6CCP3212 Statistical Mechanics Solutions 3

Lecturer: Prof. Eugene A. Lim
https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1) From
(i) Bookwork.
(ii) The partition function is

$$
\begin{align*}
Z_{\mathrm{rot}} & =\frac{1}{(2 \pi \hbar)^{2}} \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \int d p_{\phi} d p_{\theta} e^{-\beta H_{\mathrm{rot}}\left(p_{\phi}, p_{\theta}\right)} \\
& =\frac{1}{(2 \pi \hbar)^{2}} \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \int d p_{\phi} d p_{\theta} e^{-(\beta / 2 I)\left(p_{\theta}^{2}+p_{\phi}^{2} \sin ^{-2} \theta\right)} \tag{1}
\end{align*}
$$

We first do the momentum integrals since they are just gaussian integrals,

$$
\begin{equation*}
\int d \theta e^{-(\beta / 2 I) p_{\theta}^{2}}=\sqrt{\frac{2 I \pi}{\beta}}, \int d \phi e^{-(\beta / 2 I) p_{\phi}^{2} \sin ^{-2} \theta}=\sqrt{\frac{2 I \pi \sin ^{2} \theta}{\beta}} \tag{2}
\end{equation*}
$$

so

$$
\begin{align*}
Z_{\mathrm{rot}} & =\frac{2 \pi}{(2 \pi \hbar)^{2}} \frac{2 I}{\beta} \underbrace{\int_{0}^{\pi} \sin \theta d \theta}_{1} \underbrace{\int_{0}^{2 \pi} d \phi}_{2 \pi} \\
& =\frac{1}{\hbar^{2}} \frac{2 I}{\beta} \\
& =\frac{2 I k_{b} T}{\hbar^{2}} \tag{3}
\end{align*}
$$

(iii) The Hamiltonian in terms of the canonical variables p_{z} and z is

$$
\begin{equation*}
H_{\mathrm{vib}}=\frac{p_{z}^{2}}{2 m}+\frac{1}{2} m \omega^{2} z^{2} \tag{4}
\end{equation*}
$$

so the partition function is

$$
\begin{align*}
Z_{\mathrm{vib}} & =\frac{1}{2 \pi \hbar} \int d z d p_{z} e^{-\beta\left(p_{z}^{2} / 2 m+m \omega^{2} z^{2} / 2\right)} \\
& =\frac{1}{2 \pi \hbar} \sqrt{\frac{2 m \pi}{\beta}} \sqrt{\frac{2 \pi}{m \omega^{2} \beta}} \\
& =\frac{k_{b} T}{\hbar \omega} \tag{5}
\end{align*}
$$

(iv) Given Z, the energy is

$$
\begin{equation*}
\langle E\rangle=-\frac{\partial \ln Z}{\partial \beta} \tag{6}
\end{equation*}
$$

and since it is derivative of a log, the coefficient is simply the power of the T term in the partition functions, so the powers of T for the translation, rotation and vibration partition functions are $T^{3 / 2}, T$ and T, the energies are simply

$$
\begin{equation*}
E_{\mathrm{trans}}=\frac{3}{2} k_{b} T, E_{\mathrm{rot}}=k_{b} T, E_{\mathrm{vib}}=k_{b} T \tag{7}
\end{equation*}
$$

2) From

$$
\begin{equation*}
\lambda=\sqrt{\frac{2 \pi \hbar^{2}}{m k_{b} T}}=\beta^{1 / 2} \sqrt{\frac{2 \pi \hbar^{2}}{m}} \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\partial \lambda}{\partial \beta}=\frac{\lambda}{2 \beta} \tag{9}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\bar{E}=-\frac{\partial \ln Z}{\partial \beta}=N \frac{\partial}{\partial \beta} \ln \lambda^{3}=\frac{3 N}{2 \beta} \tag{10}
\end{equation*}
$$

Plugging this in

$$
\begin{align*}
S & =k_{b}(\ln Z+\beta \bar{E}) \\
& =k_{b}\left(N \ln \frac{V}{\lambda^{3}}-\ln N!+\frac{3 N}{2}\right) \\
& =k_{b}\left(N \ln \frac{V}{\lambda^{3}}-N \ln N+N+\frac{3 N}{2}\right) \\
& =N k_{b}\left[\ln \left(\frac{V}{N \lambda^{3}}\right)+\frac{5}{2}\right] \tag{11}
\end{align*}
$$

3)

(i) To find the maximum, we take the derivative and set it to zero to solve for $v_{\max }$

$$
\begin{equation*}
\frac{\partial}{\partial v}\left[\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k_{b} T}\right]=0 \tag{12}
\end{equation*}
$$

which gives

$$
\begin{equation*}
e^{-m v^{2} / 2 k_{b} T}\left(2 v-\frac{m}{k_{b} T} v^{3}\right)=0 \tag{13}
\end{equation*}
$$

and hence $v_{\max }=\sqrt{2 k_{b} T / m}$.
(ii) Using $a \equiv m / 2 k_{b} T$ to save ink, and also keeping the big proportionality constant intact because those are going to cancel at the end, we integrate by parts

$$
\begin{align*}
\langle v\rangle & =\int_{0}^{\infty} v f(v) e^{-m v^{2} / 2 k_{b} T} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-m v^{2} / 2 k_{b} T} d v \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2}\left[-\frac{e^{-a v^{2}}}{2 a^{2}}\left(1+a v^{2}\right)\right]_{0}^{\infty} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} \frac{1}{2 a^{2}} \tag{14}
\end{align*}
$$

Meanwhile,

$$
\begin{align*}
\left\langle v^{-1}\right\rangle & =\int_{0}^{\infty} v^{-1} f(v) e^{-m v^{2} / 2 k_{b} T} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} \int_{0}^{\infty} v e^{-m v^{2} / 2 k_{b} T} d v \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2}\left[-\frac{e^{-a v^{2}}}{2 a}\right]_{0}^{\infty} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{b} T}\right)^{3 / 2} \frac{1}{2 a} \tag{15}
\end{align*}
$$

Thus the ratio

$$
\begin{equation*}
\frac{\left\langle v^{-1}\right\rangle}{(\langle v\rangle)^{-1}}=\frac{1}{4 a^{3}} \times \frac{2}{\pi}\left(\frac{m}{k_{b} T}\right)^{3}=\frac{4}{\pi} \tag{16}
\end{equation*}
$$

(iii)
(a) $\left\langle v_{x}\right\rangle=0$ by symmetry (else there is a net movement to the x direction).
(b) $\left\langle v_{y}^{2}\right\rangle=k_{b} T / m$ by equipartition theorem (since $\left\langle m v_{x}^{2} / 2\right\rangle=(1 / 2) k_{b} T$).
(c) $\left.\left\langle v^{2} v_{x}\right\rangle=\left\langle\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)\right\rangle v_{x}\right\rangle=\left\langle v_{x}^{3}+v_{y}^{2} v_{x}+v_{z}^{2} v_{x}\right\rangle=0$ using $\left\langle v_{y}^{2} v_{x}\right\rangle=\left\langle v_{y}^{2}\right\rangle\left\langle v_{x}\right\rangle=0$ by symmetry.
(d) $\left\langle\left(v_{x}+b v_{y}\right)^{2}\right\rangle=\left\langle v_{x}^{2}+b^{2} v_{y}^{2}+2 b v_{x} v_{y}\right\rangle=\left(k_{b} T / m\right)\left(1+b^{2}\right)$ where the last term is zero by symmetry again.
(e) $\left\langle\left(v_{x}^{3} v_{y}^{2}\right)\right\rangle=0$ by symmetry.
(f) $\left\langle\left(v_{x}^{2} v_{y}^{2}\right)\right\rangle=\left\langle v_{x}^{2}\right\rangle\left\langle v_{y}^{2}\right\rangle=\left(k_{b} T / m\right)^{2}$.
4)
(i) Taking derivative

$$
\begin{equation*}
\frac{d}{d r}\left[4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]\right]=-4 \epsilon\left[\frac{12}{r}\left(\frac{\sigma}{r}\right)^{12}-\frac{6}{r}\left(\frac{\sigma}{r}\right)^{6}\right]=0 \tag{17}
\end{equation*}
$$

it's easy to see that this occurs when

$$
\begin{equation*}
r_{\min }=\left(\frac{1}{2}\right)^{-1 / 6} \sigma . \tag{18}
\end{equation*}
$$

(ii) The calculation is very similar to that of the hardcore-London potential that used in the lecture notes.

$$
\begin{equation*}
r_{0} \rightarrow \sigma, \tag{19}
\end{equation*}
$$

and do the I integral for the limit from 0 to σ, which is easily done

$$
\begin{equation*}
\int_{0}^{\sigma} f(r) d^{3} r=4 \pi \int_{0}^{\sigma}\left(e^{-\beta U(r)}-1\right) r^{2} d r . \tag{20}
\end{equation*}
$$

But now, as $r \ll \sigma$, the term of U that dominates is the $(\sigma / r)^{12}$ term, and as $r \rightarrow 0, e^{-(\sigma / r)^{12}} \rightarrow 0$, thus $f(r) \rightarrow-1$ just like the hardcore potential in the lectures. Thus we will get the Van der Waals equation of state, with the new variables σ and ϵ, i.e. the a and b coefficients are now

$$
\begin{equation*}
a \equiv \frac{16 \pi \sigma^{3} \epsilon}{3}, b \equiv \frac{2 \pi \sigma^{3}}{3} . \tag{21}
\end{equation*}
$$

[Thanks to Frankie Palmer for pointing out an error in the solution of a previous version.]
5)
(i) The partition function for a single particle is

$$
\begin{align*}
Z_{1} & =\frac{1}{(2 \pi \hbar)^{2}} \underbrace{\int d^{2} x}_{A} d^{2} p e^{-\beta \mathbf{p}^{2} / 2 m} \\
& =\frac{A}{(2 \pi \hbar)^{2}}\left(\frac{2 m \pi}{\beta}\right) \\
& =\frac{A}{\lambda^{2}} \tag{22}
\end{align*}
$$

where we have used the gaussian integral $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\pi / a}$ twice in the 2nd line. The total partition function is then

$$
\begin{equation*}
Z=\frac{1}{N!} \prod_{N} Z_{1}=\frac{1}{N!}\left(\frac{A}{\lambda^{2}}\right)^{N} . \tag{23}
\end{equation*}
$$

(ii) The Helmholtz free energy is $F=-k_{b} T \ln Z=-k_{b} T N\left(\ln A-\ln \left(N!\lambda^{2}\right)\right)$, and the pressure is given by (note that the "Volume" is now simply the area A)

$$
\begin{equation*}
P=-\left(\frac{\partial P}{\partial A}\right)_{T}=\frac{N k_{b} T}{A} \tag{24}
\end{equation*}
$$

6)

(i) This is trivial.
(ii) The partition function for a single particle is

$$
\begin{align*}
Z_{1} & =\frac{1}{(2 \pi \hbar)^{3}} \int d^{3} p d^{3} x e^{-\beta p c} \\
& =\frac{V}{(2 \pi \hbar)^{3}} \int d^{3} p e^{-\beta p c} \\
& =\frac{V}{(2 \pi \hbar)^{3}} \int_{0}^{\infty}(4 \pi) p^{2} d p e^{-\beta p c} \\
& =\frac{4 \pi V}{(2 \pi \hbar)^{3}}\left[\frac{-1}{\beta^{3} c^{3}} e^{-\beta p c}\left(2+2 \beta p c+\beta^{2} p^{2} c^{2}\right)\right]_{0}^{\infty} \\
& =\frac{V}{\pi^{2}}\left(\frac{k_{b} T}{\hbar c}\right)^{3}, \tag{25}
\end{align*}
$$

where in the 4th line we integrate by parts twice. Thus the partition function for N such non-interacting particles is

$$
\begin{equation*}
Z=\prod_{N} Z_{1}=\frac{1}{N!}\left[\frac{V}{\pi^{2}}\left(\frac{k_{b} T}{\hbar c}\right)^{3}\right]^{N} \tag{26}
\end{equation*}
$$

(iii) The Helmholtz free energy is $F=-k_{b} T \ln Z$, and the equation of state is then

$$
\begin{align*}
P & =-\left(\frac{\partial F}{\partial V}\right)_{T} \\
& =k_{b} T\left(\frac{\partial \ln Z}{\partial V}\right)_{T} \\
& =k_{b} T\left(\frac{\partial N \ln V}{\partial V}\right)_{T} \\
& =\frac{N k_{b} T}{V} . \tag{27}
\end{align*}
$$

7)

(i) This calculation is identical to the lecture notes for the derivation of the Van der Waals force. The Helmholtz free energy is

$$
\begin{equation*}
F=F_{\text {id }}-k_{b} T \times I \tag{28}
\end{equation*}
$$

with

$$
\begin{equation*}
I=\frac{N^{2}}{2 V} \int d^{3} f(r) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
f(r)=e^{-\beta U(r)}-1 . \tag{30}
\end{equation*}
$$

Note that since the potential only has a hard core, $f(r)=0$ for $r>r_{0}$, so the only part of the integral I that has support is

$$
\begin{equation*}
\int_{\infty}^{r_{0}} f(r) d^{3} r=\int_{0}^{r_{0}} 4 \pi r^{2}(-1) d r=-\frac{4 \pi r_{0}^{3}}{3} . \tag{31}
\end{equation*}
$$

Comparing this to the Van der Waals case, we see that this imply that the Van der Waals coefficients are

$$
\begin{equation*}
a=0, b=\frac{2 \pi r_{0}^{3}}{3} . \tag{32}
\end{equation*}
$$

So the equation of state is hence

$$
\begin{equation*}
k_{b} T=\frac{P V}{N}\left(1+\frac{N}{V} b\right)^{-1} . \tag{33}
\end{equation*}
$$

Expressing it as a virial expansion

$$
\begin{equation*}
\frac{P}{k_{b} T}=\frac{N}{V}\left(1+\frac{N}{V} b\right) \tag{34}
\end{equation*}
$$

which is 2 nd order in N / V with the Virial coefficient b.
(ii) In 2-dimensions, instead of a hard core, we have a hard disc. The partition function of ideal 2D gas is given by Q5, so we can calculate the corresponding $F_{\mathrm{id}}=-k_{b} T \ln Z$. Using the results from the lecture notes, we can split the F into ideal and non-ideal case as usual

$$
\begin{equation*}
F=F_{\mathrm{id}}-k_{b} T \times I \tag{35}
\end{equation*}
$$

with

$$
\begin{equation*}
I=\frac{N^{2}}{2 A} \int_{0}^{\infty} d^{2} r f(r) \tag{36}
\end{equation*}
$$

where A is the area of the container. We now need to do this integral. Again like (i) above, the only part where the integral has support is $f\left(0<r<r_{0}\right)=-1$ (i.e. $f\left(r>r_{0}\right)=0$ as you should be able to see easily)

$$
\begin{align*}
I & =\frac{N^{2}}{2 A} \int_{0}^{\infty} d^{2} r f(r) \\
& =\frac{N^{2}}{2 A} \int_{0}^{r_{0}}(2 \pi) r(-1) \\
& =-\frac{N^{2}}{2 A} \pi r_{0}^{2} \tag{37}
\end{align*}
$$

So

$$
\begin{equation*}
F=F_{\mathrm{id}}+k_{b} T \frac{N^{2}}{2 A}\left(\pi r_{0}^{2}\right) \tag{38}
\end{equation*}
$$

and using

$$
\begin{align*}
P & =-\left(\frac{\partial F}{\partial A}\right)_{T} \\
& =\frac{N k_{b} T}{A}+k_{b} T\left(\pi r_{0}^{2}\right) \frac{N^{2}}{2 A^{2}} \\
& =\frac{N k_{b} T}{A}\left(1+\frac{N}{2 A}\left(\pi r_{0}^{2}\right)\right) \tag{39}
\end{align*}
$$

which is a virial expansion to 2 nd order in N / A with coefficient πr_{0}^{2}.
8)
(i) Plugging in the ansatz $y(x, t)$ into the wave equation, we get

$$
\begin{equation*}
k_{n}^{2} y(x, t)=\frac{\rho}{\tau} \omega_{n}^{2} y(x, t) \tag{40}
\end{equation*}
$$

so it will be a solution as long as $k_{n}=\sqrt{\rho / \tau} \omega_{n}$. Since the string is fixed $x=0$ and $x=L$, this means that

$$
\begin{equation*}
y(0, t)=y(L, t) \tag{41}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin \left(k_{n} L\right)=0 \tag{42}
\end{equation*}
$$

and this equation has solutions when $k_{n}=n \pi / L$ for $n=0,1,2,3, \ldots$. The $n=0$ mode is the "zero mode" (i.e. the string is not vibrating), so we can ignore it. Using the above result, the spectrum of frequencies is then

$$
\begin{equation*}
\omega_{n}=n \frac{\pi}{L} \sqrt{\frac{\tau}{\rho}}, n=1,2,3, \ldots \tag{43}
\end{equation*}
$$

(ii) To obtain the total energy, we have to integrate the over the length of the string, so

$$
\begin{align*}
E_{\text {Kin }} & =\int_{0}^{L} K(x, t) d x \\
& =\int_{0}^{L} \frac{1}{2} \rho \zeta^{2} \omega_{n}^{2} \sin ^{2}\left(k_{n} x\right) \sin ^{2}\left(\omega_{n} t\right) \\
& =\frac{1}{4} \rho \zeta^{2} \omega_{n}^{2} \sin ^{2}\left(\omega_{n} t\right) \tag{44}
\end{align*}
$$

where we have used $\sin ^{2} k x=1 / 2(1+\cos (2 k x))$. Similarly the potential energy

$$
\begin{align*}
E_{p o t} & =\int_{0}^{L} V(x, t) d x \\
& =\int_{0}^{L} \frac{1}{2} \tau \zeta^{2} \omega_{n}^{2} \cos ^{2}\left(k_{n} x\right) \cos ^{2}\left(\omega_{n} t\right) \\
& =\frac{1}{4} \tau \zeta^{2} \omega_{n}^{2} \cos ^{2}\left(\omega_{n} t\right) \tag{45}
\end{align*}
$$

where we have used $\cos ^{2} k x=1 / 2(1-\cos (2 k x))$. The total energy per mode n is then

$$
\begin{equation*}
E_{n}=E_{k i n}+E_{p o t}=\frac{1}{4} \zeta^{2}\left(\rho k_{n}^{2} \sin ^{2}(\omega t)+\tau \omega_{n}^{2} \sin ^{2}(\omega t)\right)=\frac{1}{4} \frac{\tau}{L} n^{2} \pi^{2} \zeta^{2} \tag{46}
\end{equation*}
$$

using the relation between k_{n} and ω_{n} in (i).
(iii) The probability of a mode n being occupied is given by

$$
\begin{equation*}
P_{n}=\frac{1}{Z} e^{-\beta E_{n}} \tag{47}
\end{equation*}
$$

Now since $E_{n} \propto n^{2}$, so the energies of higher harmonics are larger, $\beta E_{n}=E_{n} / k_{b} T$ is larger for higher harmonics, and hence $e^{-E_{n} / k_{b} T}$ is smaller, so P_{n} is smaller for higher harmonics. But since as T increases, $E_{n} / k_{b} T$ decreases for fixed n, and thence P_{n} is larger for higher T.
(iv) The work done is split into two components. The first component is simply the work required to extend the string of tension τ (sometimes this is called the zero mode), so $(d W)_{0}=\tau d L$. The second component is more tricky - as we stretch the string, the energies of each mode E_{n} also changes. Recall from the lecture notes that work done on the system changes the energy of the spectrum E_{n}

$$
\begin{align*}
d W & =\left\langle\delta E_{n}\right\rangle \\
& =-\frac{1}{\beta} \frac{\partial \ln Z}{\partial L} d L \\
& =-\frac{1}{\beta} \frac{1}{Z} \frac{\partial Z}{\partial L} d L \\
& =-\frac{1}{\beta} \frac{1}{Z} \sum_{n}\left(-\beta \frac{\partial E_{n}}{\partial L} e^{-\beta E_{n}}\right) d L \tag{48}
\end{align*}
$$

But now using the results of (ii) for E_{n},

$$
\begin{equation*}
\frac{\partial E_{n}}{\partial L}=-\frac{E_{n}}{L} \tag{49}
\end{equation*}
$$

so we finally have

$$
\begin{align*}
d W & =\sum_{n} \frac{-E_{n}}{L} \frac{e^{-\beta E_{n}}}{Z} d L \\
& =-\frac{\left\langle E_{n}\right\rangle}{L} d L \tag{50}
\end{align*}
$$

Notice that the energy per mode goes down as L increases - the energy of the mode is proportional to ω_{n} and as L increases, the frequency decreases. Thus, the vibration energy actually helps us stretch the length of the string! The total work is then the sum of both components

$$
\begin{equation*}
d W=\left(\tau-\frac{\langle E\rangle}{L}\right) d L \tag{51}
\end{equation*}
$$

9)

(i) The partition function for a single particle is

$$
\begin{align*}
Z & =\frac{1}{(2 \pi \hbar)^{3}} \int d^{3} p \int d x d y \int_{0}^{\infty} d z e^{-\beta E} \\
& =\underbrace{\frac{1}{(2 \pi \hbar)^{3}} \int d^{3} p e^{-\beta \mathbf{p}^{2} / 2 m}}_{\lambda^{-3} \text { as usual }} \underbrace{\int d x d y}_{A} \int_{0}^{\infty} d z e^{-\beta m g z} \\
& =\frac{1}{\lambda^{3}} \times A \times \int_{0}^{\infty} d z e^{-\beta m g z} \\
& =\frac{A k_{b} T}{m g \lambda^{3}} \tag{52}
\end{align*}
$$

(ii) The probability of finding a particle depends on its momentum \mathbf{p} and position \mathbf{x},

$$
\begin{equation*}
P(\mathbf{p}, x, y, z)=\frac{1}{Z} e^{-\beta E} \tag{53}
\end{equation*}
$$

If we want to find the probability of finding any particle at position z, we need to integrate over \mathbf{p}, x and y, i.e.

$$
\begin{equation*}
P(z)=\int d^{3} p \int d x d y P(\mathbf{p}, x, y, z)=\int d^{3} p \int d x d y e^{-\mathbf{p}^{2} / 2 m} \times e^{-\beta m g z} \tag{54}
\end{equation*}
$$

the integrals are identical to those of (i), but since there is no z integral, we get the probability as a distribution in z, i.e.

$$
\begin{equation*}
P(z)=C e^{-\beta m g z} \tag{55}
\end{equation*}
$$

Recall that $P(z)$ is the probability of finding a single particle in the entire atmosphere as a function of z. Hence it follows that if we have N particles, $N P(z)$ is the probability of finding the the fraction of the particles in z, it is the distribution of particles as a function of z, or its density. (Think of the Maxwell-Boltzmann distribution of particles as a function of velocity v - here the variable is z.)
(iii) $\rho(100 \mathrm{~km})=1.34 \times 10^{-8} \mathrm{~g} / \mathrm{cm}^{3}$.
10) Using the Equipartition theorem

$$
\begin{equation*}
\left\langle x \frac{\partial H}{\partial x}\right\rangle=k_{b} T \tag{56}
\end{equation*}
$$

for $x=p, q$, we can calculate the mean energy per particle

$$
\begin{align*}
\langle E\rangle & =\left\langle\frac{p^{2}}{2 m}+\lambda q^{4}\right\rangle \\
& =\frac{1}{2}\left\langle p \frac{\partial H}{\partial p}\right\rangle+\frac{1}{4}\left\langle q \frac{\partial H}{\partial q}\right\rangle \\
& =\frac{3}{4} k_{b} T \tag{57}
\end{align*}
$$

and hence the total energy for n particles is $\left\langle E_{N}\right\rangle(3 / 4) N k_{b} T$. The heat capacity is then

$$
\begin{equation*}
\left(\frac{\partial C_{V}}{\partial T}\right)_{V}=\frac{3}{4} N k_{b} \tag{58}
\end{equation*}
$$

