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ii) The partition function is
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We first do the momentum integrals since they are just gaussian integrals,
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(iii) The Hamiltonian in terms of the canonical variables p, and z is
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(iv) Given Z, the energy is
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and since it is derivative of a log, the coefficient is simply the power of the T term in the partition
functions, so the powers of T for the translation, rotation and vibration partition functions are 7°/2, T

and T, the energies are simply
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(i) To find the maximum, we take the derivative and set it to zero to solve for vy,
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which gives

and hence vmax = \/2kpT/m.

(ii) Using a = m/2k,T to save ink, and also keeping the big proportionality constant intact because those

are going to cancel at the end, we integrate by parts
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Meanwhile,
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Thus the ratio
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= 0 by symmetry (else there is a net movement to the x direction).

= k,T/m by equipartition theorem (since (mv2/2) = (1/2)k,T).

¢) (v?vg) = (V3 + 02 4 v2))va) = (V3 + Vove 4+ vIv,) = 0 using (v2v,) = (v2)(v;) = 0 by symmetry.
(d) ((va 4 bvy)?) = (3 4 b*v2 + 2bvgvy) = (kT /m)(1 + b*) where the last term is zero by symmetry

(e) ((v3v7)) = 0 by symmetry.
() ((vivy)) = (W) (vy) = (kpT/m)*.
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(i) Taking derivative
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it’s easy to see that this occurs when
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(ii) The calculation is very similar to that of the hardcore-London potential that used in the lecture notes.
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and do the I integral for the limit from 0 to o, which is easily done
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But now, as r < o, the term of U that dominates is the (o /r)'? term, and as r — 0, e=(e/n" 0, thus
f(r) = —1 just like the hardcore potential in the lectures. Thus we will get the Van der Waals equation

of state, with the new variables o and ¢, i.e. the a and b coeficients are now
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[Thanks to Frankie Palmer for pointing out an error in the solution of a previous version.]
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(i) The partition function for a single particle is
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where we have used the gaussian integral ffooo e dy = /7 /a twice in the 2nd line. The total partition
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(i) The Helmholtz free energy is F = —k,TInZ = —k,TN(In A — In(N!A\?)), and the pressure is given
by (note that the “Volume” is now simply the area A)
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i) This is trivial.
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(ii) The partition function for a single particle is
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where in the 4th line we integrate by parts twice. Thus the partition function for N such non-interacting
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(iii) The Helmholtz free energy is F' = —k,T'In Z, and the equation of state is then
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(i) This calculation is identical to the lecture notes for the derivation of the Van der Waals force. The

Helmholtz free energy is
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Note that since the potential only has a hard core, f(r) = 0 for r > rg, so the only part of the integral T
that has support is
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Comparing this to the Van der Waals case, we see that this imply that the Van der Waals coefficients are
2 3
a=0,b="0 (32)
3
So the equation of state is hence
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Expressing it as a virial expansion
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which is 2nd order in N/V with the Virial coefficient b.
(ii) In 2-dimensions, instead of a hard core, we have a hard disc. The partition function of ideal 2D gas is
given by Q5, so we can calculate the corresponding Fiq = —kp7 In Z. Using the results from the lecture

notes, we can split the F' into ideal and non-ideal case as usual

F:Ed—kaXI (35)
with )
N oo
I=— | & 36
51/, el (36)
where A is the area of the container. We now need to do this integral. Again like (i) above, the only part
where the integral has support is f(0 < r < rg) = =1 (i.e. f(r > r9) = 0 as you should be able to see
easily)
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which is a virial expansion to 2nd order in N/A with coefficient 7r3.

and using
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(i) Plugging in the ansatz y(z,t) into the wave equation, we get
K2y(e,t) = Luly(a,1) (40)
T
so it will be a solution as long as k, = \/p/Twy. Since the string is fixed z = 0 and = = L, this means
that
y(oat) = y(L’t) (41)
or
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and this equation has solutions when k, = nn/L for n = 0,1,2,3,.... The n = 0 mode is the “zero

mode” (i.e. the string is not vibrating), so we can ignore it. Using the above result, the spectrum of
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frequencies is then



(ii) To obtain the total energy, we have to integrate the over the length of the string, so
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where we have used sin? kz = 1/2(1 4 cos(2kz)). Similarly the potential energy
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where we have used cos? kx = 1/2(1 — cos(2kx)). The total energy per mode n is then
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using the relation between k,, and w, in (i).
(iii) The probability of a mode n being occupied is given by
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Now since E,, o< n?, so the energies of higher harmonics are larger, 8E,, = E, /k,T is larger for higher

—En/kT is smaller, so P, is smaller for higher harmonics. But since as T increases,

harmonics, and hence e
E,/kyT decreases for fixed n, and thence P, is larger for higher T.

(iv) The work done is split into two components. The first component is simply the work required to
extend the string of tension 7 (sometimes this is called the zero mode), so (dW)g = 7dL. The second
component is more tricky — as we stretch the string, the energies of each mode E,, also changes. Recall

from the lecture notes that work done on the system changes the energy of the spectrum F,

aW = (E,)

10InZz
= ————dL
B8 OL

But now using the results of (ii) for E,,
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d = "dL
W L Z

(B




Notice that the energy per mode goes down as L increases — the energy of the mode is proportional to
wp and as L increases, the frequency decreases. Thus, the vibration energy actually helps us stretch the
length of the string! The total work is then the sum of both components
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(i) The partition function for a single particle is
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(ii) The probability of finding a particle depends on its momentum p and position x,
1
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If we want to find the probability of finding any particle at position z, we need to integrate over p, = and

y, l.e.
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the integrals are identical to those of (i), but since there is no z integral, we get the probability as a
distribution in z, i.e.

P(z) = Ce Pmoz (55)

Recall that P(z) is the probability of finding a single particle in the entire atmosphere as a function
of z. Hence it follows that if we have N particles, NP(z) is the probability of finding the the fraction
of the particles in z, it is the distribution of particles as a function of z, or its density. (Think of the
Maxwell-Boltzmann distribution of particles as a function of velocity v — here the variable is z.)

(iii) p(100km) = 1.34 x 1078 g/cm?.

10) Using the Equipartition theorem
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for x = p, q, we can calculate the mean energy per particle
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and hence the total energy for n particles is (En)(3/4)NkyT. The heat capacity is then
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