
6CCP3212 Statistical Mechanics Solutions 2

Lecturer: Dr. Eugene A. Lim

2018-19 Year 3 Semester 1

https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1)

(i) Noting that N = n↑ + n↓, we can replace the n↓ = N − n↑, and hence

E = n↑E↑ + n↓E↓ = µH(n↓ − n↑) = µH(N − 2n↑) . (1)

Since we have fixed the energy by fixing n↑ and n↓, this is the microcanonical ensemble.

(ii) There are NCn↑ ways of choosing a configuration with n↑ ↑ dipoles, so

Ω(n↑) =
N !

n↑!(N − n↑)!
(2)

The entropy is S = kb ln Ω, which using the Stirling’s approximation ln p! ≈ p ln p − p, we get the final

answer,

S(n↑) = kb[N lnN − n↑ lnn↑ − (N − n↑) ln(N − n↑)] . (3)

(iii) They are different because the two entropies are from two different ensembles. The entropy above is

derived for fixed E, i.e. it’s the entropy for the microcanonical ensemble. The one we derived in class is

for fixed T , i.e. for the canonical ensemble.

(iv) The temperature is given by

1

T
=
∂S

∂E
=
∂n↑
∂E

∂S

∂n↑
=

(
−kb
2µH

)
ln
N − n↑
n↑

(4)

Since ln(N − n↑)/n↑ = ln(N/n↑ − 1), and hence N/n↑ − 1 > 1 when N/n↑ > 2. The temperature is

negative in the limit n↑ < N/2. In the case of the canonical ensemble with fixed T > 0, we learned from

class that under an external H field that is aligned with ↑, the dipoles are more likely to be in the ↑ state

– this is its statistical equilibrium state. However, in the case studied in this problem when n↑ < N/2,

we have forced the lattice of dipoles to mostly in the spin ↓ state, despite the fact that H is positive. If

we now release the system (by removing the forces), and allow it to reach equilibrium with temperature

T > 0 of the lattice environment, the 2nd law tells that the entropy must increase. From the definition

of the temperature 1/T = ∂S
∂E , we have

dS =
1

T
dE . (5)

But going from n↑ < N/2 to n↑ > N/2 (the equilibrium) means that dE < 0 (recall each ↑ dipole adds

negative energy), and dS > 0 thus T < 0. This phenomenom is called spin inversion (or more generally,

population inversion) – one forces the system far away from its equilibrium state by externally flipping

the spins (using a laser for example) opposite to what it would have like to be. Spin inversion requires a

lot of energy – we are doing work on the system by flipping each spin – and hence the system becomes

more energetic. Thus if we stick in a thermometer which measures the “temperature” of the system by

its energy, we would find that the thermometer is very hot, formally infinitely hot. This is the reason

why “negative temperatures” is equivalent to infinite temperature. Spin or population inversions are the

fundamental mechanisms by which lasers are constructed.

2)

(i) Since each card is distinct, there are Ω = 52! ways of arranging 52 distinct cards in a row (i.e. a deck).
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(ii) (a) Since the suits are different, there are 26 distinct cards and hence Ω = 26!. (b) Since the suits are

identical, there are two identical copies of 13 distinct cards. Thus within the 26! combinations, we need

to divide by 2 per pair so as not to overcount, and hence Ω = 26!/213.

(iii) For two identical decks, each card is repeated twice. Thus using the argument in (ii), we have

Ω = (104!)/252.

3)

(i) From

〈∆E2〉 = 〈(〈E〉 − Er)2〉 = 〈〈E〉2 + E2
r − 2〈E〉Er)2〉

= 〈〈E〉2〉+ 〈E2
r 〉 − 2〈E〉〈Er〉

= 〈E〉2〉+ 〈E2
r 〉 − 2〈E〉2

= 〈E2
r 〉 − 〈E〉2 (6)

where we have used the fact that 〈E〉 is a constant.

But note that

〈E2
r 〉 =

1

Z

∑
r

E2
re
−βEr =

1

Z

∂2

∂β2

(∑
r

e−βEr

)
=

1

Z

(
∂2Z

∂β2

)
(7)

and

〈E〉2 =

(
∂ lnZ

∂β

)2

=
1

Z2

(
∂Z

∂β

)2

(8)

so

〈E2
r 〉 − 〈E〉2 =

1

Z

(
∂2Z

∂β2

)
− 1

Z2

(
∂Z

∂β

)2

=
∂

∂β

(
1

Z

∂Z

∂β

)
=

(
∂2 lnZ

∂β2

)
.� (9)

(ii) From

CV = T

(
∂S

∂T

)
V

(10)

since T is intensive, and S is extensive and hence scales as S → aS under linear rescaling, CV hence

scales as N . 〈∆E2〉 = CV kbT
2 must then scale as N , thus

〈
√

∆E2〉
〈E〉

∼
√
N

N
∼ 1√

N
(11)

4)

(i)

Z =
∑
n

e−βEn =
∑
n

e−β(n+1/2)~ω = e−β~ω/2
∑
n

e−nβ~ω (12)

(ii) The probability per level n is

Pn =
1

Z
e−(n+

1
2 )~ω/kbT . (13)

(a) At low temperatures kbT � ~ω, so ~ω/kbT � 1. The ratio of the probabilities between the n and

n+ 1 states is then

r =
Pn+1

Pn
= e−~ω/kbT � 1 (14)

thus the higher n states are exponentially suppressed, so only lower n states are occupied.
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(b) If only n = 0 and n = 1 states are occupied, then the partition function is Z = e−βE0 + e−βE1 . The

mean energy is then

〈E〉 =
∑
n

PnEn

=
1

Z

(
~ω
2
e
− 1

2
~ω
kbT +

3~ω
2
e
− 3

2
~ω
kbT

)
=

1 + 3r

2(1 + r)
~ω . (15)

(iii) In the general case, using (i), and setting x = e−β~ω, we get

Z = e−β~ω/2
∑
n

xn =
e−~ω/2kbT

1− e−~ω/kbT
, (16)

using the geometric series.

The Helmholtz free energy is

F = −kbT lnZ =
~ω
2

+ kbT ln
[
1− e−~ω/kbT

]
(17)

and the entropy

S = −
(
∂F

∂T

)
V

= −kb ln
[
1− e−~ω/kbT

]
+

~ω
T

e−~ω/kbT

1− e−~ω/kbT
. (18)

Putting this together, we have E = F + TS from the Helmholtz formula, thus

E =
~ω
2

+ ~ω
e−~ω/kbT

1− e−~ω/kbT
=

~ω
2

+
~ω

e~ω/kbT − 1
(19)

(iv) The heat capacity is a straightforward application of the formula.

(v) In the high temperature limit, kbT � ~ω, so we can expand

e~ω/kbT = 1 +
~ω
kbT

+ . . . (20)

and plugging this into the result in (iv), we have

CV = kb

(
~ω
kbT

)2 1 + ~ω
kbT

(~ω/kbT )2
= kb(1 +

~ω
kbT

) ≈ kb (21)

since ~ω/kbT � 1. For N non-interacting particles in 3D, then this is CV = 3NkB .

5)

(i) Each particle is described by 3 quantum numbers. Since there are N non-interacting particles, then

each microstate in the ensemble can be described by 3N integers.

(ii) Consider a single particle. If we define the “radius”

R0 =
√
p2 + q2 + r2 (22)

then all the microstates that are smaller than E = (~2π2)/(2ma2)R2
0 is in a 3D sphere with radius R0.

In other words, the energy E defines a radius of this sphere of possible microstates – note that we can

use this approximation only in the limit of large E, i.e. the limit where p, q, and r is large. The total

number of coordinate points within this sphere is given by the volume

V =
4π

3
R3

0 ∝ E3/2 . (23)
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Thus, for each particle, the number of microstates with energy less than E must be proportional to V

G1(E) ∝ V ∝ E3/2 . (24)

For N non-interacting particles, the statistical weight multiply, thus

G(E) =
∏
N

G1(E) ∝ E3N/2 = cE3N/2 . � (25)

6)

(i) From

S = kb

(
lnZ − β ∂ lnZ

∂β

)
= kb

(
lnZ − 1

kbT

∂T

∂β

∂ lnZ

∂T

)
= kb

(
lnZ +

1

kbT
kbT

2 ∂ lnZ

∂T

)
= kb

∂

∂T
(T lnZ) (26)

(ii) This is immediate

P = −
(
∂F

∂V

)
T

=
1

β

∂ lnZ

∂V
(27)

(iii) By comparing d̄W = −µdH ↔ d̄W = −PdV , we can see that by replacing V → H, P → µ, we get

the required result. (µ,H) forms a conjugate pair because the internal energy dE = TdS−µdH, µ is the

intensive variable conjugate to the extensive H.

7)

(i) From
∂Z
∂µ

=
∑
r

βNre
−β(Er−µNr) (28)

so dividing by βZ we get
1

β

∂ lnZ
∂µ

=
∑
r

Nr
e−β(Er−µNr)

Z
= 〈N〉 . (29)

The next derivatino follows closely the steps of Q3(i). From ∆N = Nr − 〈N〉, we have

〈∆N2〉 = 〈N2
r 〉 − 〈N〉2 (30)

And note that

〈N2
r 〉 =

1

Z
∑
r

N2
r e
−β(Er−µNr) =

1

Z
1

β2

∂2

∂µ2

(∑
r

e−β(Er−µNr)

)
=

1

Z
1

β2

(
∂2Z

∂µ2

)
(31)

and

〈N〉2 =
1

β2

(
∂ lnZ
∂µ

)2

=
1

β2

1

Z2

(
∂Z

∂µ

)2

(32)

so

〈N2
r 〉 − 〈N〉2 =

1

Z
1

β2

(
∂2Z
∂µ2

)
− 1

β2

1

Z2

(
∂Z
∂µ

)2

=
1

β2

∂

∂µ

(
1

Z
∂Z
∂µ

)
=

1

β2

(
∂2 lnZ
∂µ2

)
.� (33)
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(ii) In the case of fixed V and S, then dS = 0 and d̄W = −PdV = 0, we get

dE = µdN (34)

and hence
(
∂E
∂N

)
V,S

= µ.

(iii) We follow the derivation in the class (see lecture notes section 2.4), but with additional pairs of

conjugate variables (µ(i), N (i)). The probability of finding of a microstate r is

Pr = const× ΩB(E0 − Er, {N (i)
0 −N (i)

r }) (35)

where {N (i)
0 − N

(i)
r } is the set of all possible N

(1)
0 − N (1)

r ,N
(2)
0 − N (2)

r , etc. Using the formula for the

entropy for the microcanonical ensemble SB = kb ln ΩB , we then have

SB(E0−Er, {N (i)
0 −N (i)

r }) = SB(E0, {N (i)
0 })−

(
∂SB
∂E0

)
E0,{N(i)

0 }
dEr−

n=i∑
n=1

(
∂SB

∂N
(n)
0

)
E0,{N(i)

0 }

dN (n)
r + . . .

(36)

and hence following section 2.4, we can define the

µi = −T

(
∂SB

∂N
(i)
0

)
E0,{N(i)

0 }

. (37)

8)

(i) The partition function is

Z =
∑
r

e−βEr = 1 + e−βE− + e−βE+ = 1 + 2e−βε (38)

The probabilities are then

P0 =
1

Z
, P± =

1

Z
e−βE± =

1

Z
e−βε (39)

In the high temperature limit kbT � ε, or βε � 1, e−βε → 1, so Z → 3 and thus P± = P0 =→ (1/3)

– they are all equally likely. This makes sense since at high temperatures, the energy fluctuations is too

strong for the interactions of the nucleus with the electric charge distribution to hold the spin. In the

low temperature limit, βε� 1, e−βε → 0, so Z → 1, and P0 → 1, P± → 0. So the nuclei wants to be in

the 0 spin state.

(ii) The mean energy is given by

E1 =
∑
r

PrEr

=
1

Z
(E+e

−βE+ + E−e
−βE−)

=
2εe−βε

1 + 2e−βε

=
2ε

eβε + 2
. (40)

(iii) For N non-interacting nuclei, the partition function multiply so

ZN =
∏
N

Z =
(
1 + 2e−βε

)N
(41)

The mean energy is

EN = −∂ lnZN
∂β

=
2Nε

eβε + 2
(42)
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and the entropy is

S = kb(lnZN + βEN ) = kbN

(
ln(1 + 2e−βε) +

2βε

eβε + 2

)
. (43)

In the high temperature limit where kbT � ε, S = kbN(ln(1+2)) = kb ln 3N – the nuclei spins are random

so there are 3N microstates. This is a microcanonical ensemble with a fixed energy E = 2Nε/(eβε +

2) → (2/3)Nε. In the low temperature limit where kbT � ε, S = kb(ln 1) = 0 – there is only one

configuration where all the spins are at the 0 state. This is a microcanonical ensemble with fixed energy

E = 2Nε/(eβε + 2)→ 0.
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