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1) (i) (a) We can rewrite the differential as dG = αdx+ βxd(ln y), and hence(
∂G

∂x

)
y

= α→ G = αx+ f(y) (1)

while (
∂G

∂ ln y

)
x

=

(
∂f(y)

∂ ln y

)
x

= βx→ G = βx ln y + αx (2)

but these are inconsistent so not exact.

(b) (
∂G

∂x

)
y

= α/x→ G = α lnx+ f(y) (3)

and (
∂G

∂y

)
x

=

(
∂f

∂y

)
x

= β → f(y) = βy + const (4)

hence G(x, y) = α lnx+ βy + const so exact.

(c) From (
∂G

∂x

)
y

= x+ y → G =
x2

2
+ xy + f(y) (5)

while (
∂G

∂y

)
x

=

(
∂f

∂y

)
x

+ x =
x2

2
(6)

but f(y) constains no x so is inconsistent hence this is inexact.

Trick: A differential dG = A(x, y)dx+B(x, y)dy is exact when it obeys the following

∂A(x, y)

∂y
=
∂B(x, y)

∂x
(7)

so you can also use it to check for exactness quickly. (You still need to integrate if it is exact.)

(ii) Using the methods above (
∂W

∂V

)
P

= −P →W = −PV + f(P ) (8)

and (
∂W

∂P

)
V

= −V +

(
∂f

∂P

)
V

= 0 (9)

but for the 2nd term to cancel −V , f(P ) must contain V which contradicts, hence W is not exact.

(iii) (a) From (
∂F

∂x

)
y

= x2 − y → xy

3
− yx+ f(y) (10)

and (
∂F

∂y

)
x

= −x+

(
∂f(y)

∂y

)
x

= x (11)

and since f(y) contains no x this cannot be true hence not exact.

Since it is not exact, we have to be careful when we do the integration along the paths. Let’s call

path (1, 1)→ (1, 2)→ (2, 2) path A and path (1, 1)→ (2, 2) path B.
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• Path A : We can split the integral into the constant x and constant y paths so∫
A

dF =

∫ (1,2)

(1,1)

dF +

∫ (2,2)

(1,2)

dF =

∫ 2

1

dy +

∫ 2

1

(x2 − 2)dx = −1 +
7

3
. (12)

• Path B : We want to integrate along the straight line y = x from (1, 1) → (2, 2). To do this line

integral, we want to express the path as a function of some parameter t. It’s easy to see that such

a parameterization is given by

x(t) = t , y(t) = t for 1 ≤ t ≤ 2 . (13)

Then dx = dy, dy = dt, and the integral becomes∫
B

dF =

∫ t=2

t=1

(x2(t)− y(t) + x(t))dt =

∫ 2

1

t2dt =
7

3
. (14)

And hence we have shown that an inexact differential yields different values depending on its paths.

(b) G(x, y) = x+ y/x+ constant.

2) (i) Since we have a constraint x(y, z) this means that we can also invert y(x, z) thus

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz

=

(
∂x

∂y

)
z

[(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz

]
+

(
∂x

∂z

)
y

dz

=

(
∂x

∂y

)
z

(
∂y

∂x

)
z

dx+

[(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

]
dz (15)

But the first term is just dx, so the second bracketed term must vanish, or(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

= 0→
(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 . � (16)

and hence we are done. Substituting x = V , y = T , z = P , we get the second relationship.

(ii) From f(x, y), we have

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (17)

But since there is a constraint y(x, z), this allows to express

dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz (18)

and plugging this into df we have

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

[(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz

]

=

[(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

]
dx+

(
∂f

∂y

)
x

(
∂y

∂z

)
x

dz (19)

and, interpreting the above result as f(x, z) this means that(
∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

. � (20)

3)
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(i) Use S = −
(
∂F
∂T

)
V

and S = −
(
∂Φ
∂T

)
P

, plug in to get

CV = −T
(
∂2F

∂T 2

)
V

, CP = −T
(
∂2Φ

∂T 2

)
V

(21)

From H = TdS + V dP , we have

T =

(
∂H

∂S

)
P

(22)

then using CP = T
(
∂S
∂T

)
P

we get

CP =

(
∂H

∂S

)
P

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

. � (23)

(ii) From (
∂CV
∂V

)
T

=
∂

T∂V

((
∂S

∂T

)
V

)
T

(24)

but since dS is exact, we can use the trick described in the solution to Q1 to flip the derivatives around

∂

∂V

((
∂S

∂T

)
V

)
T

=
∂

∂T

((
∂S

∂V

)
T

)
V

(25)

and then use the Maxwell relation
(
∂P
∂T

)
V

=
(
∂S
∂V

)
T

to get(
∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

. � (26)

(iii) The first part of the problem is a direct application of the identities of Q2ii, with f(x, y) → f(x, z)

replaced by S(T, P )→ S(T, V ). Then we have

CP − CV
T

=

(
∂S

∂T

)
P

−
(
∂S

∂T

)
V

= −
(
∂P

∂T

)
V

(
∂S

∂P

)
T

(27)

and using the Maxwell relation −
(
∂V
∂T

)
P

=
(
∂S
∂P

)
T

we are done. �

4)

(i) It is easy to see that under linear rescaling with a > 0, V → aV and P → P , K → K.

(ii) From F1 = E1−TS1, and F2 = E2−TS2, we have F1 +F2 = (E1 +E2)−T (S1 +S2) = E−TS = F .

Taking derivative
∂F

∂V1
=
∂F1

∂V1
+
∂F2

∂V1
=
∂F1

∂V1
+
∂V2

∂V1

∂F2

∂V2
=
∂F1

∂V1
− ∂F2

∂V2
= 0 , (28)

since F is conserved.

(iii) Taking the 2nd derivative of F w.r.t. V1, we get

∂2F

∂V 2
1

=
∂2F1

∂V 2
1

+
∂2F2

∂V 2
2

> 0 (29)

but using

Pi = −
(
∂Fi
∂Vi

)
T

(30)

so (
∂Pi
∂Vi

)
T

= −
(
∂2Fi
∂V 2

i

)
T

(31)

and then using the definition for KT we get

1

V1(KT )1
+

1

V2(KT )2
> 0 , (32)
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as requested, and hence KT > 0 in general.

(iv) From Q3, we have

CP − CV = T

(
∂V

∂T

)
P

(
∂P

∂T

)
V

(33)

but from Q2 we have (
∂V

∂T

)
P

= −
(
∂P

∂T

)
V

(
∂V

∂P

)
T

=

(
∂P

∂T

)
V

KTV (34)

and hence we get the required answer

CP − CV = TV KT

(
∂P

∂T

)2

V

. � (35)

5) As the question indicated, the way to think about this rod as a thermodynamic system is to make the

connection that f = aT 2(L − L0) is an equation of state with 3 state variables, T , L, and f (you can

think of L and f as V and P analogues if you like).

(i) The 1st law is

dE = d̄Q+ d̄W . (36)

Using the definition of entropy, we have d̄Q = TdS. But now work done on the system is the usual Force

× Length, equation d̄W = fdL. It is positive because as to stretch the system, we need to apply force –

to increase L we need to increase f (unlike gasses, where we need to decrease V to increase P .)

(ii) This change in sign will mean that, from the definition of the Helmholtz free energy F = E − TS

dF = dE − TdS − SdT = −SdT + fdL (37)

and hence

S = −
(
∂F

∂T

)
L

, f =

(
∂F

∂L

)
T

(38)

(notice the sign difference) and thus(
∂f

∂T

)
L

=
∂

∂T

((
∂F

∂L

)
T

)
L

=
∂

∂L

((
∂F

∂T

)
L

)
T

= −
(
∂S

∂L

)
T

. (39)

(iii) From S(L, T ), so

dS =

(
∂S

∂L

)
T

dL+

(
∂S

∂T

)
L

dT =

(
∂S

∂L

)
T

dL+
CL
T
dT . (40)

Using results from (ii) we note (
∂S

∂L

)
T

= −2aT (L− L0) (41)

so integrating for L along fixed T0

S(L, T )− S(L, T0) =

∫ L

L0

(
∂S

∂L

)
T

dL =

∫ L

L0

−2aT (L− L0)dL = −aT (L− L0)2 . (42)

Meanwhile integrating for T along fixed L0, we have

S(L, T )− S(L0, T ) =

∫ T

T0

CL(L0)

T
dT =

∫ T

T0

bdT = b(T − T0) (43)

and hence the entropy is

S(L, T ) = S(L0, T0) + b(T − T0)− aT (L− L0)2 (44)
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(iv) We already know that the heat capacity at L0 is CL(L0, T ) = bT . We now want to calculate the

heat capacity at fixed T . To do this, note that(
∂CL
∂L

)
T

=
∂

∂L

(
T

(
∂S

∂T

)
L

)
T

= T
∂

∂T

((
∂S

∂L

)
T

)
L

= T
∂

∂T
(−2aT (L− L0))

= −2aT (L− L0) (45)

Then integrating along fixed T we have

CL(L, T ) = bT +

∫ L

L0

−2aT (L− L0)dL = bT − aT (L− L0)2 . (46)

(v) If we adiabatically stretches the rod, S remains constant since there is no change in entropy, we have

from (iii)

constant + b(T − T0) = aT (L− L0)2 (47)

Then if we increase L > L0, the RHS will increase, and the LHS must also increase. Thus since b > 0

(the rod is in tension, not compression), then T must also increase.

6)

(i) Using the identity of Q2, with f → E, x→ V , y → S and z → T , we get(
∂E

∂V

)
T

=

(
∂E

∂V

)
S

+

(
∂E

∂S

)
V

(
∂S

∂V

)
T

(48)

But now from the fundamental equation dE = TdS − PdV , i.e.(
∂E

∂S

)
V

= T ,

(
∂E

∂V

)
S

= −P (49)

gets us (
∂E

∂V

)
T

= −P + T

(
∂S

∂V

)
T

, (50)

and then using the Maxwell relation
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V(

∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

., (51)

as required. Using the ideal gas equation of state P = NkbT/V ,
(
∂P
∂T

)
V

= P , and thus(
∂E

∂V

)
T

= 0 . (52)

(ii) From Q3(iii), we have
CP − CV

T
=

(
∂V

∂T

)
P

(
∂P

∂T

)
V

(53)

and using V = NkbT/P ,
(
∂V
∂T

)
P

= Nkb/P and
(
∂P
∂T

)
V

= Nkb/V , and CV = Nkbα we get the final

answer

CP = Nkb(α+ 1) (54)

(iii) First express the differential E(T, V ) as

dE =

(
∂E

∂T

)
V

dT +

(
∂E

∂V

)
T

dV =

(
∂E

∂T

)
V

dT (55)
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since the 2nd term vanishes from (i). Now from the fundamnetal equation

dS =
1

T
dE +

P

T
dV

=
1

T

(
∂E

∂T

)
V

dT +
Nkb
V

dV

=
CV
T
dT +

Nkb
V

dV . (56)

Integrating this equation, we get

S(T, V ) =

∫
Nkbαd lnT +

∫
Nkbd lnV = Nkbα lnT +Nkb lnV + const .� (57)

(iv) From (iii) and setting dS = 0, we have

−α
T
dT =

1

V
dV → V Tα = const (58)

and now using CP /CV = (α+1)/α = γ, we get the adiabatic relationship TV γ−1. Plugging T = PV/Nkb,

we get PV γ = const.

7)

(i) The phases are reversible as it is a Carnot cycle. There are two moments when the entropy is change

which is the two isothermal phases at T1 and T2, with Q1 and Q2 being transfered.

d̄Si =
d̄Qi
Ti
→ ∆Si =

∆Qi
Ti

(59)

since Ti is constant. Thus

∆S = ∆S1 + ∆S2 = 0→ Q2

T2
− Q1

T1
= 0 (60)

and hence

Q2 =
Q1T2

T1
. (61)

In an irreversible engine, some heat is lost due to inefficiencies, so the actual work done W < |Q2−Q1|,
and hence Qirrev2 > Qrev2 (more heat wasted into the sink), so

Q2 >
Q1T2

T1
. (62)

(Note that this leads directly to the Clausius Inequality.)

(ii) In a reversible (Carnot) engine, |W | = Q2 −Q1, so this leads directly to

η =
Q1 −Q2

Q1
=
T1 − T2

T1
. (63)

For a irreversible engine, this leads to the inequality

η <
Q1 −Q2

Q1
=
T1 − T2

T1
. (64)

(iii) Using TV γ−1 = const, we have for the adiabatic phase B − C, T1V
γ−1
B = T2V

γ−1
C , and similarly for

the adiabatic phase D −A, we have T2V
γ−1
D = T1V

γ−1
A , and hence canceling the temperatures

VA
VB

=
VD
VC

(65)

(iv) In an adiabatic expansion, d̄Q = PdV = NkbT/V dV , hence for the heat extraction phase A−B

Q1 =

∫ A

B

NkbT1

V
dV = NkbT1 ln

VB
VA

(66)
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and for heat disposal phase D − C

Q2 =

∫ C

D

NkbT2

V
dV = NkbT2 ln

VD
VC

. (67)

The loop integral is then∮
d̄Q

T
= Nkb

[
ln
VB
VA

+ ln
VD
VC

]
= Nkb

[
− ln

VA
VB

+ ln
VD
VC

]
0 (68)

via the results from (iii).

8) From the first law we have
dE

dt
+ P

dV

dt
< T

dS

dt
(69)

and rewriting
dE

dt
+ P

dV

dt
− T dS

dt
< 0 . (70)

Since P and T is constant in time, we can bring them into the derivative to get

d

dt
(E + PV − TS) =

dΦ

dt
(71)

hence
dΦ

dt
< 0 . (72)

So the Gibbs free energy is minimum at equilibrium.

9) (i) Trivial.

(ii) Given E(V, T ), then

dE =

(
∂E

∂V

)
T

dT +

(
∂E

∂T

)
V

dV (73)

The second term is just CV =
(
∂E
∂T

)
V

, but the first term we use the identity from Q6(
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

= −P +
kbT

V/N − b
=
N2

V 2
a . (74)

(iii) If CV is independent of V then ∂CV /∂V = 0. Using the identity from Q3(ii), we have(
∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

= 0 . (75)

(iv) From S(T, V ) we get

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV . (76)

The first term comes from the definition of CV = T
(
∂S
∂T

)
V

, and the second term we use the Maxwell

relation (
∂S

∂V

)
T

=

(
∂P

∂T

)
V

=
kb

V/N − b
(77)

and hence the final answer.

(v) Assuming that CV is also independent of T this means that CV = const. We can then integrate for

the entropy ∫
dS = S =

∫
CV
T
dT +

∫
kb

V/N − b
dV

= CV lnT +Nkb ln

(
V

N
− b
)

+ const , (78)

7



and the energy ∫
dE = E =

∫
CV dT +

N2

V 2
adV

= CV T −
N2

V
a+ const . (79)

The energy now depends on the V , and hence the density. This is not surprising since the Van der Waals

equation of state describes systems with particles with a long range interaction, and hence contribute

interaction energy V × ρ, with ρ = N/V . The negative sign means that the Van der Waals interaction is

attractive in long ranges.
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