6CCP3212 Statistical Mechanics Solutions 1

Lecturer: Dr. Eugene A. Lim
2018-19 Year 3 Semester 1
https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html

1) (i) (a) We can rewrite the differential as $d G=\alpha d x+\beta x d(\ln y)$, and hence

$$
\begin{equation*}
\left(\frac{\partial G}{\partial x}\right)_{y}=\alpha \rightarrow G=\alpha x+f(y) \tag{1}
\end{equation*}
$$

while

$$
\begin{equation*}
\left(\frac{\partial G}{\partial \ln y}\right)_{x}=\left(\frac{\partial f(y)}{\partial \ln y}\right)_{x}=\beta x \rightarrow G=\beta x \ln y+\alpha x \tag{2}
\end{equation*}
$$

but these are inconsistent so not exact.
(b)

$$
\begin{equation*}
\left(\frac{\partial G}{\partial x}\right)_{y}=\alpha / x \rightarrow G=\alpha \ln x+f(y) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial G}{\partial y}\right)_{x}=\left(\frac{\partial f}{\partial y}\right)_{x}=\beta \rightarrow f(y)=\beta y+\mathrm{const} \tag{4}
\end{equation*}
$$

hence $G(x, y)=\alpha \ln x+\beta y+$ const so exact.
(c) From

$$
\begin{equation*}
\left(\frac{\partial G}{\partial x}\right)_{y}=x+y \rightarrow G=\frac{x^{2}}{2}+x y+f(y) \tag{5}
\end{equation*}
$$

while

$$
\begin{equation*}
\left(\frac{\partial G}{\partial y}\right)_{x}=\left(\frac{\partial f}{\partial y}\right)_{x}+x=\frac{x^{2}}{2} \tag{6}
\end{equation*}
$$

but $f(y)$ constains no x so is inconsistent hence this is inexact.
Trick: A differential $d G=A(x, y) d x+B(x, y) d y$ is exact when it obeys the following

$$
\begin{equation*}
\frac{\partial A(x, y)}{\partial y}=\frac{\partial B(x, y)}{\partial x} \tag{7}
\end{equation*}
$$

so you can also use it to check for exactness quickly. (You still need to integrate if it is exact.)
(ii) Using the methods above

$$
\begin{equation*}
\left(\frac{\partial W}{\partial V}\right)_{P}=-P \rightarrow W=-P V+f(P) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial W}{\partial P}\right)_{V}=-V+\left(\frac{\partial f}{\partial P}\right)_{V}=0 \tag{9}
\end{equation*}
$$

but for the 2nd term to cancel $-V, f(P)$ must contain V which contradicts, hence W is not exact. (iii) (a) From

$$
\begin{equation*}
\left(\frac{\partial F}{\partial x}\right)_{y}=x^{2}-y \rightarrow \frac{x^{y}}{3}-y x+f(y) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial F}{\partial y}\right)_{x}=-x+\left(\frac{\partial f(y)}{\partial y}\right)_{x}=x \tag{11}
\end{equation*}
$$

and since $f(y)$ contains no x this cannot be true hence not exact.
Since it is not exact, we have to be careful when we do the integration along the paths. Let's call path $(1,1) \rightarrow(1,2) \rightarrow(2,2)$ path A and path $(1,1) \rightarrow(2,2)$ path B.

- Path A: We can split the integral into the constant x and constant y paths so

$$
\begin{equation*}
\int_{A} d F=\int_{(1,1)}^{(1,2)} d F+\int_{(1,2)}^{(2,2)} d F=\int_{1}^{2} d y+\int_{1}^{2}\left(x^{2}-2\right) d x=-1+\frac{7}{3} \tag{12}
\end{equation*}
$$

- Path B : We want to integrate along the straight line $y=x$ from $(1,1) \rightarrow(2,2)$. To do this line integral, we want to express the path as a function of some parameter t. It's easy to see that such a parameterization is given by

$$
\begin{equation*}
x(t)=t, y(t)=t \text { for } 1 \leq t \leq 2 \tag{13}
\end{equation*}
$$

Then $d x=d y, d y=d t$, and the integral becomes

$$
\begin{equation*}
\int_{B} d F=\int_{t=1}^{t=2}\left(x^{2}(t)-y(t)+x(t)\right) d t=\int_{1}^{2} t^{2} d t=\frac{7}{3} \tag{14}
\end{equation*}
$$

And hence we have shown that an inexact differential yields different values depending on its paths.
(b) $G(x, y)=x+y / x+$ constant.
2) (i) Since we have a constraint $x(y, z)$ this means that we can also invert $y(x, z)$ thus

$$
\begin{align*}
d x & =\left(\frac{\partial x}{\partial y}\right)_{z} d y+\left(\frac{\partial x}{\partial z}\right)_{y} d z \\
& =\left(\frac{\partial x}{\partial y}\right)_{z}\left[\left(\frac{\partial y}{\partial x}\right)_{z} d x+\left(\frac{\partial y}{\partial z}\right)_{x} d z\right]+\left(\frac{\partial x}{\partial z}\right)_{y} d z \\
& =\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial x}\right)_{z} d x+\left[\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}+\left(\frac{\partial x}{\partial z}\right)_{y}\right] d z \tag{15}
\end{align*}
$$

But the first term is just $d x$, so the second bracketed term must vanish, or

$$
\begin{equation*}
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}+\left(\frac{\partial x}{\partial z}\right)_{y}=0 \rightarrow\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \tag{16}
\end{equation*}
$$

and hence we are done. Substituting $x=V, y=T, z=P$, we get the second relationship.
(ii) From $f(x, y)$, we have

$$
\begin{equation*}
d f=\left(\frac{\partial f}{\partial x}\right)_{y} d x+\left(\frac{\partial f}{\partial y}\right)_{x} d y \tag{17}
\end{equation*}
$$

But since there is a constraint $y(x, z)$, this allows to express

$$
\begin{equation*}
d y=\left(\frac{\partial y}{\partial x}\right)_{z} d x+\left(\frac{\partial y}{\partial z}\right)_{x} d z \tag{18}
\end{equation*}
$$

and plugging this into $d f$ we have

$$
\begin{align*}
d f & =\left(\frac{\partial f}{\partial x}\right)_{y} d x+\left(\frac{\partial f}{\partial y}\right)_{x}\left[\left(\frac{\partial y}{\partial x}\right)_{z} d x+\left(\frac{\partial y}{\partial z}\right)_{x} d z\right] \\
& =\left[\left(\frac{\partial f}{\partial x}\right)_{y}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z}\right] d x+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial z}\right)_{x} d z \tag{19}
\end{align*}
$$

and, interpreting the above result as $f(x, z)$ this means that

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{z}=\left(\frac{\partial f}{\partial x}\right)_{y}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z} \tag{20}
\end{equation*}
$$

3)

(i) Use $S=-\left(\frac{\partial F}{\partial T}\right)_{V}$ and $S=-\left(\frac{\partial \Phi}{\partial T}\right)_{P}$, plug in to get

$$
\begin{equation*}
C_{V}=-T\left(\frac{\partial^{2} F}{\partial T^{2}}\right)_{V} \quad, C_{P}=-T\left(\frac{\partial^{2} \Phi}{\partial T^{2}}\right)_{V} \tag{21}
\end{equation*}
$$

From $H=T d S+V d P$, we have

$$
\begin{equation*}
T=\left(\frac{\partial H}{\partial S}\right)_{P} \tag{22}
\end{equation*}
$$

then using $C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}$ we get

$$
\begin{equation*}
C_{P}=\left(\frac{\partial H}{\partial S}\right)_{P}\left(\frac{\partial S}{\partial T}\right)_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \tag{23}
\end{equation*}
$$

(ii) From

$$
\begin{equation*}
\left(\frac{\partial C_{V}}{\partial V}\right)_{T}=\frac{\partial}{T \partial V}\left(\left(\frac{\partial S}{\partial T}\right)_{V}\right)_{T} \tag{24}
\end{equation*}
$$

but since $d S$ is exact, we can use the trick described in the solution to Q1 to flip the derivatives around

$$
\begin{equation*}
\frac{\partial}{\partial V}\left(\left(\frac{\partial S}{\partial T}\right)_{V}\right)_{T}=\frac{\partial}{\partial T}\left(\left(\frac{\partial S}{\partial V}\right)_{T}\right)_{V} \tag{25}
\end{equation*}
$$

and then use the Maxwell relation $\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}$ to get

$$
\begin{equation*}
\left(\frac{\partial C_{V}}{\partial V}\right)_{T}=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V} \tag{26}
\end{equation*}
$$

(iii) The first part of the problem is a direct application of the identities of Q2ii, with $f(x, y) \rightarrow f(x, z)$ replaced by $S(T, P) \rightarrow S(T, V)$. Then we have

$$
\begin{align*}
\frac{C_{P}-C_{V}}{T} & =\left(\frac{\partial S}{\partial T}\right)_{P}-\left(\frac{\partial S}{\partial T}\right)_{V} \\
& =-\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial S}{\partial P}\right)_{T} \tag{27}
\end{align*}
$$

and using the Maxwell relation $-\left(\frac{\partial V}{\partial T}\right)_{P}=\left(\frac{\partial S}{\partial P}\right)_{T}$ we are done.
4)
(i) It is easy to see that under linear rescaling with $a>0, V \rightarrow a V$ and $P \rightarrow P, K \rightarrow K$.
(ii) From $F_{1}=E_{1}-T S_{1}$, and $F_{2}=E_{2}-T S_{2}$, we have $F_{1}+F_{2}=\left(E_{1}+E_{2}\right)-T\left(S_{1}+S_{2}\right)=E-T S=F$. Taking derivative

$$
\begin{equation*}
\frac{\partial F}{\partial V_{1}}=\frac{\partial F_{1}}{\partial V_{1}}+\frac{\partial F_{2}}{\partial V_{1}}=\frac{\partial F_{1}}{\partial V_{1}}+\frac{\partial V_{2}}{\partial V_{1}} \frac{\partial F_{2}}{\partial V_{2}}=\frac{\partial F_{1}}{\partial V_{1}}-\frac{\partial F_{2}}{\partial V_{2}}=0 \tag{28}
\end{equation*}
$$

since F is conserved.
(iii) Taking the 2 nd derivative of F w.r.t. V_{1}, we get

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial V_{1}^{2}}=\frac{\partial^{2} F_{1}}{\partial V_{1}^{2}}+\frac{\partial^{2} F_{2}}{\partial V_{2}^{2}}>0 \tag{29}
\end{equation*}
$$

but using

$$
\begin{equation*}
P_{i}=-\left(\frac{\partial F_{i}}{\partial V_{i}}\right)_{T} \tag{30}
\end{equation*}
$$

so

$$
\begin{equation*}
\left(\frac{\partial P_{i}}{\partial V_{i}}\right)_{T}=-\left(\frac{\partial^{2} F_{i}}{\partial V_{i}^{2}}\right)_{T} \tag{31}
\end{equation*}
$$

and then using the definition for K_{T} we get

$$
\begin{equation*}
\frac{1}{V_{1}\left(K_{T}\right)_{1}}+\frac{1}{V_{2}\left(K_{T}\right)_{2}}>0 \tag{32}
\end{equation*}
$$

as requested, and hence $K_{T}>0$ in general.
(iv) From Q3, we have

$$
\begin{equation*}
C_{P}-C_{V}=T\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial T}\right)_{V} \tag{33}
\end{equation*}
$$

but from Q2 we have

$$
\begin{equation*}
\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial P}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} K_{T} V \tag{34}
\end{equation*}
$$

and hence we get the required answer

$$
\begin{equation*}
C_{P}-C_{V}=T V K_{T}\left(\frac{\partial P}{\partial T}\right)_{V}^{2} \tag{35}
\end{equation*}
$$

5) As the question indicated, the way to think about this rod as a thermodynamic system is to make the connection that $f=a T^{2}\left(L-L_{0}\right)$ is an equation of state with 3 state variables, T, L, and f (you can think of L and f as V and P analogues if you like).
(i) The 1st law is

$$
\begin{equation*}
d E=d Q+d W \tag{36}
\end{equation*}
$$

Using the definition of entropy, we have $đ Q=T d S$. But now work done on the system is the usual Force \times Length, equation $d W=f d L$. It is positive because as to stretch the system, we need to apply force to increase L we need to increase f (unlike gasses, where we need to decrease V to increase P.)
(ii) This change in sign will mean that, from the definition of the Helmholtz free energy $F=E-T S$

$$
\begin{equation*}
d F=d E-T d S-S d T=-S d T+f d L \tag{37}
\end{equation*}
$$

and hence

$$
\begin{equation*}
S=-\left(\frac{\partial F}{\partial T}\right)_{L}, f=\left(\frac{\partial F}{\partial L}\right)_{T} \tag{38}
\end{equation*}
$$

(notice the sign difference) and thus

$$
\begin{equation*}
\left(\frac{\partial f}{\partial T}\right)_{L}=\frac{\partial}{\partial T}\left(\left(\frac{\partial F}{\partial L}\right)_{T}\right)_{L}=\frac{\partial}{\partial L}\left(\left(\frac{\partial F}{\partial T}\right)_{L}\right)_{T}=-\left(\frac{\partial S}{\partial L}\right)_{T} \tag{39}
\end{equation*}
$$

(iii) From $S(L, T)$, so

$$
\begin{equation*}
d S=\left(\frac{\partial S}{\partial L}\right)_{T} d L+\left(\frac{\partial S}{\partial T}\right)_{L} d T=\left(\frac{\partial S}{\partial L}\right)_{T} d L+\frac{C_{L}}{T} d T \tag{40}
\end{equation*}
$$

Using results from (ii) we note

$$
\begin{equation*}
\left(\frac{\partial S}{\partial L}\right)_{T}=-2 a T\left(L-L_{0}\right) \tag{41}
\end{equation*}
$$

so integrating for L along fixed T_{0}

$$
\begin{equation*}
S(L, T)-S\left(L, T_{0}\right)=\int_{L_{0}}^{L}\left(\frac{\partial S}{\partial L}\right)_{T} d L=\int_{L_{0}}^{L}-2 a T\left(L-L_{0}\right) d L=-a T\left(L-L_{0}\right)^{2} \tag{42}
\end{equation*}
$$

Meanwhile integrating for T along fixed L_{0}, we have

$$
\begin{equation*}
S(L, T)-S\left(L_{0}, T\right)=\int_{T_{0}}^{T} \frac{C_{L}\left(L_{0}\right)}{T} d T=\int_{T_{0}}^{T} b d T=b\left(T-T_{0}\right) \tag{43}
\end{equation*}
$$

and hence the entropy is

$$
\begin{equation*}
S(L, T)=S\left(L_{0}, T_{0}\right)+b\left(T-T_{0}\right)-a T\left(L-L_{0}\right)^{2} \tag{44}
\end{equation*}
$$

(iv) We already know that the heat capacity at L_{0} is $C_{L}\left(L_{0}, T\right)=b T$. We now want to calculate the heat capacity at fixed T. To do this, note that

$$
\begin{align*}
\left(\frac{\partial C_{L}}{\partial L}\right)_{T} & =\frac{\partial}{\partial L}\left(T\left(\frac{\partial S}{\partial T}\right)_{L}\right)_{T} \\
& =T \frac{\partial}{\partial T}\left(\left(\frac{\partial S}{\partial L}\right)_{T}\right)_{L} \\
& =T \frac{\partial}{\partial T}\left(-2 a T\left(L-L_{0}\right)\right) \\
& =-2 a T\left(L-L_{0}\right) \tag{45}
\end{align*}
$$

Then integrating along fixed T we have

$$
\begin{equation*}
C_{L}(L, T)=b T+\int_{L_{0}}^{L}-2 a T\left(L-L_{0}\right) d L=b T-a T\left(L-L_{0}\right)^{2} \tag{46}
\end{equation*}
$$

(v) If we adiabatically stretches the rod, S remains constant since there is no change in entropy, we have from (iii)

$$
\begin{equation*}
\text { constant }+b\left(T-T_{0}\right)=a T\left(L-L_{0}\right)^{2} \tag{47}
\end{equation*}
$$

Then if we increase $L>L_{0}$, the RHS will increase, and the LHS must also increase. Thus since $b>0$ (the rod is in tension, not compression), then T must also increase.
6)
(i) Using the identity of Q2, with $f \rightarrow E, x \rightarrow V, y \rightarrow S$ and $z \rightarrow T$, we get

$$
\begin{equation*}
\left(\frac{\partial E}{\partial V}\right)_{T}=\left(\frac{\partial E}{\partial V}\right)_{S}+\left(\frac{\partial E}{\partial S}\right)_{V}\left(\frac{\partial S}{\partial V}\right)_{T} \tag{48}
\end{equation*}
$$

But now from the fundamental equation $d E=T d S-P d V$, i.e.

$$
\begin{equation*}
\left(\frac{\partial E}{\partial S}\right)_{V}=T,\left(\frac{\partial E}{\partial V}\right)_{S}=-P \tag{49}
\end{equation*}
$$

gets us

$$
\begin{equation*}
\left(\frac{\partial E}{\partial V}\right)_{T}=-P+T\left(\frac{\partial S}{\partial V}\right)_{T} \tag{50}
\end{equation*}
$$

and then using the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$

$$
\begin{equation*}
\left(\frac{\partial E}{\partial V}\right)_{T}=-P+T\left(\frac{\partial P}{\partial T}\right)_{V} \tag{51}
\end{equation*}
$$

as required. Using the ideal gas equation of state $P=N k_{b} T / V,\left(\frac{\partial P}{\partial T}\right)_{V}=P$, and thus

$$
\begin{equation*}
\left(\frac{\partial E}{\partial V}\right)_{T}=0 \tag{52}
\end{equation*}
$$

(ii) From Q3(iii), we have

$$
\begin{equation*}
\frac{C_{P}-C_{V}}{T}=\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial T}\right)_{V} \tag{53}
\end{equation*}
$$

and using $V=N k_{b} T / P,\left(\frac{\partial V}{\partial T}\right)_{P}=N k_{b} / P$ and $\left(\frac{\partial P}{\partial T}\right)_{V}=N k_{b} / V$, and $C_{V}=N k_{b} \alpha$ we get the final answer

$$
\begin{equation*}
C_{P}=N k_{b}(\alpha+1) \tag{54}
\end{equation*}
$$

(iii) First express the differential $E(T, V)$ as

$$
\begin{equation*}
d E=\left(\frac{\partial E}{\partial T}\right)_{V} d T+\left(\frac{\partial E}{\partial V}\right)_{T} d V=\left(\frac{\partial E}{\partial T}\right)_{V} d T \tag{55}
\end{equation*}
$$

since the 2 nd term vanishes from (i). Now from the fundamnetal equation

$$
\begin{align*}
d S & =\frac{1}{T} d E+\frac{P}{T} d V \\
& =\frac{1}{T}\left(\frac{\partial E}{\partial T}\right)_{V} d T+\frac{N k_{b}}{V} d V \\
& =\frac{C_{V}}{T} d T+\frac{N k_{b}}{V} d V \tag{56}
\end{align*}
$$

Integrating this equation, we get

$$
\begin{equation*}
S(T, V)=\int N k_{b} \alpha d \ln T+\int N k_{b} d \ln V=N k_{b} \alpha \ln T+N k_{b} \ln V+\text { const } \tag{57}
\end{equation*}
$$

(iv) From (iii) and setting $d S=0$, we have

$$
\begin{equation*}
-\frac{\alpha}{T} d T=\frac{1}{V} d V \rightarrow V T^{\alpha}=\mathrm{const} \tag{58}
\end{equation*}
$$

and now using $C_{P} / C_{V}=(\alpha+1) / \alpha=\gamma$, we get the adiabatic relationship $T V^{\gamma-1}$. Plugging $T=P V / N k_{b}$, we get $P V^{\gamma}=$ const.
7)
(i) The phases are reversible as it is a Carnot cycle. There are two moments when the entropy is change which is the two isothermal phases at T_{1} and T_{2}, with Q_{1} and Q_{2} being transfered.

$$
\begin{equation*}
d S_{i}=\frac{d Q_{i}}{T_{i}} \rightarrow \Delta S_{i}=\frac{\Delta Q_{i}}{T_{i}} \tag{59}
\end{equation*}
$$

since T_{i} is constant. Thus

$$
\begin{equation*}
\Delta S=\Delta S_{1}+\Delta S_{2}=0 \rightarrow \frac{Q_{2}}{T_{2}}-\frac{Q_{1}}{T_{1}}=0 \tag{60}
\end{equation*}
$$

and hence

$$
\begin{equation*}
Q_{2}=\frac{Q_{1} T_{2}}{T_{1}} \tag{61}
\end{equation*}
$$

In an irreversible engine, some heat is lost due to inefficiencies, so the actual work done $W<\left|Q_{2}-Q_{1}\right|$, and hence $Q_{2}^{\text {irrev }}>Q_{2}^{\text {rev }}$ (more heat wasted into the sink), so

$$
\begin{equation*}
Q_{2}>\frac{Q_{1} T_{2}}{T_{1}} \tag{62}
\end{equation*}
$$

(Note that this leads directly to the Clausius Inequality.)
(ii) In a reversible (Carnot) engine, $|W|=Q_{2}-Q_{1}$, so this leads directly to

$$
\begin{equation*}
\eta=\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \tag{63}
\end{equation*}
$$

For a irreversible engine, this leads to the inequality

$$
\begin{equation*}
\eta<\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \tag{64}
\end{equation*}
$$

(iii) Using $T V^{\gamma-1}=$ const, we have for the adiabatic phase $B-C, T_{1} V_{B}^{\gamma-1}=T_{2} V_{C}^{\gamma-1}$, and similarly for the adiabatic phase $D-A$, we have $T_{2} V_{D}^{\gamma-1}=T_{1} V_{A}^{\gamma-1}$, and hence canceling the temperatures

$$
\begin{equation*}
\frac{V_{A}}{V_{B}}=\frac{V_{D}}{V_{C}} \tag{65}
\end{equation*}
$$

(iv) In an adiabatic expansion, $đ Q=P d V=N k_{b} T / V d V$, hence for the heat extraction phase $A-B$

$$
\begin{equation*}
Q_{1}=\int_{B}^{A} \frac{N k_{b} T_{1}}{V} d V=N k_{b} T_{1} \ln \frac{V_{B}}{V_{A}} \tag{66}
\end{equation*}
$$

and for heat disposal phase $D-C$

$$
\begin{equation*}
Q_{2}=\int_{D}^{C} \frac{N k_{b} T_{2}}{V} d V=N k_{b} T_{2} \ln \frac{V_{D}}{V_{C}} . \tag{67}
\end{equation*}
$$

The loop integral is then

$$
\begin{equation*}
\oint \frac{d Q}{T}=N k_{b}\left[\ln \frac{V_{B}}{V_{A}}+\ln \frac{V_{D}}{V_{C}}\right]=N k_{b}\left[-\ln \frac{V_{A}}{V_{B}}+\ln \frac{V_{D}}{V_{C}}\right] 0 \tag{68}
\end{equation*}
$$

via the results from (iii).
8) From the first law we have

$$
\begin{equation*}
\frac{d E}{d t}+P \frac{d V}{d t}<T \frac{d S}{d t} \tag{69}
\end{equation*}
$$

and rewriting

$$
\begin{equation*}
\frac{d E}{d t}+P \frac{d V}{d t}-T \frac{d S}{d t}<0 \tag{70}
\end{equation*}
$$

Since P and T is constant in time, we can bring them into the derivative to get

$$
\begin{equation*}
\frac{d}{d t}(E+P V-T S)=\frac{d \Phi}{d t} \tag{71}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{d \Phi}{d t}<0 \tag{72}
\end{equation*}
$$

So the Gibbs free energy is minimum at equilibrium.
9) (i) Trivial.
(ii) Given $E(V, T)$, then

$$
\begin{equation*}
d E=\left(\frac{\partial E}{\partial V}\right)_{T} d T+\left(\frac{\partial E}{\partial T}\right)_{V} d V \tag{73}
\end{equation*}
$$

The second term is just $C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}$, but the first term we use the identity from Q6

$$
\begin{equation*}
\left(\frac{\partial E}{\partial V}\right)_{T}=-P+T\left(\frac{\partial P}{\partial T}\right)_{V}=-P+\frac{k_{b} T}{V / N-b}=\frac{N^{2}}{V^{2}} a \tag{74}
\end{equation*}
$$

(iii) If C_{V} is independent of V then $\partial C_{V} / \partial V=0$. Using the identity from Q3(ii), we have

$$
\begin{equation*}
\left(\frac{\partial C_{V}}{\partial V}\right)_{T}=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V}=0 \tag{75}
\end{equation*}
$$

(iv) From $S(T, V)$ we get

$$
\begin{equation*}
d S=\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V \tag{76}
\end{equation*}
$$

The first term comes from the definition of $C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}$, and the second term we use the Maxwell relation

$$
\begin{equation*}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{k_{b}}{V / N-b} \tag{77}
\end{equation*}
$$

and hence the final answer.
(v) Assuming that C_{V} is also independent of T this means that $C_{V}=$ const. We can then integrate for the entropy

$$
\begin{align*}
\int d S=S & =\int \frac{C_{V}}{T} d T+\int \frac{k_{b}}{V / N-b} d V \\
& =C_{V} \ln T+N k_{b} \ln \left(\frac{V}{N}-b\right)+\mathrm{const} \tag{78}
\end{align*}
$$

and the energy

$$
\begin{align*}
\int d E=E & =\int C_{V} d T+\frac{N^{2}}{V^{2}} a d V \\
& =C_{V} T-\frac{N^{2}}{V} a+\mathrm{const} \tag{79}
\end{align*}
$$

The energy now depends on the V, and hence the density. This is not surprising since the Van der Waals equation of state describes systems with particles with a long range interaction, and hence contribute interaction energy $V \times \rho$, with $\rho=N / V$. The negative sign means that the Van der Waals interaction is attractive in long ranges.

