the F into ideal and non-ideal case as usual

F = Fid − kbT × I (35)

with

I =
N2

2A

∫ ∞
0

d2rf(r) , (36)

where A is the area of the container. We now need to do this integral. Again like (i) above, the only part

where the integral has support is f(0 < r < r0) = −1 (i.e. f(r > r0) = 0 as you should be able to see

easily)

I =
N2

2A

∫ ∞
0

d2rf(r)

=
N2

2A

∫ r0

0

(2π)r(−1)

= −N
2

2A
πr20. (37)

So

F = Fid + kbT
N2

2A
(πr20) (38)

and using

P = −
(
∂F

∂A

)
T

=
NkbT

A
+ kbT (πr20)

N2

2A2

=
NkbT

A

(
1 +

N

2A
(πr20)

)
(39)

which is a virial expansion to 2nd order in N/A with coefficient πr20.

8)

(i) Plugging in the ansatz y(x, t) into the wave equation, we get

k2ny(x, t) =
ρ

τ
ω2
ny(x, t) (40)

so it will be a solution as long as kn =
√
ρ/τωn. Since the string is fixed x = 0 and x = L, this means

that

y(0, t) = y(L, t) (41)

or

sin(knL) = 0 (42)

and this equation has solutions when kn = nπ/L for n = 0, 1, 2, 3, . . . . The n = 0 mode is the “zero

mode” (i.e. the string is not vibrating), so we can ignore it. Using the above result, the spectrum of

frequencies is then

ωn = n
π

L

√
τ

ρ
, n = 1, 2, 3, . . . (43)
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(ii) To obtain the total energy, we have to integrate the over the length of the string, so

EKin =

∫ L

0

K(x, t)dx

=

∫ L

0

1

2
ρζ2ω2

n sin2(knx) sin2(ωnt)

=
1

4
ρζ2ω2

n sin2(ωnt) , (44)

where we have used sin2 kx = 1/2(1 + cos(2kx)). Similarly the potential energy

Epot =

∫ L

0

V (x, t)dx

=

∫ L

0

1

2
τζ2ω2

n cos2(knx) cos2(ωnt)

=
1

4
τζ2ω2

n cos2(ωnt) , (45)

where we have used cos2 kx = 1/2(1− cos(2kx)). The total energy per mode n is then

En = Ekin + Epot =
1

4
ζ2(ρk2n sin2(ωt) + τω2

n sin2(ωt)) =
1

4

τ

L
n2π2ζ2 (46)

using the relation between kn and ωn in (i).

(iii) The probability of a mode n being occupied is given by

Pn =
1

Z
e−βEn . (47)

Now since En ∝ n2, so the energies of higher harmonics are larger, βEn = En/kbT is larger for higher

harmonics, and hence e−En/kbT is smaller, so Pn is smaller for higher harmonics. But since as T increases,

En/kbT decreases for fixed n, and thence Pn is larger for higher T .

(iv) The work done is split into two components. The first component is simply the work required to

extend the string of tension τ (sometimes this is called the zero mode), so (d̄W )0 = τdL. The second

component is more tricky – as we stretch the string, the energies of each mode En also changes. Recall

from the lecture notes that work done on the system changes the energy of the spectrum En

d̄W = 〈δEn〉

= − 1

β

∂ lnZ

∂L
dL

= − 1

β

1

Z

∂Z

∂L
dL

= − 1

β

1

Z

∑
n

(
−β ∂En

∂L
e−βEn

)
dL (48)

But now using the results of (ii) for En,
∂En
∂L

= −En
L

(49)

so we finally have

d̄W =
∑
n

−En
L

e−βEn

Z
dL

= −〈En〉
L

dL . (50)
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Notice that the energy per mode goes down as L increases – the energy of the mode is proportional to

ωn and as L increases, the frequency decreases. Thus, the vibration energy actually helps us stretch the

length of the string! The total work is then the sum of both components

d̄W =

(
τ − 〈E〉

L

)
dL . (51)

9)

(i) The partition function for a single particle is

Z =
1

(2π~)3

∫
d3p

∫
dxdy

∫ ∞
0

dz e−βE

=
1

(2π~)3

∫
d3pe−βp

2/2m︸ ︷︷ ︸
λ−3 as usual

∫
dxdy︸ ︷︷ ︸
A

∫ ∞
0

dze−βmgz

=
1

λ3
×A×

∫ ∞
0

dze−βmgz

=
AkbT

mgλ3
. (52)

(ii) The probability of finding a particle depends on its momentum p and position x,

P (p, x, y, z) =
1

Z
e−βE . (53)

If we want to find the probability of finding any particle at position z, we need to integrate over p, x and

y, i.e.

P (z) =

∫
d3p

∫
dxdyP (p, x, y, z) =

∫
d3p

∫
dxdye−p

2/2m × e−βmgz (54)

the integrals are identical to those of (i), but since there is no z integral, we get the probability as a

distribution in z, i.e.

P (z) = Ce−βmgz . (55)

Recall that P (z) is the probability of finding a single particle in the entire atmosphere as a function

of z. Hence it follows that if we have N particles, NP (z) is the probability of finding the the fraction

of the particles in z, it is the distribution of particles as a function of z, or its density. (Think of the

Maxwell-Boltzmann distribution of particles as a function of velocity v – here the variable is z.)

(iii) ρ(100km) = 1.34× 10−8 g/cm3.

10) Using the Equipartition theorem

〈x∂H
∂x
〉 = kbT (56)

for x = p, q, we can calculate the mean energy per particle

〈E〉 = 〈 p
2

2m
+ λq4〉

=
1

2
〈p∂H
∂p
〉+

1

4
〈q ∂H
∂q
〉

=
3

4
kbT (57)

and hence the total energy for n particles is 〈EN 〉(3/4)NkbT . The heat capacity is then(
∂CV
∂T

)
V

=
3

4
Nkb . (58)
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