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1) (i) (a) We can rewrite the differential as dG = adz + Szd(Iny), and hence

oG
((%)y—a%G—ax—i—f(y) (1)
while Py 9f ()
_ Y _ _
((mny)m—(alny>$—ﬁx—>6’—ﬂxlny+a:r (2)
but these are inconsistent so not exact.
(b) o
() =a/r = G=alnz+ f(y) (3)
ox y
and 0C o7
(511)@ <8y)w5%f(y)5y+con8t (4)
hence G(z,y) = alna + Sy + const so exact.
(c) From
oG x2
<ax>yx+y%G2+xy+f(y> (5)
while 0C of )
x
CIRICIRSEE )

but f(y) constains no x so is inconsistent hence this is inexact.
Trick: A differential dG = A(z,y)dx + B(z,y)dy is exact when it obeys the following
OA(z,y) _ 0B(z,y)
oy Oz

so you can also use it to check for exactness quickly. (You still need to integrate if it is exact.)
(ii) Using the methods above

(?;)P P W =—PV+(P) (8)
(o), - (3),

but for the 2nd term to cancel —V, f(P) must contain V' which contradicts, hence W is not exact.
(iii) (a) From

(gﬁ:)yzxz—y%ag—ywrf(y) (10)
(5). = (*5) =

and since f(y) contains no z this cannot be true hence not exact.
Since it is not exact, we have to be careful when we do the integration along the paths. Let’s call
path (1,1) — (1,2) — (2,2) path A and path (1,1) — (2,2) path B.



e Path A : We can split the integral into the constant x and constant y paths so

(1,2) (2,2) 7
/dF / dF+/ dF = /dy+/ (z% —2)d *flJrg. (12)

e Path B : We want to integrate along the straight line y = x from (1,1) — (2,2). To do this line
integral, we want to express the path as a function of some parameter ¢. It’s easy to see that such

a parameterization is given by
z(t)=t, yit)=tfor1 <t<2. (13)

Then dx = dy, dy = dt, and the integral becomes

/dF /t y(t) + z(t))dt = /12t2dt; (14)

And hence we have shown that an inexact differential yields different values depending on its paths.
(b) G(z,y) = z + y/x + constant.

2) (i) Since we have a constraint z(y, z) this means that we can also invert y(z, z) thus

o e () e (5),
(52) () oo (32) 0]+ ()
(32).(2) (%), (2), (3) ]

But the first term is just dz, so the second bracketed term must vanish, or

(5.0 (), - (). @.E) e

and hence we are done. Substituting z =V, y =T, z = P, we get the second relationship.

(ii) From f(x,y), we have

of of
dj — | dx d 17
1= (5) o (50) a
But since there is a constraint y(z, z), this allows to express
y dy
— (£ 1
dy (3x> dx + <8z)zd2 (18)

and plugging this into df we have
_ (9F of dy Ay
v = (&), (G) G o (3) )
of of\ (9oy or\ (9
[(ax)y (@), (ax)j o+ (5), (52), % 1

and, interpreting the above result as f(z, z) this means that

().-(#),+(5).2).



(i) Use S = — (—F) and S = — (a—q’)P, plug in to get

oT
0*F 0%®
ov=1(5m), o= (5m), .
From H = TdS + VdP, we have
- (98 (22)
- \9S ),
then using Cp =T (%)P we get
oOH as OH
or=(5s), (5r),~ (or), - )
(ii) From
oCy 0 oS
=) == ((Z2 24
(5),~7ov (7). ), 2

but since dS is exact, we can use the trick described in the solution to Q1 to flip the derivatives around

oS

25
v ((5),), o ((%),), 2

and then use the Maxwell relation ( ) ( ) to get

Cy o’pP
=T . 26
(%), -7 (5x), 20
(iii) The first part of the problem is a direct application of the identities of Q2ii, with f(z,y) — f(z,2)
replaced by S(T, P) — S(T,V). Then we have

= = (), (o)
T or ) p ar ),
aP) (85)
= — = — (27)
<3T v \9P /)
and using the Maxwell relation — (%)P = (g—f;)T we are done. M

4)
(i) Tt is easy to see that under linear rescaling with a >0,V — aV and P - P, K — K.
(11) From Fl = E1 7TSl, and F2 = EQ 7TSQ, we have F1 +FQ = (El +E2) 7T(Sl +52) =FE-TS=F.
Taking derivative
OF _OR OF, _OF 0V,0F, OF 0F o
ovy, ovy  oVy 9Vy oV oV, 9V OV, ’
since F' is conserved.

(iii) Taking the 2nd derivative of F' w.r.t. Vi, we get
O*F  9*Fy | 0°F,

= >0 29
vz~ vz oz (29)
but using
OF;
P =- 30
(3Vz‘ > T (30)
% OP, 0?
i F;
)~ \ov2),
and then using the definition for K1 we get
1 1

Vi(Kr): N Va(Kr)2



as requested, and hence K7 > 0 in general.

(iv) From Q3, we have

ov oP
_ 72 el
er-cv=1(5r), (7), )
but from Q2 we have
ov oP ov OP
) —_ (= — ) =(=) K 4
(5r), =~ (5r), (p),~ (57), =7 oy
and hence we get the required answer
Cp—Cy=TVK or i ] (35)
P v = T\ a1 o

5) As the question indicated, the way to think about this rod as a thermodynamic system is to make the
connection that f = aT?(L — L) is an equation of state with 3 state variables, T, L, and f (you can
think of L and f as V and P analogues if you like).
(i) The 1st law is

dE =dQ +dW . (36)

Using the definition of entropy, we have d@QQ = T'dS. But now work done on the system is the usual Force
x Length, equation dW = fdL. It is positive because as to stretch the system, we need to apply force —
to increase L we need to increase f (unlike gasses, where we need to decrease V' to increase P.)

(ii) This change in sign will mean that, from the definition of the Helmholtz free energy FF = E — T'S

dF = dE — TdS — SdT = —SdT + fdL (37)

(), 1-(5),

(notice the sign difference) and thus

(AR (ORI R

(iii) From S(L,T), so

and hence

as as oS CL
dS=|—=—) dL — | dT=|—=— | dL+ —dT . 4
5= (o), e Gor)om= (o) <0>
Using results from (ii) we note
oS
(8L)T = —2aT (L — Ly) (41)
so integrating for L along fixed T
L oS L
S(L,T)— S(L,Tp) = / () dL = / —2aT (L — Lo)dL = —aT(L — Lg)? . (42)
Lo oL T Lo
Meanwhile integrating for T" along fixed Ly, we have
T I T
S(L,T)— S(Lo,T) = / MdT = / bdT = b(T — Tp) (43)
To T To
and hence the entropy is
S(L,T) = S(Lo, To) + b(T — Tp) — aT(L — Lg)? (44)



(iv) We already know that the heat capacity at Ly is Cp(Lo,T) = bT. We now want to calculate the
heat capacity at fixed T. To do this, note that

(5), = a((),),
= 7ar((32),),

0
= —2aT(L— Ly) (45)
Then integrating along fixed T" we have
L
Cr(L,T)=0bT + / —2aT(L — Lo)dL = bT — aT(L — Lo)? . (46)
Lo

(v) If we adiabatically stretches the rod, S remains constant since there is no change in entropy, we have
from (iii)

constant + b(T — Ty) = aT (L — Lg)* (47)
Then if we increase L > Lg, the RHS will increase, and the LHS must also increase. Thus since b > 0

(the rod is in tension, not compression), then T must also increase.

6)
(i) Using the identity of Q2, with f - E, -V, y — S and z — T, we get
oF OF oF oS
-~ — [ = - - 4
(5v),~ (), (5), (&), 8
But now from the fundamental equation dE = T'dS — PdV/, i.e.
8E> <8E)
) =7, (&) =-P (49)
(85’ v v )
gets us
8E> (85)
=) =-P+T (=) , (50)
(8V T ov ),
and then using the Maxwell relation (%)T = (%)v
aE) <6P>
=) =-P+T (%] . (51)
<8V T ar ),
as required. Using the ideal gas equation of state P = Nk,T/V, (%)v = P, and thus
oF
=) =o0. 2
(5%),~¢ %)
(i) From Q3(iii), we have
Cp—Cy (8V> <8P)
— = = — (53)
T or ) ,\otr ),
and using V = Nk,T/P, (%)P = Nky/P and (%)V = Nky/V, and Cy = Nkya we get the final
answer
Cp = Nky(a+1) (54)

(iii) First express the differential E(T,V) as

OF oF OF
E=|—- T — == T
d (6T>Vd * (aV>TdV <8T>vd (5)



since the 2nd term vanishes from (i). Now from the fundamnetal equation

1 P
dS = =—=dE+ =dV
T + T
1 (OF Nk
= () ar+ 22y
T (a:r)v T
Cy Nk,
= —dI'+——dV .
7 4T+ v Vv (56)
Integrating this equation, we get
S(T,V) = /NkbadlnT+ /Nkbdan = NkyalnT + NkpInV + const .l (57)
(iv) From (iii) and setting dS = 0, we have
Car = Lav S vre = const (58)
7= = cons

and now using Cp/Cy = (a+1)/a = v, we get the adiabatic relationship TV?~!. Plugging T = PV/Nk,
we get PV = const.

7)

(i) The phases are reversible as it is a Carnot cycle. There are two moments when the entropy is change
which is the two isothermal phases at T and T5, with 1 and @2 being transfered.

dQ; AQ;
i = AS; =
ds, T — AS, T, (59)
since T; is constant. Thus
ASzASl+A52:0—>@—@:0 (60)
Ty Ty
and hence T
_ @hdn
Q2= T (61)

In an irreversible engine, some heat is lost due to inefficiencies, so the actual work done W < |Q2—Q1],
and hence QYY" > Q¥ (more heat wasted into the sink), so

Q11>
. 2
Q2 > T (62)
(Note that this leads directly to the Clausius Inequality.)
(ii) In a reversible (Carnot) engine, |W| = Q2 — @1, so this leads directly to
Q1—-Q T -1
=t = : (63)
@1 T
For a irreversible engine, this leads to the inequality
— T —T:
N < Q1 — Q2 _h-1 (64)

Q1 Ty

(iii) Using TV7~! = const, we have for the adiabatic phase B — C, T1V} ™" = TQVg_l, and similarly for

the adiabatic phase D — A, we have TgVBil = T1V;{71, and hence canceling the temperatures

Va_ Vo
Ve Vo
(iv) In an adiabatic expansion, dQQ = PdV = Nk,T/VdV, hence for the heat extraction phase A — B

(65)

A

Nk, T, 1%

Q= / b2LaV = NkyTyIn -2 (66)
B V Va



and for heat disposal phase D — C

c
NkyTs Vb
= dV = NkyToIn — . 67
Q2 /D v bd2 Ve (67)
The loop integral is then

dQ Vb Vb Va Vb
— =Nky|ln—+In—| =Nk |[-In—+In—|0 68
]{T b{nvAJrnvc} ”[ "V, T (68)

via the results from (iii).

8) From the first law we have

dE av s

and rewriting
dE av ds
=P 12 <.
a P T < (70)

Since P and T is constant in time, we can bring them into the derivative to get

d dd
—(E+ PV -TS8)=— 71
ity )=— (71)
hence J®
— <0. 72
o< (72)
So the Gibbs free energy is minimum at equilibrium.
9) (i) Trivial.
(ii) Given E(V,T), then
oF oF
dE = <) dT + <> dv (73)
ov ), or /.,
The second term is just Cy = (%)V’ but the first term we use the identity from Q6
OF OP kyT N?
— | =—P+T|— ) =—-P+——==—=a. 74
<8V>T * <8T>V TyN—y v (74)

(iii) If C is independent of V' then 0Cy /0V = 0. Using the identity from Q3(ii), we have

2
(5,7 (32),
(iv) From S(T,V) we get
ds = (gi)v dT + (gi)TdV . (76)
The first term comes from the definition of Cy = T (g—;)v, and the second term we use the Maxwell
relation e op ks
(5v), = (57), ~ov=s )

and hence the final answer.

(v) Assuming that Cy is also independent of T' this means that Cy = const. We can then integrate for

_g - [ Ko
/dS—S - /TdT+/V/N_de

|4
CyInT + NkyIn (N - b) + const , (78)

the entropy



and the energy

N2
/dE =B = [ Cvdl'+ adv
N2
= CyT — 7@ + const . (79)

The energy now depends on the V', and hence the density. This is not surprising since the Van der Waals
equation of state describes systems with particles with a long range interaction, and hence contribute
interaction energy V' x p, with p = N/V. The negative sign means that the Van der Waals interaction is

attractive in long ranges.



