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What is this course about?

This course is an attempt to teach modern theoretical concepts to 1st year undergraduate students,

assuming that the only mathematical preparation they have is linear algebra and differential/integral

calculus. Why do we want to do that? I can think of several reasons. The first reason is simply that

physics is suppose to be fun, and I think many students took up physics because they were inspired to

learn more by all the exciting things they may have heard in the popular media, only to find out that to

get to the good stuff requires a huge amount of pre-requisite knowledge. So we can think of this course

as a way to nourish this excitement while they plow through the background knowledge before they get

to the really good stuff. The second reason is that it can serve as signposts for the students as they

navigate the enormous amount of material that we regularly throw at them in their standard modules

– and hopefully helping them to organize their learning better. If they know why studying those nasty

functional integrals are important, they are more likely to learn it with sharper focus. Finally, the third

reason is that providing such “big picture” landscape of theoretical physics will help them to plan their

career earlier, especially if they want to pursue a career in physics.

The course is designed to teach students the fundamental concepts so that the problem of quantum

gravity can be described, thus the subjects are chosen with that focus in mind. So right now, there is

about 10-15 hours of lecturing material. Obviously, there are things that can be added in (and probably

should be added in) – Cosmology, Particle Physics, Superconductivity, Electromagnetism, dimensional

analysis, to name some examples. But, we’ll leave that for the future.
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Chapter 1

Quantum Mechanics

I think I can safely say that

nobody understands quantum

mechanics.

Richard Feynman

1.1 Introduction : The Classical World

Until the early 20th century, scientists believed that the laws of nature are determined by the (retroac-

tively named) so-called the classical physics, mostly due to the Isaac Newton. This viewpoint asserts

that objects are immutable, and fully deterministic in the sense that you can exactly measure all their

properties to as accurate as you want, at any time you want. For example, consider the simple case where

you see a cannonball of mass m flying in the air at some time t0. You measure its position x(t0) and

momentum p = mẋ(t0) (where each dot denotes a derivative with respect to time t, e.g. ẋ ≡ dx/dt).

Then, by using the Newton’s 2nd Law of motion

ẍ = g , (1.1)

where g = 9.81m s−2 is the gravitational acceleration of Earth, you can then calculate and predict

the exact trajectory of this cannonball x(t) and its momentum p(t) as far to the future as you like.

Furthermore, you can calculate backwards in time to determine the path of the cannonball as far past as

you like. At any time t, once we know the position and its momentum (x(t),p(t)), or the state of the

cannonball, we know its entire history far into the future, and far into the past.

This viewpoint assumes that the act of measurement does not alter the trajectory of the cannonball.

Given our everyday experience, this seems a reasonable viewpoint. We, the observers, are omnipotent

– we exist outside of the life of the things we measure (in the above example, the cannonball never felt

our act of measurement). Furthermore, we are allowed to measure as accurate as we want its state, at

anytime we like.

However, this viewpoint is wrong. As 20th century rolls onwards and technology improved, scientists

began to probe deeper into the microscopic world to study the structure of atoms and the properties

of elementary particles such as the electrons. The classical viewpoint began to unravel, and scientists

realized that classical physics is just an approximation of the real world, which is actually described by a

more fundamental theory : quantum mechanics. The key difference between the classical and quantum

world is the role of the observer. In the quantum world, the observer is not omnipotent – whether or not

they like it or not, to make a measurement, they must participate in the experiment.
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In our short 2 hour lecture on quantum mechanics, I will not be retelling the story of how classical

physics unraveled – I will leave it for you as assignments instead. Instead, I want to try to teach you

the fundamentals of quantum mechanics itself. In this spirit, let’s consider two of the most dramatic

consequences of quantum mechanics, which you might have read or heard somewhere else before.

1.1.1 The Heisenberg Uncertainty Principle

Now, let’s imagine we actually try to do the experiment of measuring the momentum and position of the

cannonball that we described above. You pay a lot of money for the world’s best instruments in making

measurements of momentum and position of cannonballs. You have a friend shoot a cannonball into the

air, and in midflight at some predetermined time t seconds after the cannonball was shot, you measure its

position x and its momentum p. You do this experiment many times – you ask your friend to shoot the

same cannonball at the same direction with the same velocity many times. You make many measurements

at the same time t seconds after the cannonball is shot. According to classical physics, you should always

get the same values of x and p at time t – after all classical physics say that the state (x(t),p(t)) can

be precisely measured and would always obey Newton’s 2nd law of motion. However, despite your best

attempts with the very best equipment money can buy, you found that you never get exactly the values

(x(t),p(t)). Instead, you find that you keep getting some small errors from the expected values of (x,p).

Now you will find that measurements very far away from your expected values of (x(t),p(t)) are rarer

than those closer to it. You can plot the results of your measurements in a plot as shown in Fig. 1.1.

The widths ∆p and ∆x of the so-called “Gaussian” (or Normal) distributions are called their variance.

You find that, despite your best efforts, you will aways end up with the non-zero values of ∆x and ∆p.

Even more intriguingly, you find that

∆x∆p ≥ ~
2
, (1.2)

where ~ = 1.054× 10−34 J s is known as the Planck’s constant.

What happens if you try to improve the accuracy of your measurements? Suppose you bought even

more expensive instruments, and you find, sure enough your measurements of x got better so the error

variance ∆x becomes smaller. But strangely, even though you have bought equally expensive instrument

to measure p, you find that as your ∆x got smaller, your ∆p got bigger such that Eq. (1.2) is always

obeyed! Even more strange, you find that whether ∆x or ∆p got smaller doesn’t depend on how good

your instruments are1? How do you even explain this behaviour?

This experiment actually has been done many times and this is indeed how nature behaves (although

we don’t use cannonballs, we use smaller particles)! The relation Eq. (1.2) is called the Heisenberg

Uncertainty Principle and is not just an experimental fact, but is a theoretical fact that can be derived

from the laws of quantum mechanics.

1.1.2 The Paradox of the Schrödinger’s Cat

You may have heard of the story of the Schrödinger’s Cat. Erwin Schrödinger propose this gedanken-

experiment (“thought experiment”) in 1935 to illustrate the weirdness of the fact that the observer has

to participate in any measurement. A cat is put inside a closed box. There is a vial of poison gas in the

box. A hammer will strike the vial if a certain amount of radioactivity is detected in the box, thus killing

1In real world quantum measurements, since measurement actively disturb the system you can never reach the Heisenberg

limit, but only roughly twice the limit. This is known as the standard quantum limit. This is a subtle point – there are two

sources of error in measurements, one coming from instruments that will disturb the system, and one coming directly from

inherent quantum uncertainty, and they are not the same thing. Indeed, Heisenberg himself got confused, and thought that

the explanation for the uncertainty principle is due to the fact that we have to disturb the system to measure it, and that’s

incorrect.
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Figure 1.1: Results of Measurements of position and momentum of cannonball. The rough width of the

errors ∆x and ∆p are called its variance, and obey the Heisenberg Uncertainty Principle ∆x∆p = ~/2.

Figure 1.2: Schrödinger’s Cat and its sad/happy fate. Stolen from Wikipedia.

the cat. An observer outside the box has no way of finding out if this sad affair has occured without

opening the box. Hence the cat is in the curious state of being both alive and dead at the same time

according to the observer before the opening. Once the box is opened, the observer has a 50% chance of

finding a dead cat, and a 50% chance of finding a live cat. What the observer never see however, is a cat

that is neither dead nor alive – the act of opening the box, or making a measurement – “forces” nature

to “choose” an outcome for our poor cat.

This strange state of affairs is actually experimentally tested, not with cats and poison of course (since

that would violate animal cruelty laws), but with photons. How do we even describe such a state for the

cat?

1.2 The Four Rules of Quantum Mechanics

The two “paradoxes” in the previous Section are strange. So strange that classical physics has no way

of explaining them. To explain them, we not only need new equations, we need a totally new way of

describing reality. Undergraduate quantum mechanics courses usually take a whole year to teach, so we

don’t really have time to do that. However, what we are going to do is to teach you the core of it, so that

8



INPUT OUTPUT

↓ ↑
↑ ↓

Table 1.1: A NOT gate

you get a sense of what quantum mechanics is. The goal is to teach you sufficient quantum mechanics

to show you how to resolve the two paradoxes above – they are only paradoxes if we use our “classical

intuition”.

As it turns out, there are actually only Four Rules of quantum mechanics. These Rules are postu-

lated, and are fundamental axioms that everything about quantum mechanics are derivable from. By

“Postulate”, we mean that they are not derivable – or at least nobody at this moment know how to derive

them (and people have been trying for more than a century.) In these lecture, I will now tell you these

rules.

1.2.1 Classical Bit vs Quantum Bit

In order to show you the key points of quantum mechanics, we will use the simplest possible quantum

system, which is that of a qubit. As children of the computer revolution, you must be familiar with the

idea of a bit of information. The bit is a system that can only has two possible states: 1/0 or ↑ / ↓ or

on/off or dead cat/live cat etc. Let’s use ↑ / ↓ for now. So instead of the cannonball, whose state is

described by the functions for position and momentum, (x(t),p(t)), a bit’s state is described simply by

two possible states of either 1 or 0. Such binary systems are also called (obviously) two-state systems.

The cannonball obey Newton’s Law of motion. What about the bit? We can endow this bit with

some set of physical rules which when acted upon the system, may change it from one state to another.

What kind of rules can we write down for a bit? The set of rules for a bit can be something simple like

a NOT gate. This rule simply flips an ↑ to a ↓, and a ↓ to an ↑. A NOT gate rule is shown in Table 1.1.

Another rule we can write ↓ is the “do nothing” gate, which just returns ↑ if acted on ↓ , and ↓ if acted

on ↑. Mathematically, we can define the following column matrices to represent the ↑ / ↓ states

χ↑ =

(
1

0

)
, χ↓ =

(
0

1

)
, (1.3)

so a NOT gate can be described by the 2× 2 matrix

P̂ =

(
0 1

1 0

)
, (1.4)

while a “do nothing” gate is obviously the identity

Î =

(
1 0

0 1

)
. (1.5)

“Acting” then means usual matrix multiplication of the column vector from the left by the gate matrix

result = gate matrix× state. (1.6)

You can check that acting from the left with P̂ and Î on an up/down state gets you the right results,

e.g. acting on up state with NOT gate yields a down state

χ↓ = P̂χ↑. (1.7)
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We will now introduce the high-brow mathematical word operator, which is an object that acts on

a state and give you (possibly the same) another state. For example, suppose Ô is an operator acting on

the state ψ to give you another state ψ′, we write

ψ′ = Ôψ. (1.8)

Thus P̂ and Î are both operators. As we will see later, there are a lot more of these.

A bit is a classical quantity, so we can measure with arbitrary accuracy whether it is ↑ or ↓. For

example, a classical cat is either dead or alive (just check its pulse). We can also predict with arbitrary

accuracy what would happen when we act on the bit with the rules: if we start with a ↑, acting on it

with a NOT gate we predict that it will become a ↓ (and then we can measure it to confirm that our

prediction is true).

Now, a classical bit is a perfect model for a classical cat : we can say “↑” means live cat, and “↓”
means dead cat. What about a quantum cat? It is clear that we cannot describe a quantum cat with

a bit – we need a way to mathematically describe the ambiguity of a cat in the box which can be both

alive and dead. This leads to the First Rule of Quantum Mechanics.

Rule 1 (State): A qubit, ψ, is described by the state vector

ψ = αχ↑ + βχ↓ , where α, β ∈ C. (1.9)

α and β are called probability amplitudes for finding the ↑ and ↓ state, for reasons we will soon see.

The important point here is that the coefficients α and β are complex numbers (this is what “∈ C′′ means

in proper mathematic language) – this means that the information encoded in the state has been enlarged

when compared to the binary classical bit2. Rule 1 tells us that the state can be neither ↑ nor ↓ ; it is

some linear superposition beteween two possible states – hence the cat can be both dead and alive.

Notice that ψ is now in general a complex 2×1 matrix – although in this lecture we will just do examples

where ψ is real. By convention, we normalize the state vector (ψT )∗ψ = 1, hence |α|2 + |β|2 = 1, where

the superscript T denotes transpose and ∗ denotes complex conjugration3.

Now that we have mathematically model a cat state that can be both dead and alive, how do we

model the how probable the cat is alive/dead when we open the box? This leads us to the Second Rule:

Rule 2 (Born’s Rule4): The probability of measuring an ↑ / ↓ state is the absolute square of the

inner product of the desired outcome with the state, i.e.

Probability of measuring ↑ state = |χ↑ · ψ|2 = |α|2, (1.12)

Probability of measuring ↓ state = |χ↓ · ψ|2 = |β|2. (1.13)

Note that since the qubit has to be in some state, the probability must add up to unity |α|2 + |β|2 = 1

– this is the reason why the state vectors are normalized to one. More generally, state vectors must be

2*Technically, the space in which a two-state quantum mechanically system live in is a S2 sphere called the Bloch

Sphere where the ↑ / ↓ state reside at the North and South poles of this sphere.*
3The combination of these two operations is called Hermitian Conjugation, which we denote with a † i.e. for any

complex matrix Â

(ÂT )∗ ≡ Â† (1.10)

This operation occurs so often in Quantum Mechanics that we will define the inner product (or “dot product”) of two

state vectors the following way. Given two state vectors φ and ψ, the inner product is then defined as

φ · ψ ≡ φ†ψ. (1.11)

4Named after physicist Max Born (1882-1970) who won a Nobel Prize for this work. Fun fact, he is the grandfather of

singer Olivia Newton-John, who won 4 Grammy awards.
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normalizable to be valid quantum mechanical states. A note on jargon: note that probability amplitudes

are complex, while probabilities are real.

Finally, what happens when we “make a measurement” or, in this case, open the box with the cat in?

This is given by the Third Rule:

Rule 3 (Measurement): Once a measurement has been made and ↑ / ↓ has been obtained, the

state vector ψ collapses into the measured state

ψ
measure−→ χ↑/↓. (1.14)

While Rule 1 tells us that a qubit can be neither up nor down, Rule 2 tells us the probability of

measuring either of the two states. Rule 3 then tells us that once the measurement has been made, follow

up measurements will yield identical results (as long as we have not act on the state other than make a

measurement). In particular, Rule 3 implies that the very act of measurement affects the system. This is

often called the Collapse of the State Vector.

So the story of the cat is now the following: the state of aliveness/deadness of the cat is carried by a

qubit due to the quantum mechanical nature of radioactivity, and the state is described by the following

qubit

ψ =
1√
2
χ↑ +

1√
2
χ↓ (1.15)

which is just Eq. (1.9) with probability amplitude α = β = 1/
√

2. According to Rule 2, the probability

of finding the cat to be dead or alive when we open the box is given by |α|2 = 1/2 or |β|2 = 1/2, i.e. 50%

either way. Once the box is opened, the cat’s state will collapse into one of the two states depending on

which is measured. In fact, such up/down quantum states are now known as cat states, and it can be

created in the laboratory, not with real cats, but for example, with 87Rb atoms interacting with an weak

optical field.

At this stage, you can rightfully ask – well, if all we want is to mathematically model a cat which can

have some probability of being alive and some probability of being dead, why do we need the complex

numbers α and β, why can we just model it as something like

ψ
?
= aχ+ bχ , a, b ∈ R , (1.16)

where a and b are real numbers? This is an excellent question, and is unfortunately a discussion that we

don’t have the time go into. The short (possibly unhelpful answer) is that this is due to the fact that

quantum states exhibit a expermentally verified property called wave-particle duality, which is that

quantum states can behave like a wave and sometimes like a particle. The wave nature of quantum states

is modeled by having complex numbers. You can read more about this and do an assignment if you like!

1.2.2 Quantum Entanglement

Before we discuss Rule 4 of quantum mechanics, let’s talk about one of the most remarkable consequences

of quantum mechanics known as quantum entanglement.

A classical bit can have 2 possible (↑ or ↓) state. As you probably know, two classical bits can

then have 4 possible states ↑↑, ↑↓, ↓↓ and ↓↑. What about 2 qubits? Recall that a qubit can be in a

superposition of 2 states ψ = α ↑ +β ↓ – where we have now for simplicity written χ↑/↓ as simply ↑ / ↓
– 2 qubits can be in superposition of 4 possible states

Ψ = α ↑↑ +β ↑↓ +γ ↓↓ +σ ↓↑ , α, β, γ, σ ∈ C (1.17)

where again α, β, γ, σ are all complex numbers. Note that the left arrow denote the first qubit, and the

right arrow denote the second qubit, i.e. ↑↑ really means ↑1↑2 etc, but we drop the labels to make the
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notation less messy. So far, so good. But now, let’s say we set up the following state

Ψ =

√
1

2
↑↓ +

√
1

2
↓↑ . (1.18)

i.e. where α = γ = 0 and β = σ = 1/
√

2. We are given a detector that can make measurement on a

single qubit. Let’s use it on the first qubit. According to Rule 2, the probability of measuring an ↑ state

is the square of the probability amplitude of the ↑↓ term in Eq. (1.18), which is |1/
√

2|2 = 1/2 or 50%

chance.

But now according to Rule 3, once a measurement is made, the state collapsed to its measured state,

which in this case is ↑↓. In other words the following sequence of events has occured

Ψ
↑1→↑↓ (1.19)

which hopefully by now you are not surprised – the 2nd qubit has jumped to its ↓ state! Similarly, there

is a 50% probability of measuring an ↓ state in the first qubit, and consequently by Rule 3, the second

quibit will jump to the ↑ state in this case.

A long time ago, this strange state of affairs was incredibly troubling to Einstein. He, together with

Podolsky and Rosen, propose the so-called Einstein-Podolsky-Rosen paradox : prepare a 2 qubit state

as in Eq. (1.18), and keep the two qubits in two unopened boxes. Send one qubit to Alice at one end of

the universe, and the other qubit to Bob at the other end of the universe.

Now Alice wants to open the box. At this stage, Ψ is “uncollapsed”, so her probability of finding an

↑ in her box is 1/2 as we just calculated above. If she now opens the box, and found an ↑ state, then

Bob will open his box and find his state to be ↓ with probability 1. If instead, Alice opens her box and

found ↓ then Bob will find that his state is ↑! This is just a story version of the calculation we did above,

but EPR were very upset because it seems to imply that information has traveled at the instance Alice

opened her box to Bob’s qubit in his box instantly. But there is no paradox – the states are correlated in

such a way that measurement of one imply the other. You might say (as Einstein did), “but wait, hasn’t

information traveled instantaneously, which violate the light speed limit?”. The answer is no – Alice (or

Bob) cannot use this entanglement to send a message to Bob (or Alice) faster than the speed of light

because she has no way of deciding which ↑ or ↓ state she would measure.

In honor of our angst-ridden physicists, nowadays we call the entangled state Eq. (1.18) an EPR

pair, which goes to show that as long as you are famous enough, even drawing the wrong conclusions

can get you recognition with things named after you.

1.3 What happens when we make a measurement?

Finally, let’s talk about the Fourth Rule, which in my opinion is the trickiest rule of quantum mechanics.

To motivate the reason for its existence, let’s think back to the Heisenberg Uncertainty Principle back

in section 1.1.1. There, we described the maddening problem of trying to measure the position x and

momentum p as accurately as possible and found that nature won’t let you, subjecting to errors enforced

by the Heisenberg Uncertainty Principle Eq. (1.2). Somehow, measuring x has affected p (and vice

versa) – perhaps x and p are related to each other in some deep unknown way. To understand this, we

need to dig deep into what happens when we actually make a measurement.

Going back to our discussion on the qubit again. We have said that a general qubit state is given by

Eq. (1.9), and that we can make measurements and either get an χ↑ or χ↓. Thus, clearly, χ↑/↓ states are

possible after a measurement but what we have not said is what our instruments actually tell us.

Recall from section 1.2.1 that a NOT gate (or operator) Eq. (1.5) flips ↑ / ↓ to ↓ / ↑. What happens
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when we act on the qubit ψ with the NOT gate? Viz.

P̂ψ = P̂α

(
1

0

)
+ P̂ β

(
0

1

)
(1.20)

= α

(
0

1

)
+ β

(
1

0

)
, (1.21)

i.e. we flip the probability amplitudes of measuring ↑ and ↓.
On the other hand, we can ask “are there any other operator that wouldn’t change χ↑ or χ↓ when

you act on them? Î is obviously one, which is trivial. But are there any others? In fact, there is! Let’s

consider the following operator

N̂ =

(
1 0

0 −1

)
. (1.22)

Acting N̂ on χ↑ and χ↓, does the following interesting things

N̂χ↑ = χ↑ , N̂χ↓ = −χ↓ , (1.23)

i.e. it doesn’t change the matrix but instead “returns” a multiplicative value of +1 or −1 depending

on whether we have ↑ or ↓ states. One way to think about Eq. (1.23) is that the operator N̂ defines

the measurable states χ↑ and χ↓, with a “label” of either +1 or −1 respectively. Now we will make

an assertion – what we actually measure is not χ↑/↓ but actually the values +1 or −1. So, the state

ψ = αχ↑+βχ↓ jumps to χ↑ if you measure +1 and χ↓ if you measure −1. Let’s call the instrument which

measure χ↑/↓ Instrument A, and this instrument is “associated” with the measureable that is defined by

the N̂ operator.

Why do we bother to make such a distinction? Well, it turns out that there is more than one way to

measure a qubit state! To see this, we now take advantage of the fact that the qubit, unlike the bit, can

have states that are neither χ↑ or χ↓ but some “mixed up states”. Consider the pair of states

χ+ =
1√
2

(
1

1

)
, χ− =

1√
2

(
−1

1

)
(1.24)

and you can check that using the NOT gate P̂ we discussed earlier this gets us

P̂χ+ = χ+ , P̂ χ− = −χ− . (1.25)

Thus, the operator P̂ defines the states χ+ and χ−, with labels +1 and −1. As it turns out, we can

also build an instrument such that when a measurement is make, the state collapses to either χ+ or χ−.

Let’s call this new Instrument B. In other words, instead of Instrument A that measures χ↑ and χ↓ states

which is associated with the N̂ operator, we also have an Instrument B that measures χ+ and χ− states

which is associated with the P̂ operator. The instrument will also return +1 if the final state jumps into

χ− and −1 if it jumps into χ−. In fact, the cat state we talked about earlier Eq. (1.15) is actually χ+

ψ =
1√
2
χ↑ +

1√
2
χ↓ =

1√
2

(
1

1

)
= χ+ . (1.26)

Thus, if we have used Instrument B to measure the cat state, we will always get +1!

But which instrument, A or B, is giving us the right result? The answer is both – the lesson here is

that for a given state, there are many ways to measure it. In fact, notice that

χ↑ =
1√
2
χ+ −

1√
2
χ− , χ↓ =

1√
2
χ+ +

1√
2
χ− , (1.27)
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so suppose we have a χ↑ state such that Instrument A always measure +1, then if we then used Instrument

B to make a measurement, we will have an even chance of measuring either +1 or −1. Once Instrument

B has done its job, the state will jump to either χ+ or χ−.

This is weird! Here is a possible sequence of events : We start with a χ+ state, make a measurement

with Instrument A and, say, gets a +1 (50% chance) so the state jumps to χ↑. If we keep measuring with

A, we will always get +1 thereafter. But now, suppose, we switch to Instrument B, then we have a 50%

each chance of measuring +1 and −1. Say, we get −1 so now the state jumps from χ↑ to χ−. Finally,

if we switch back to Instrument A, and again, we get a 50% chance each of getting +1 or −1, which we

then by chance get +1. In this case, the following sequence of events has occured

χ+
A=+1−→ χ↑

B=−1−→ χ−
A=−1−→ χ↓ . (1.28)

Of course, we could have measured differently (since the probabilities are 50% for +1 or -1). In general

the following sequence of events can occur

χ+
A−→ χ↑/↓

B−→ χ+/− . . . (1.29)

The moral of the story is that measurements with A can affect the measurements of B.

What if you try to measure the state simultaneously with both instruments A and B? You try to

press the buttons of Instruments A and B at the same time, or at least as close to each other in time as

possible. Now, depending on whether A goes first of B goes first, we have

A goes first : χ+
A=+1/−1−→ χ↑/↓

B=+1/−1−→ χ+/− , (1.30)

or

B goes first : χ+
B=+1−→ χ+

A=+1/−1−→ χ↑/↓ . (1.31)

If A goes first, then the final state is χ+ or χ−, but if B goes first, then the final state is χ↑/↓! In fact, it

is more than that : notice that if B goes first, you will always measure +1 in the first measurement, but

if A goes first then you have a 50/50 chance of getting +1 and −1. Thus the order of the measurement

is important!

You can ask – well, what if I really try very hard to press the buttons of both instruments at the

same time? The answer, sadly, is that nature finds a way to forbids it, no matter matter how hard you

try. The way nature “forbids” you can be very funny sometimes. In the case of the qubit, if you try to

press the buttons on Instruments A and B at the same time, nature will instead of measuring A and B,

measure an alternate system between A and B5

Perhaps, you may not be surprised that making measurements will affect the measurements of other

instruments – after all, experiments are not perfect. The main point here is that this is not a question

about how “careful” you are in making a measurement, but that there is no way you can avoid affecting

the system. In other words, quantum mechanic says that measurements affect the system. You are

no longer omnipotent observers, but are forced to participate in the dynamics of the very thing you are

measuring.

Another way of thinking about this is the following. When you make a measurement of using Instru-

ment A, your state will collapse to either χ↑ or χ↓. After this measurement, somebody then asks you

“well, can you tell me what Instrument A will measure”, you can then confidently tell them “yes”, be-

cause you now know that the system is in either χ↑ or χ↓ as you just measured it. However, if somebody

then asks you “what will Instrument B measure”, you no longer be so confident – indeed since there is

a 50/50 chance of measuring +1 or −1 with B, you basically have no idea. Thus, you have gain 100%

predictivity in A, and lost all predictivity in B.

5It will be akin to a new instrument C where θ = π/2 in Eq. (1.33).
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Finally, you can ask – OK, but which instrument is actually the right one? The answer is both. Both

instruments are measuring different aspects of the state, if you like, A measures its ↑ / ↓-ness and B

measures its +/−-ness. In fact, these two are not the only measureables of the humble qubit. As long as

you can find an operator Ô and a pair of 2× 1 matrices χλ such that

Ôχλ = λχλ (1.32)

then the values of χλ are the measureables, or more precisely, the observables. Once a measurement of

λ is made, the state collapses to the χλ corresponding to either +1 or −1. Thus in our example above, Ô

is either N̂ or P̂ and λ is either +1 or -1 and χλ is either ↑ / ↓ or +/−. It can be shown that in general

Ô =

(
− cos θ sin θ

sin θ cos θ

)
, (1.33)

and

χλ =
1

1 + | cot θ + csc θ|2

(
− cot θ − csc θ

1

)
or χλ =

1

1 + | cot θ − csc θ|2

(
− cot θ + csc θ

1

)
, (1.34)

will satisfy Ôχλ = ±χλ for any value of the angle θ. You can see that if you set θ = π you get N̂ and if

you set θ = π/2 you get P̂ . In other words, for every θ, you can build an instrument which will measure

λ = ±1 and results in the correspondent final state χλ. Mathematically, we call λ the eigenvalues

and χλ their eigenvectors. This is actually the Fourth Rule of quantum mechanics. To be very

mathematically precise, we will define it as follows (although you have basically seen the main gist of it)

Rule 4 (Observables): Suppose Ô obey

Ô = Ô† = (ÔT )∗ (1.35)

then Ô is a Hermitian Matrix. An operator associated with an observable Ô is Hermitian. Suppose

there exists a set of states χλ such that

Ôχλ = λχλ , (1.36)

then λ will be real and are called the eigenvalues while χλ are their respective eigenvectors, of Ô.

The result of a measurement of such an observable associated with Ô on a general state ψ yields one of

the eigenvalues, and the state collapses (via Rule 3) into its associated eigenvector.

It might seems strange to you that what started off as a discussion on “what happens when we make

a measurement” ended up on Rule 4 which tells you what observables are. However, hopefully you can

see the point: for a quantum system, there are many ways to make physical observations of it, and not

all of them actually independent. Mathematically, we say that observables which are not independent of

each other as non-commuting. For example P̂ and N̂ are non-commuting. What that means is that if

you calculate P̂ N̂ − N̂ P̂ you will get a non-zero number – go on, try it!

1.3.1 How does the Uncertainty Principle arise?

We are now ready to discuss the uncertainty principle. We have, due to time constraints, have discussed

quantum mechanics using the very simple two state qubit system. Of course, the universe is much more

complicated than this, and is made out of more than dead/live cats (and its linear superpositions). Going

back to the cannonball, our every day lives have taught us that it can be described, at least approximately,

by its position x and momentum p. What about a quantum cannonball?

Just like the qubit state which we can make measurements with either Instrument A or Instrument

B (or indeed any other instruments defined by the general operator Eq. (1.33)), it turns out that x and
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p are both observables corresponding to different operators Ô. There is a “position operator” X̂ and

a “momentum operator” P̂ , with the corresponding eigenvalues (i.e. the equivalent of +1 and −1) x

and p. But just like the observables of the P̂ and N̂ operators, making a measurement of position will

affect the measurement of momentum and vice versa. The amount each measurement of x affect on the

measurement of p is given exactly by the Heisenberg Uncertainty Principle

∆x∆p ≥ ~
2
. (1.37)

Thus, x and p are not independent, immutable quantities, but are actually different aspects of the

quantum state which are related to each other. A measurement of one will affect the other, so there is

no way we can simultaneously and independently determine the values of each to arbitrary accuracy. So

if you try to pin down the value of x (i.e. make it more predictable), you will lose knowledge on p (i.e.

becoming less predictable), just like the example of the qubit states above.

In fact, Eq. (1.37) is a formula that can be derived from everything you have learned in this lecture

already6! If we have another 2 hour lecture, we can do it, but sadly we are out of time! Maybe one of

you will try to do it in one of the assignment choices?

1.4 Assignment Topics

For this lecture, here are some topics you can choose to write your 2000 word essay and presentation on.

* denote a challenging topic! You can also suggest topics to me, and we can discuss whether it will be

appropriate!

• The Bohr Quantization and the Bohr Hydrogen Atom Model : Describe how the Bohr quantization

condition provide a phenomenological model of the Hydrogen Atom.

• Wave-particle Duality : Using the two-slit experiment, describe why in quantum mechanics, objects

possess both particle and wave properties.

• The Planck Constant ~ : The fundamental constant of quantum mechanics is the ~. Explain how

physicist Max Planck proposed its existence to explain the spectrum of blackbody radiation.

• The Photoelectric effect : Famously Albert Einstein won the Nobel Prize not for his theory of

gravity, but for describing the photoelectric effect. Describe the photoelectric effect, and why it is

such an important step in our understanding of quantum mechanics.

• Derivation of the Heisenberg Uncertainty Principle* : Can you present a derivation of the uncer-

tainty principle of the qubit observables associated with P̂ and N̂ ?

6The constant ~ we can filled in with doing experiments.
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Chapter 2

The Principle of Least Action and

Conservation Laws

The electron does anything it

likes, [Richard Feymann] said. It

just goes in any direction at any

speed, . . . however it likes, and

then you add up the amplitudes

and it gives you the wavefunction.

I said to him, You’re crazy. But

he wasn’t.

Freeman Dyson

2.1 Why do things move the way they do?

So far in your physics studies, you have learned of Newton’s 2nd Law of Motion for a single particle of

mass m

mẍ = F , (2.1)

under the action of a force F. These forces include those you can apply on it (say with an engine), or it

can be derived from some natural phenomenon such as gravity described by the Newton’s Law of Gravity

F =
GMm

r2
x

|x|
, (2.2)

which is the force F on the particle m at a distance r ≡ |x| exerted by an object of mass M , and G is

just Newton’s constant G = 6.673× 10−11Nm2kg−2s−2. Another kind of force you might have learned is

the electrostatic Coulomb Force,

F =
kqQ

r2
x

|x|
, (2.3)

between two particles with charges q and Q, and k = 8.99 × 1010 Nm2C−2 is the Coulomb’s constant.

Once you have the forces, you can solve Eq. (2.1) and calculate the dynamics of your particle, at least

in the classical viewpoint. Sometimes you can write Newton’s Law of motion Eq. (2.1) as

mẍ = −∇V , (2.4)
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where V is called the potential. In terms of Eq. (2.4), if the force is driven by gravity, then we can

express Newton’s law of gravity using the gravitational potential defined as

V (r) = −GMm

r
. (2.5)

The moniker “potential” literally means the potential energy of the system. In the uniform gravitational

field of the surface of the earth, V (x) = mgz, where g = 9.81 ms−2 is just the acceleration pointing in

the −z direction.

Similarly, we can express the electrostatic force using the Coulomb potential as

V (r) = −kQq
r

. (2.6)

Notice that the potential only depend on the distance r, and not on the direction unlike the force – we

get the “vector” by using the gradient derivative ∇. Forces which can be re-expressed using a potential

V are known as conservative forces. The name may be a bit mysterious to you for now – what is being

“conserved”? We will come back to that in the 2nd part of our lecture in section 2.3.

Equations such as Eq. (2.1) and its equivalent Eq. (2.4), which tells us how things move or their

dynamics, are called Equations of Motion. In many ways, physics is the study of how everything in

our universe move and evolve, and our attempt to predict the future and understand its past. Thus a

large part of the job of the theoretical physicist is to figure out the equations of motion for all the objects

in the universe – cannonballs, planets, electrons, quarks, photons, all the way to spacetime and the entire

universe itself.

For example, the equations of motion that tell us how light move is given to us by the Maxwell

Equations

∇×B = µ0J + µ0ε0∂tE, (2.7)

∇×E = −∂tB, (2.8)

∇ ·E =
ρc
ε0
, (2.9)

∇ ·B = 0. (2.10)

or, if you have learned some more fancy math, can be condensed into the elegantly looking equation

∂µF
µν = jν . (2.11)

Meanwhile, the equation that tell us how space and time move is given to us by the Einstein equation

Gµν = 8πGTµν . (2.12)

Don’t worry if you have not seen these equations before or don’t understand what they mean! This is just

to tell you that there are other equations that describe how things move other than Newton’s equation

(which itself is actually not fully accurate). There are other equations that tell us how other things like

quarks, neutrinos move.

Physicists do spend a lot of time trying to derive these equations from some more fundamental theory,

a “mother theory” if you like, for example like string theory. At this moment though, we don’t know

exactly how this more fundamental “mother theory” would look like – in fact we will discuss in Chapter

5 why it is so hard to find such a theory. So for the moment at least, physics is a collection of seemingly

independent set of equations of motion that describe how things in the universe move.
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Figure 2.1: We know the starting location x(t1) and the ending location x(t2), which path will the particle

take?

2.1.1 A magical way

On the other hand, there is a way to look at all these independent equations such that the equations

seem to be “on the same footing”. Those words don’t mean too much right now, so the best way to see

what it means is to dive right in.

As we have discussed in Chapter 1, if you want to calculate the trajectory of a particle of mass m,

you need to specify its initial state which is its initial position x(t) and initial velocity v(t), and then

solve this using Newton’s 2nd law of motion.

Let’s ask another question. Suppose we know the starting location x(t1) and the ending location x(t2)

of the particle. Consider all the possible trajectories or paths, each possible path will then has a “history”

x(t) and v(t) – but only one of the history will be the “right” one, at least classically1. Which one is it?

Let’s do something that seems which will sound crazy at first: we will take each possible path, at each

point in time t of this possible path, we will subtract the kinetic energy (1/2)m|ẋ(t)|2 from its potential

energy V (x), and then we add up all the difference over the entire path, i.e. In equation form, we do the

following

S[x(t)] =

∫ t2

t1

dt

(
1

2
m|ẋ(t)|2 − V (x(t))

)
, (2.13)

The S is called the action. For each possible path x(t), we can calculate its action. In words this is

Action = Sum of (Kinetic Energy - Potential Energy) over the entire path

Now here is the astounding claim:

The path that the particle will take is an extremum of the action.

Usually, the extremum here is a minimum, which will be the case here. So, our claim here is the

particle will take the path which minimizes the action. Let’s prove it.

You have learned how to find the extremum of a function, say f(x) – simply take the derivative,

set it to zero df/dx = 0, and then solve the resulting equation. Thus for example if f(x) = (x − 1)2,

then df/dx = 2(x − 1), and setting 2(x − 1) = 0 we find that the minimum is at x = 1 as we expected.

However, the action S[x(t)] is not a function, but a functional. In other words, it is a function of a

function – so different trajectories x(t) will be a different function and thus S[x(t)] will give you different

values for different paths. How do we find the extremum of a functional? What we need to learn is really

functional derivative, but that requires a bit more mathematical background. So instead, let’s just

prove it directly here!

1As we will soon see, quantum mechanically, it will be a lot more interesting!
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Consider a path x(t). Now, let’s consider another path that is infinitisimally close, but not exactly

the same as this path, say x̄(t). We will call the difference between the two paths to be δx(t), i.e.

x̄(t)− x(t) ≡ δx(t) . (2.14)

We say that the path x̄(t) is slightly perturbed from the original path x(t). Since the start and end

points are the same, δx(t1) = δx(t2) = 0. We can calculate the actions for both these paths

S[x(t)] =

∫ t2

t1

dt

(
1

2
m|ẋ|2 − V (x)

)
, (2.15)

and for the perturbed path

S[x(t) + δx(t)] =

∫ t2

t1

dt

(
1

2
m(ẋ2 + 2ẋ · δẋ + δẋ2)− V (x + δx)

)
. (2.16)

Notice that in Eq. (2.15) and Eq. (2.16), we have not explicitly written the argument t e.g. x instead of

x(t) etc. for simplicity, but it is important to keep in mind that the argument is there. The difference

between the two action is

δS[x(t)] = S[x(t) + δx(t)]− S[x(t)] . (2.17)

We now claim : the path in which δS = 0 is the extremum of the action. We can motivate it as follows

– to find the extremum of a function, as we mentioned above, we take the derivative and set it to zero

df/dx = 0. But recall the definition of the derivative

df

dx
= lim
δx→0

f(x)− f(x+ δx)

δx
, (2.18)

so setting the derivative to be zero is the same as setting δf = f(x) − f(x + δx) = 0. Comparing this

equation to Eq. (2.17), we see that in the case of the functional, the analogy is δf → δS, and δx→ δx(t).

So to find the path x which extremizes S, we want to solve the equation δS = 0.

Let’s calculate δS. Eq. (2.15) is easy – just leave it as it is. On the other hand, Eq. (2.16) is a bit

more tricky – we have to Taylor expand the potential term

V (x + δx) = V (x) +∇V · δx +O(δx)2. (2.19)

For the last term O(δx)2, since we have assumed that δx is small, then δx2 is even smaller, thus we can

neglect it. Putting all the equations together, we see that the only terms that survived all the subtraction

are

δS[x(t)] =

∫ t2

t1

dt (mδẋ · ẋ−∇V (x) · δx) . (2.20)

The second term we can just leave it as it is, but the first term we can integrate by parts, i.e.

δẋ · ẋ =
d

dt
(ẋ · δx)− ẍ · δx , (2.21)

and then plug this back into Eq. (2.20)

δS[x(t)] =

∫ t2

t1

dt (−mẍ−∇V (x)) · δx + [ẋ · δx]
t2
t1
. (2.22)

But since δx(t1) = δx(t2) = 0 as the starting and ending points are the same, we are left with our final

answer

δS[x(t)] =

∫ t2

t1

dt (−mẍ−∇V (x)) · δx , (2.23)
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which must be set to zero. The only way the integral Eq. (2.23) can be zero is that the integrand is zero

for the entire path x(t) which means that the following equation must be satisfied along the entire path

mẍ = −∇V (x) . (2.24)

But this is literally Newton’s 2nd law of Motion Eq. (2.4) as we have just described earlier! The

requirement that particle travel on a trajectory that extremizes the action is completely equivalent to

saying that it must obey Newton’s 2nd law of Motion! It’s like witchcraft.

This principle – that the path of the particle will be the one that extremizes the action – is called The

Principle of Least Action, although it is named slightly wrong as it doesn’t have to be “least action”,

it could be “maximum action”. So sometimes it is just called the action principle. It is probably the

most boring name for the most important principle in physics that you would ever learn.

How does the action principle “work”? Let’s consider a simple example of our cannonball again.

The cannonball is shot towards the sky at some angle with some initial velocity ẋ(t0) into the air at

some angle. The cannonball feels the gravity of earth, so as it goes into the sky it will gain potential

energy V (x) = mgz as we have discussed just now. What should the particle do according to the action

principle? The principle says that we should try to minimize the difference between the kinetic energy

(KE) and the potential energy (PE). So since the particle started with some KE, it wants to go up to

gain some PE, but it doesn’t want to go straight up because eventually the PE will become more than

the KE. So it will turn around at the point when PE=KE, i.e. when the difference is zero, and then head

back down to earth. Thus the action principle suggests that the particle would want to trace a parabola

in the sky.

The action principle changes the way we look at how particles move. In the old Newtonian way, we

“follow” the particle around. At every time t, the particle wants to figure out “where to next”, and

it looks at the potential and say “aha! the potential is steep here so I should accelerate towards that

point”. But the action principle says that, before the particle even moved an inch, it “sniffs out” all

possible paths, and then once it has done that, chose the one that extremizes the action. It seems to

“know everything”.

2.1.2 The Euler-Lagrange Equation

The integrand of the action Eq. (2.13), is called its Lagrangian

L[x(t), ẋ(t), t] =
1

2
m|ẋ(t)|2 − V (x(t)) , (2.25)

named after the Italian-French mathematician Joseph-Louis Lagrange (or his old Italian name Giuseppe-

Luigi Lagrangia). It can be shown, although we won’t show it here, that if we apply the action principle,

we will get the following Euler-Lagrange Equation

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 . (2.26)

Let’s check for the action of the single particle Eq. (2.25) above. The first term of Eq. (2.26) is

d

dt

(
∂L

∂ẋ

)
=

d

dt
(mẋ) = mẍ , (2.27)

while the second term is
∂L

∂x
= ∇V (x) (2.28)

and hence we recover the Newton’s 2nd Law of Motion as promised. The really powerful thing about

the Euler-Lagrange equation is that it automatically generalizes to any case where there is more than
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one particle. So consider a system with n particles moving under some very complicated potential

V (x1,x2,x3, . . . ,xn), the Lagrangian for this system is still the sum of all the kinetic energy minus the

total potential energy

L =

i=n∑
i=1

(
1

2
m|ẋi(t)|2

)
− V (x1,x2,x3, . . . ,xn) . (2.29)

The equation of motion for each particle is then the solution to its individual Euler-Lagrange equation

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 . (2.30)

2.2 Is this really a better way?

Of course we have not really “derived” the Newton’s 2nd Law of motion (for that, we would need to

understand General Relativity), so the action principle is simply an equivalent formulation of the same

thing. So why do we care? Practically, there is a nice reason – super complicated systems can actually

be easily solved using the action principle. For example, consider the problem of the coupled pendulum

in Fig. 2.2. Now, if you try to set up force balance diagrams as you were taught in Mechanics, it will be

a rather tough problem. The action principle, however, tell us to write down the Lagrangian, which is

the KE minus the PE. The KE of this system is simply

KE =
1

2
mẋ21 +

1

2
mẋ22 . (2.31)

Meanwhile the PE is

V (x1, x2) = mgl(1− cos θ1) +mgl(1− cos θ2) +
1

2
k(x1 − x2)2 , (2.32)

where the first two terms are the gravitational potential energy of the two pendula, while the 3rd term

is the PE stored in the spring. Assuming that the pendulum motion is small, we can use the small angle

formula cos θ = 1− θ2/2 + . . . , and then lθ2i /2 = x2i /l. Plugging all these in, we get the Lagrangian

L = KE − PE =
1

2
mẋ21 +

1

2
mẋ22 −

mg

l
(x21 − x22) +

1

2
k(x1 − x2)2 . (2.33)

To find the equations of motion of the two pendula, we simply calculate their individual Euler-Lagrange

equation Eq. (2.30). E.g. for pendulum 1, we have

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= mẍ1 +

mgx1
l
− k(x2 − x1) = 0 , (2.34)

and similarly for pendulum 2, its equation of motion is

mẍ2 +
mgx2
l

+ k(x2 − x1) = 0 . (2.35)

I challenge you to try to solve this equation using your old Mechanics force balance diagrams and see

how much harder it would be!

However, beyond this simple practical reason, there are three deeper reasons why the action principle

is so much better than the old way. Let’s look at two of them here, and we’ll save the 3rd for its own

section 2.3

2.2.1 A Lagrangian for Everything

The first reason is that it provides a powerful way of looking at very different physical laws using the

same formalism. We discussed earlier that how things move in physics are expressed in terms of their
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Figure 2.2: A coupled pendulum system.

dynamical equations such as Maxwell equations or Einstein’s theory of General Relativity. In fact, all

known physical laws can be recast in terms of an action principle – in fact the entire known laws of physics

can be written as the following Lagrangian2

L =
R

16πG︸ ︷︷ ︸
Gravity

− 1

4
FµνFµν︸ ︷︷ ︸

Yang−Mill

+ iψ̄γµDµψ︸ ︷︷ ︸
Dirac

+ |Dµh|2 − V (|h|)︸ ︷︷ ︸
Higgs

+ hψ̄ψ︸︷︷︸
Yukawa

, (2.36)

which is known as the Standard Model Lagrangian with Gravity. The symbols are all complicated

and you don’t have to worry about it, but they briefly describe the following. The first “Gravity” term

is Einstein’s Theory of General Relativity – all of gravity is encoded in the (so-called “Ricci”) term. The

2nd “Yang-Mill” term describes all the known forces other than gravity: the electromagnetic (including

the Maxwell Equations), the weak and the strong nuclear forces. The 3rd “Dirac” term describes all the

known particles – electrons, neutrinos, quarks etc. Finally, the last two “Higgs” and “Yukawa” terms

describe the Higgs particle and its interactions with the rest of the particles which results in those particles

gaining mass.

The fact that we can write down such an action or Lagrangian tells us that for each of these seemingly

different things, nature wants to extremize something. Indeed, nowadays, when theoretical physicists try

to discover a new force or understand some dynamics, they don’t really try to write the equation of

motion; instead they start with trying to figure out what is being extremized, and then write down the

Lagrangian for that.

2.2.2 Quantum Sniffing

While we have not explicitly said it, what we have been discussing earlier are all in the classical viewpoint

– the particles obey Newton’s equation, we talked about the path of the particle as completely determined,

“the particle picks the path that extremizes the action”. However, as we have already discussed in the

previous Chapter 1, the world is quantum, so how does this work in the quantum world?

The answer is : the whole thing works even more crazily and more amazingly. In fact, in the quantum

world, the particle takes all possible paths. And by “all possible”, I mean, it can also do completely

strange things like go back in time, or go to the Sun and back, or do loops around the Earth! But the

probability of it doing crazy things are small, while the chance of it doing something like what we would

expect (e.g. near its “classical” path) would be big. From our discussion in Chapter 1, we learned that

according to Born’s rule, the probability of an even occurring is given by

Prob = |χ∗Tψ|2 (2.37)

2Here in this case, it is really the Lagrangian density hence the scripted L instead of plain L, but it will take us too far

afield, so don’t worry about it!
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where χ is the event you want to see occurring, and ψ is the starting state of the system. In the case

of a particle traveling from x1 to x2, then χ is the state where the particle is in x2, while ψ is the state

where the particle in x1. We can express this probability as

Prob = |(particle in x2)∗(particle in x1)|2 ≡ |A|2 (2.38)

where A is then the probability amplitude as we have discussed before. Now, as it turns out, A is given

by the following formula

A =
∑

all paths

eiS/~ , (2.39)

where S is the action for each possible path. Each of the paths is called a history, and Eq. (2.39) is

known as a sum over histories, or a Feynman Path Integral.

This crazy formula, as the name implied, is discovered by Richard Feynman following a suggestion

by Paul Dirac. Not only does a particle “sniffs out” all the paths and then choose the one that extremizes

the action, every path has a non-zero probability of being actually traveled by the particle! When we

make an observation, the particle “chooses” one of the paths to travel according to Rule 3 of quantum

mechanics, i.e. the particle’s quantum state “collapses” into the observed path.

Now, why does the particle like to “collapse” close to the “classical path” – remember the uncertainty

in the path as given by the Uncertainty Principle is very small? We can see this fact from Eq. (2.39).

Suppose Scl is the action of the classical path, then paths far away from it will wildly vary and cancel

each other (remember that the value of S gives us the phase of the exponent, not its amplitude, in the

sum) while paths close to the classical path will reinforce the sum.

Why does nature work this way? No one really knows. We will see that this fact is going to play an

incredibly crucial role in our final Chapter 5

2.3 Conservation Laws and Symmetries

Finally, the third reason why the action principle is so powerful is that it gives us a way to understand

conservation laws. You must have learned some conservation laws before – conservation of momentum,

conservation of energy, conservation of angular momentum, conservation of electric charges etc. You are

probably not really told why these things are conserved (or are they really conserved?) – there is a deep

underlying principle before these conservation laws which we will now discuss.

We will begin with a very simple case. Consider a particle of mass m moving freely, i.e. the potential

V (x) = 0. The Lagrangian for this particle is then simply

L =
1

2
mẋ2 . (2.40)

Using the Euler-Lagrange equation Eq. (2.26), we can calculate

d

dt
(mẋ) = 0 . (2.41)

When we see an equation that looks like this, i.e.

d

dt
(something) = 0 , (2.42)

this means that the “something” is not changing with time, hence it is a conserved quantity. In the

simple example above, we can integrate Eq. (2.41) to get mẋ = const. In other words, the momentum

is conserved. If we just think a little bit about it, this is of course not a surprise – a free particle feels

no potential, so there is no force acting on it, and hence we have learned from Newton’s 1st law that the

momentum must then stay constant.
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Figure 2.3: Polar Coordinates

Before we move on, let’s define something that will be very useful. We can see from Eq. (2.41) that,

if we write the momentum p = mẋ, then Eq. (2.41) is

dp

dt
= 0 (2.43)

which means that
∂L

∂ẋ
= p . (2.44)

In this case, ∂L/∂ẋ is actually our good old standard linear momentum. However, this is not always the

case. Nevertheless, we can define whatever is given by the partial derivative ∂L/∂ẋ to be a “generalized

momentum”, i.e.

P ≡ ∂L

∂ẋ
, (2.45)

where we have used a capital P to distinguish it from the our good old momentum. This generalized

momentum is called canonical momentum, which is a completely unhelpful sounding name.

Let’s now look at a slightly more complicated example. Consider a particle on a 2D plane moving

under the influence of a potential V (r) which is only a function the distance r ≡ |x| from the origin r = 0,

and not dependent on the direction. Thus the potential is the same whichever direction you look at it –

we say that the potential is rotationally symmetric.

The Lagrangian of this system, in 2D polar coordinates (r, θ) (Fig. 2.3), is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− V (r) . (2.46)

In the polar coordinate system, we can calculate its canonical momenta associated with r and θ, e.g.

Pθ =
∂L

∂θ̇
, Pr =

∂L

∂ṙ
, (2.47)

The Euler-Lagrange equation for the θ coordinate is then

d

dt
Pθ =

dV

dθ
= 0 , (2.48)

which imply that Pθ = mr2θ̇ = const is a conserved quantity. But Pθ is nothing but the particle’s

angular momentum, which is conserved because the potential V (r) does not depend on θ. Indeed, this

is explicit in Eq. (2.48), since V (r) is not a function of θ, dV/dθ = 0.

These two examples suggest that perhaps conservation laws are consequences of the form of the

Lagrangian. For example, in the Lagrangian of the free particle Eq. (2.40), if we shift the location of

25



the particle by a small constant ε, x → x′ + ε, then the kinetic term becomes ẋ → ẋ′, and thus the

Lagrangian

L[x, ẋ] =
1

2
mẋ2 → L[x′, ẋ′]] =

1

2
mẋ′2 (2.49)

remains functionally the same. A shift in the x coordinate such as this is called a translation. In words,

we say that the “Lagrangian remains invariant under the translation in x”, or that “the Lagrangian

possesses a translation symmetry”.

For the second example, you might have guessed that the rotationally symmetric potential will now

come into play, and you would be right. So if we now rotate the particle by a small constant, i.e. we

perform the following transform

θ → θ′ + εθ , r → r′ (2.50)

then

θ̇ → θ̇′ , ṙ → ṙ′. (2.51)

The Lagrangian is then clearly invariant under this transformation

L[θ, θ̇, r, ṙ] =
1

2
m
(
ṙ2 + r2θ̇2

)
− V (r)→ L[θ′, θ̇′, r′, ṙ′] =

1

2
m
(
ṙ′

2
+ r′2θ̇′

2
)
− V (r′) (2.52)

and we say that the “Lagrangian has a rotational symmetry”.

As it turns out, conservation laws are intimately tied to the fact that Lagrangian possesses certain

symmetries! This is proven by Emmy Noether in 1915, a remarkable woman who overcame the huge

gender bias in academia at that time to become one of the most influential mathematical physicist of all

time. We will now demonstrate the proof in the next section 2.3.1.

2.3.1 Noether’s Theorem

Emmy Noether proved the following theorem :

For every continuous symmetry in the Lagrangian, there is a conservation law

We begin with a general Lagrangian with a set of coordinates qi and its associated canonical momenta

Pi = ∂L/∂q̇. Let’s now shift each of the coordinates qi by a small amount,

qi → q′i + δqi (2.53)

where the shift

δqi ≡ fi(q)ε , (2.54)

may depend on the other coordinates through the arbitrary functions fi (i.e. there is a fi function for

each variable qi). This is a continuous transformation – you can make ε as small as you want until the

transformation is infinitisimally small. So in our examples in the previous section, fi = 1 (note that this

is a vector, i.e. f = fi = 1), the first example, and fr = 0 and fθ = 1 for the second example3. The

change in the Lagrangian, δL due to these transformation can be calculated easily using the chain rule,

and it is (we have dropped the primes from qi for simplicity)

δL =
∑
i

(
∂L

∂q̇i
δq̇i +

∂L

∂qi
δqi

)
. (2.55)

Now the first term of Eq. (2.55), using our definition of the canonical momentum Eq. (2.45), we get

∂L

∂q̇i
δq̇i = Piδq̇i . (2.56)

3You can do the 2nd example with cartesian coordinates (x, y) instead of polar coordinates (r, θ), and you will find in

that case that the rotation transform imply that fx = y and fy = −x.
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For the 2nd term of Eq. (2.55), we use the Euler-Lagrange equation Eq. (2.26) to write ∂L/∂qi = dPi/dt

to get
∂L

∂qi
δqi = Ṗiδqi . (2.57)

Inserting Eq. (2.56) and Eq. (2.57) back into Eq. (2.55), we then have

δL =
∑
i

Piδq̇i + Ṗiδqi

=
d

dt

∑
i

Piδqi . (2.58)

Using Eq. (2.54), we can then write this as

d

dt

∑
i

Pifi(q) = δL , (2.59)

where we have canceled the ε as it is a constant. Now Noether told us that if the Lagrangian is invariant

under the transformations, then δL = 0, and hence we get

d

dt

∑
i

Pifi(q) = 0 , (2.60)

but this equation is simply d/dt(something) = 0, which we already learned that this means that the

“something” is a conserved quantity! In other words, if the Lagrangian is invariant under the transfor-

mations Eq. (2.53), then there is a conservation law that says that the quantity

Q =
∑
i

Pifi(q) , (2.61)

is always constant in time!

Let’s see how this theorem stacks up against our examples above! In the first Lagrangian Eq. (2.40),

there is only one variable x with its canonical momentum P so the conserved quantity Q = P, as expected

the linear momentum is conserved as we have already shown above. In the second Lagrangian Eq. (2.47),

we have two variables q1 = θ and q2 = r, so f1 = Pθ and f2 = 0. Thus, the conserved quantity is then

Q = Pθ which is the angular momentum as we have discussed earlier.

These are very simple examples of course – in general the symmetries can be a lot more complicated

with highly non-trivial fi(q) – we will leave these examples for you to study when you take a full course!

2.3.2 Conservation of Energy

Finally, we will discuss the conservation of energy – what is the symmetry associated with it? As it turns

out, the conservation of energy is associated with the time translation symmetry. To be precise, the

Lagrangian must be invariant under explicit time translation symmetry t→ t+ f(q)ε. This needs a bit

of care to explain. There are two ways the Lagrangian can depend on time – implicit and explicit.

The variables in the Lagrangian are all functions of time – so as time changes, the variables qi(t) and

q̇i(t) also changes – in this case we say that the Lagrangian is implicitly depending on time through the

functions qi(t) and q̇i(t). In our two examples above, the Lagrangians are implicit functions of time.

On the other hand, the Lagrangian can also depend explicitly on time, if the variable t explicitly

appear in the Lagrangian. For example, consider the case of our coupled pendulum in section 2.2. There

the spring constant k does not depend on time. Suppose however, if we heat up the spring during the

experiment, and due to the expansion of the spring, k changes as a function of time, i.e. k → k(t). Then

its Lagrangian Eq. (2.33) would become

L = KE − PE =
1

2
mẋ21 +

1

2
mẋ22 −

mg

l
(x21 − x22) +

1

2
k(t)(x1 − x2)2 . (2.62)
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where k is now a function of time. This means that the Lagrangian now explicitly depends on time

through k(t) in addition to being implicitly dependent on time through its other variables. Noether’s

theorem now state that the energy of the system is conserved if the Lagrangian is invariant under an

explicit time translation. Let’s see how this works.

In general, the Lagrangian can now depend on its variables and also the explicit time variable t, so

we write the functional as

L[q, q̇, t] . (2.63)

Taking the total derivative of Eq. (2.63), we get

dL

dt
=
∑
i

[
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

]
+
∂L

∂t
, (2.64)

noting that the last term is a partial derivative on L with respect to t which will vanish unless the

Lagrangian has an explicit dependence on time. Using the Euler-Lagrange Eq. (2.26), we can rewrite

each term in the sum as
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i = Ṗiq̇i + Piq̈i =

d

dt
(Piq̇i) , (2.65)

which we can insert back into Eq. (2.64) to get

dL

dt
=

d

dt

∑
i

(Piq̇i) +
∂L

∂t
. (2.66)

Now, we define a quantity, called the Hamiltonian H as

H ≡
∑
i

(Piq̇i)− L , (2.67)

then Eq. (2.66) becomes
dH

dt
= −∂L

∂t
. (2.68)

This Eq. (2.68) tells us that, if L has no explicit dependence on time, then dH/dt = 0, and hence the

Hamiltonian is a conserved quantity. The Hamiltonian is actually an exact and mathematical precise

definition of “energy” in a dynamical system, and thus Noether’s theorem says that if the Lagrangian is

invariant under time translations – i.e. it has no explicit dependence on time – then the energy of the

system is conserved.

To check again, in example of the free particle Eq. (2.40), its Hamiltonian is H = P · ẋ − L =

m(ẋ)2 − (1/2)m(ẋ)2 = (1/2)m(ẋ)2 which says that the total energy of the system is given by the kinetic

energy of the particle as we expected since there is no potential. Noether’s theorem then tells us that

since the Lagrangian Eq. (2.40) is not explicitly dependent on t, this energy must be conserved – just

like your high school teachers have told you they would.

This symmetry principle is an extremely powerful tool – every conservation law that we know off

has an underlying symmetry associated with it. Beyond momentum and energy, conservation of electric

charges, neutrons, protons and other more esoteric things like quarks or lepton number. Indeed, just like

the how physicists now think about the dynamics of physics in terms of the action principle, they now

think of the content of physics in terms of symmetry principles.

2.4 Assignment Topics

For this lecture, here are some topics you can choose to write your 2000 word essay and presentation on.

* denote a challenging topic! You can also suggest topics to me, and we can discuss whether it will be

appropriate!
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• The Principle of Least Time: A precursor to the Principle of Least Action is Fermat’s Principle

of Least Time, which states that “a light ray propagates between two points so as to minimise its

travel time”. Describe this principle, and use it to demonstrate the phenomenon of light refraction

and Snell’s Law.

• Feymann’s Sum over Histories: In our lecture, we briefly touched upon that in quantum mechanics,

paths which are very far away from the “classical” path contribute very little to its probability

amplitude while those that are close to the “classical” paths do. Explain this process in detail.

Hint : You might find the book by Feynmann, The Character of Physical Law, very useful.

• Derive the Euler-Lagrange Equations* : As we have discussed in the lecture, the Euler-Lagrange

Equation is equivalent to using the action principle. A good exercise is to prove this equivalence by

deriving the Euler-Lagrange equation from using the action principle in general.
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Chapter 3

Special Relativity, General

Relativity and Black Holes

Spacetime tells matter how to

move. Matter tells spacetime how

to curve.

John Wheeler

3.1 Special Relativity : A speed limit and its consequences

Just to demonstrate that modern theoretical physics is all about showing Newton was not quite correct,

again we will start with Newton’s 2nd Law of motion, and then argue that why it doesn’t quite work. As

usual, Newton’s law of motion is given by

mẍ = F . (3.1)

The equation above describes the dynamics of the particle – the forces acting on it are assumed to be

instantaneous. If F is the gravitational force of the Sun on the Earth, then if we remove the Sun, the

Earth “immediately” feels the loss of the gravitational force.

Newton’s Laws are not just a bunch of equations where you plug in some initial conditions to compute

the trajectory of the particle in question, they actively promote the idea that space and time are separate

entities, to be treated differently. In the Newtonian view of the Universe, we live in a 3-dimensional

world, which we call “space”. This 3D world then dynamically evolves, with the evolution govern by

some quantity we call “time”. Every being in this Universe, must agree on this time. Furthermore, all

forces are instantaneous across infinite distances on each slice of time. The Laws, and their underlying

ideas about how space and time are subdivided into their separate domains, are usually known collectively

as Newtonian Mechanics.

Now, there is nothing philosophically wrong with this picture – but is this how Nature works? For

the longest time, scientists thought so. Until cracks start to appear, and no crack is bigger than the

slow realization throughout the 19th century that light, which was thought to propagate instantaneously,

actually has a finite speed. Indeed, Leon Foucault has measured in 1862 that it was 298, 000, 000 m/s,

which is impressively close to its presently measured value of 299, 792, 458 m/s. In fact, James Maxwell

in the same year wrote down the Maxwell equations we briefly discussed in Chapter 2 which describe the

dynamics of light and used it to show that the speed of light is finite.

Albert Einstein’s question at that time was not why is the speed of light finite, but how to reconcile

the so-called Newtonian Worldview to the fact that the speed of light is finite. Here is an experiment
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Figure 3.1: Alice’s frame with coordinates (x′, t′) is moving at velocity v with respect to Bob’s station

platform with coordinates (x, t).

– let Alice be on a train moving at some velocity v = dx/dt with respect to the ground while Bob is on

a stationary train platform at some point x0 = 0. Both Alice and Bob shoot a laser beam at the same

time when Alice’s train passes Bob’s train platform at a target a kilometer away at x = 1 km. If the

Newton’s worldview is correct, then we expect Alice’s laser beam to hit the target before Bob’s, since

Alice “should” add the speed of the train to the speed of light. This is because the Newtonian Worldview

suggests that there is an absolute “correct frame of refernce” and all equations are only correct in this

frame. In particular, everybody must agree on the time coordinate t (up to a constant).

As you all know, experimentally, it turns out that both beams hit the target at the same time. But

perhaps more surprisingly, it was realized at that time that this fact can actually be predicted using the

Maxwell equations. Indeed, further to that, it can be shown1 that if Alice uses coordinates x′ and has a

watch that measures in time t′, and Bob uses coordinates x with a watch measuring time t, then Maxwell

equations look exactly the same for both Alice and Bob as long as the two coordinate systems are related

by

t′ = γ
(
t− vx

c2

)
,

x′ = γ(x− vt) . (3.2)

where γ, the Lorentz factor, is given by

γ ≡ 1√
1− v2

c2

. (3.3)

Notice that since v < c, γ > 1. This fact is discovered by Henrikh Lorentz in 1892, and is now called

the Lorentz Transformation. What this suggest is that there are some special sets of coordinate

systems where the equations “look the same”. But more importantly – notice that t′ depends on t, x and

v. In other words, Alice and Bob do not agree on the time, and this disagreement depends on v. This is

not compatible with the Newtonian Worldview that there is an absolute time that everyone must agree

with. This incompatibility is what Einstein was trying to understand – how do we “fix” the Newtonian

Worldview such that it is compatible with our experimental results?

Suppose we are in some frame, where there is a standard Cartesian coordinate x and some time t (we

ignore the 2 other space dimensions y and z for now). To measure the velocity of any particle, you can

measure its movement ∆x over some time ∆t, and then take the difference to get

v =
∆x

∆t
, (3.4)

which you have done many times. In the limit when ∆x and ∆t is very small (i.e. infinitisimally

small), then we get the usual v = dx/dt which is a formula you know already. Suppose now that v = c,

1Unfortunately showing this will take us too far afield.
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i.e. the speed of light, we can square Eq. (3.4) to get

0 = c2dt2 + dx2 . (3.5)

As we have learned from the case of light, the speed of light c must be the regardless of the coordinate

system – Alice on the train and Bob on the platform have different space coordinates and different

watches, but you both agree that the speed of light is the same. In terms of Eq. (3.5), this means that

you can disagree on what x and t are but you must agree that c is the same. In other words, suppose

(x, t) is Bob’s coordinates and and (x′, t′) is Alice’s coordinates, then

0 = −c2dt2 + dx2 = −c2dt′2 + dx′2 . (3.6)

So, the question is now : how is (x, t) related to (x′, t′) such that Eq. (3.6) is always true? Let’s try the

Newtonian Worldview suggestion, which is

x′ = x+ vt , t′ = t , (3.7)

which is that the difference between Alice and Bob’s coordinates is simply that Alice’s coordinate x′

is moving at v with respect to Bob’s, and that both must agree on the time2 so t = t′. We can then

calculate dx′ = dx+ vdt and dt′ = dt, but then you can check that

− c2dt′2 + dx′2 = (−c2 + v2)dt2 + dx2 + 2vdxdt 6= −c2dt2 + dx2 , (3.8)

and thus it doesn’t quite work. As you might have already guessed, what actually works is to use the

Lorentz transformation Eq. (3.2) which we have introduced without much motivation above. Let’s check

:

dt′ = γ
(
dt− v

c2
dx
)
, dx′ = γ(dx− vdt) , (3.9)

and plugging these, and after some algebra, you can show that Eq. (3.6) is indeed obeyed. In fact,

notice that since the “0” of the equation 0 = −c2dt2 + dx2 is untouched by this transformation, we can

generalize it

ds2 = −c2dt2 + dx2 = −c2dt′2 + dx′2 , (3.10)

where ds is a quantity called proper length. We can now restore the other 2 spatial dimensions y and

z into our Eq. (3.10)

ds2 = −c2dt2 + dx2 + dy2 + dz2 , (3.11)

and then you can show to yourself that Eq. (3.11) remains invariant under Lorentz transformations in

the y and z directions – just replace x → y and x → z in Eq. (3.2). These transformations are named

Lorentz boosts in the x, y and z directions respectively3.

To see why ds is called a “length”, notice that if we drop −c2dt2 term then ds2 = dx2 + dy2 + dz2,

which is just the formula for length squared. The equation Eq. (3.11) is called a metric – which literally

means “length” in French. The fact that the time coordinate dt is now part of a generalized length

ds2 tells you that space and time are not separate like the Newtonian Worldview asserts, but is part of

Spacetime. So the proper length defines a “length” in spacetime. Nevertheless, the time coordinate

−c2dt2 has a minus sign – which means that ds2 can be zero or even negative – time has a different

character to space.

Thus while observers can disagree on what dx, dy, dz and dt are, they have to agree on ds2. Ein-

stein was actually motivated by Lorentz’s observation that Maxwell equations are invariant4 under the

2This coordinate transformation is known as the Galilean Transformation.
3You might also notice that Eq. (3.11) is also invariant if we rotate the spatial dimensions around the x, y and z axes.

To be precise, the set of 3 boosts and 3 rotations combined are properly called Lorentz Transformations.
4This is a symmetry, and indeed there is a conserved quantity associated with it as we have studied in Chapter 2. It is

not very interesting though – the conserved quantity is the center of mass at t = 0 multiplied by γ, Q = γm(vt+ x).
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transformation Eq. (3.2) – indeed his famous paper on special relativity is titled On the Electrodynamics

of Moving Bodies. He made the postulate that not only Maxwell equations are invariant under Lorentz

transformation, but all physical theories must be invariant under Lorentz transformation. In other words,

all equations of dynamics for everything in the entire universe must be invariant under Lorentz trans-

formation. As you can easily check yourself, Newton’s law of motion does not obey this postulate, and

Newton’s law of motion is wrong.

I have cheated a bit here – the postulate that I said Einstein made above is actually a “modern” take

on things. What Einstein postulated were two things:

• Postulate 1 : The speed of light c in vacuum is the same for all observers.

• Postulate 2 : The laws of physics are invariant in all inertial frames of reference.

The term inertial frame roughly means that a coordinate frame that is not accelerating. A regular

Cartesian (x, y, z, t) coordinate system that you are familiar with is an inertial frame, and so are all other

Cartesian frames that are moving at constant velocity with respect to it. On the other hand, a rotating

frame is not an inertial frame – we will have a bit more to say about non-inertial frames when we discuss

general relativity in section 3.2. Combined, these two postulates imply that all laws of physics must be

invariant under Lorentz Transformations.

The weird nature of the Lorentz transformation Eq. (3.2) gives rise to some interesting predictions,

which have all being verified. Let’s look at them.

• Length Contraction: Alice holds a ruler of length L′, and Bob wants to measure Alice’s ruler as

she passes by in her train. Bob’s coordinates (x, t) with respect to Alice’s coordinate (x′, t′) is given

by the Lorentz transformation Eq. (3.2). Say x′1 is one end of Alice’s ruler, and x′2 is the other end,

such that L′ = x′2 − x′1, then according to Bob x′1 = γ(x1 + vt1) and x′2 = γ(x2 + vt2). Since Bob

wants to make the measurements of the ruler simultaneously at his time, thus t1 = t2, subtracting

the two equations we get x′2 − x′1 = L′ = γ(x2 − x1). So Bob measures the length L = L′/γ. But

since γ > 1, he sees a contracted length of the ruler.

• Time Dilation: Alice’s watch will tick at time t′ while Bob’s watch will tick at time t. Suppose

Bob hummed a tune that lasted T measured by his watch T = t2 − t1, how long has Alice’s watch

passed at this time? Using Lorentz transformation t = γ(t′−vx′/c2), the two times then correspond

to t1 = γ(t′1−vx′1/c2) and t2 = γ(t′2−vx′2/c2). But since Alice is standing still on her train, x′1 = x′2,

subtracting we get t2− t1 = γ(t′2− t′1), and thus Alice’s watch T ′ = T/γ – Alice’s time passes slower

with respect to Bob’s watch. Now, at very relativistic speeds, where v → c (imagine a very fast

train), then γ � 1 can become very big. This means that Alice’s time will be much slower than

Bob’s. This leads to the so-called Twin Paradox – suppose Alice is taking a spaceship traveling

at v = 0.9999c to the next star Alpha Centauri about 4 light years away, and then back. Then her

trip will last about 8 years. But as γ = 1/
√

1− v2/c2 = 70, so Bob would have aged 70× 8 = 560

years – he would be long dead before Alice returns from her trip.

• E = mc2 : Finally, we come to Einstein’s famous formula. We start by asking the question what is

the kinetic of an object traveling at v? In the Newtonian picture when v � c, the answer is 1/2mv2.

But obviously, this is not correct anymore. Let’s compute it, the kinetic energy of an object is the

total work done on it by a force F , i.e.

KE =

∫ x2

x1

Fdx . (3.12)

From Newton’s second law, we have F = dp/dt. Now what is p? Imagine the particle is at rest,

then p = mv = mdx/dt′ where t′ is the time coordinate where the particle is at rest, and m is
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known as its rest mass. When the particle is moving, we know from our time dilation calculation

above that dt/dt′ = γ and thus p = mdx/dt′ = mγdx/dt, remembering that γ itself has a v = dx/dt

inside. Plugging all these back into the equation Eq. (3.12), we got

KE =

∫ x2

x1

m
d

dt
(mγv) dx =

∫ x2

x1

mγ3
dv

dt
dx . (3.13)

You can do the integral Eq. (3.13) by using a change of variables from dx to dv (go on, try it!) to

get the final answer

KE = mc2(γ − 1) . (3.14)

It is easier to check that when v = 0, then γ = 1 and hence the kinetic energy is zero. But the true

physical meaning of Eq. (3.14) comes into play when we do a simple rearrangement

Total Energy E ≡ γmc2 = KE +mc2 , (3.15)

where we E is known as the total energy of the particle, which is the sum of its KE and a rest

mass energy mc2. So if the particle is not moving then KE = 0, the energy of a particle at rest

with mass m is the famous equation

E = mc2 . (3.16)

Even though this is famous, the real power lies in the relation E = γmc2. The energy of a particle

scales like γ. But you can check yourself that to get a particle to go from v = 0.8 to v = 0.9 requires

much more energy than to get a particle from v = 0.1 to v = 0.2 due to the non-linear scaling of

γ – as we increase the velocity of the particle, it becomes more and more expensive to make it go

faster energetically speaking. Indeed, at v = c, γ =∞, so in principle it is impossible to accelerate

a massive particle to the speed of light. The only kind of particle that can go at the speed of light

are massless particles, like the photon. In this special case, the energy of the particle is E = pc,

where p is the momentum of the photon.

3.2 General Relativity

Einstein’s true magnum opus of course is not special relativity (even though this would have on its own

cemented his legacy), but the theory of General Relativity, which not only generalizes Special Relativity

but go way beyond it to describe gravity. While, like all true stories about the development of physics,

Einstein did not invent General Relativity on his own – many workers in the field like Marcel Grossman,

David Hilbert and Gunnar Nordström were zooming in on the same ideas as he was, he definitely made

the biggest conceptual leap, and more importantly – he got it right.

3.2.1 The Equivalence Principle

General Relativity is a beautiful mathematical theory that sometimes can be very intimidating to learn

at first, and has a reputation of being hard to understand. However, I think that is completely wrong

– the mathematics are not easy certainly, but the principles behind it is actually not hard. Indeed, in

this lecture, we will show you how, from a very simple basic principle which guided Einstein will predict

almost all of the important consequences of general relativity, without using too much math!

Again, let’s go back to Newtonian physics. Recall that the Newton’s 2nd law of motion is given by

F = minertialẍ , (3.17)

where we have explicitly labeled the mass minertial to be its inertial mass. On the other hand, as we

have learned in chapter 2, the gravitational potential energy between particles of masses m and M is
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given by

V = −GMmgrav

r
, (3.18)

Notice that we have explicitly labeled mgrav to be its gravitational mass – since Newton’s Law of

motion and Newton’s law of gravity are two separate laws, there is no a priori reason for now that they

are the same! In general, it is much more convenient to think of a “gravitational field” of a particle,

instead of the potential energy between two particles. To do that, we can define a “potential energy per

unit mass mgrav” Φ ≡ V/mgrav, such that

Φ = −GM
r

, (3.19)

which is then the gravitational field of a point particle of mass M . If we now take the derivative of Φ,

we get the gravitational acceleration g

g = −∇Φ . (3.20)

The force acting on a particle with gravitational mass mgrav is then

F = mgravg . (3.21)

Now, as you have done many times in your calculations, you set Eq. (3.17) equal to Eq. (3.21) to get

minertialẍ = mgravg ⇒ ẍ
?
= g (3.22)

in other words is the inertial mass equal to the gravitational mass minertial
?
= mgrav? In fact, this is an

experimentally verified fact – the MICROSCOPE mini-satellite experiment has measured the equivalence

up to 1 part in 1015. But the point is that this fact cannot be derived, but must be experimentally checked.

The assumption that minertial = mgrav is called The Equivalence Principle.

The remarkable thing about the equation ẍ = g is that there is no information about what the particle

is – the only information is its position x implying that gravity is universal – it affects everything. This

universality is what makes gravity different from other forces (e.g. electromagnetic forces only act on

things with electric charges) and as we will return later, also makes it hard to come up with a theory

that describe it. The fact that we can identify ẍ with g is usually formulated in the following way

Equivalent Principle : In a local patch, there is no way of distinguishing between accel-

eration and gravitational force.

EARTH

A B

(a) 

B

A

EARTH

(b)

Figure 13: Einstein’s thought experiment to demonstrate non-trivial curvature of space time.

spacetime, and then we shall proceed in formulating mathematically the concepts of: (i) geodesics,
which is the closest concept to the ‘straight lines in flat-space time Newtonian mechanics’, (ii) that
of parallel transport along a geodesic, and finally (iii) spacetime curvature, by first constructing
the Riemann Curvature Tensor, as being related to properties of neighbouring geodesics in a
spacetime with non-trivial metric tensor, specifically the so-called ‘geodesic deviation’, and then
studying its most important properties. The use of results from our tensor calculus part of the
lectures, will be an invaluable tool for a complete understanding of this chapter of the notes.

5.2 Preface to Curvature: Tidal Accelerations

.
Evidence for the non-trivial curvature of spacetime can be obtained by considering the following

thought experiment, due to Einstein, which is depicted in figure 13. Consider a long and narrow
railway coach, with two test particles in it, A and B. Consider the two cases depicted in the figure
13: (a) the case of a long and narrow horizontal railway coach, with two test particles A and B
in its two ends. The coach is freely falling, keeping its horizontal disposition, toward Earth as in
figure 13a. The two test particles are originally released side by side, but are both attracted toward
the centre of Earth, and hence they move closer together, as measured by an observer inside the
railway coach. This motion is not related to the gravitational attraction between the two test
particles, which by assumption is negligible. It is entirely due to the non-uniform gravitational
field of Earth, since the coach is long enough so that such non-uniform field e↵ects are appreciable.
(b): the case of the railway coach falling freely vertically (i.e. along the radial direction of Earth),
in which the test particles find themselves one above the other, as in figure 13b. For such vertical
separations, according to Newtonian analysis, the gravitational accelerations of A and B are in
the same direction towards Earth, however the particle B nearer Earth is more strongly attracted
and gradually leaves the other behind: the two particles move further apart as observed inside the

30

Lab Frame

Figure 3.2: Tidal forces in a non-uniform gravitational field.

The key word local is very important – it means that Principle refers to the two forces within an

infinitisimally small area. To illustrate why this is important, let’s consider the idea of Tidal Forces

35



(see Figure 3.2). Suppose we lock you in a windowless lab, and drop the lab towards the Earth from

some distance. Even though the lab is windowless, you can devise an experiment to check that you are

not in a uniform gravitational field by checking that two bodies at each end of the lab are accelerating

towards each other. These forces are known as tidal forces – which arises when there is a non-uniform

gravitational field. Suppose now that, due to budget cuts of the government and without EU funding,

you are now given a smaller and smaller lab, then this experiment becomes increasingly hard to do – sadly

not a gedenkenexperiment in real world. Indeed, in the limit where the Lab is now infinitisimally small,

then you will not be able to do this experiment at all. Such an infinitisimally small patch of spacetime

is called a local patch. Inside such a tiny lab, you would not be able to tell that you are moving through

a gravitational field. Indeed, as far as you are concerned, you will be “free-falling” and weightless. Of

course, since your lab is windowless, you won’t even know that you are “falling” towards the Earth. So

you can happily define an inertial frame around yourself, confident that you are non-accelerating. Such

a free falling inetial frame is called a local inertial frame.

Let’s consider some of the direct consequences of the Equivalent Principle.

3.2.2 Gravitational Lensing

Think of the windowless lab again. If I fire a beam of light horizontally from one end to the other end

of the lab, then if the lab is accelerating, the light beam will clearly bend downwards. But since the

Equivalence Principle tells us that this must be equivalent to the case where the lab is in a gravitational

field. Thus, gravitational field will bend the paths of light. This is historically one of the first experiment

to verify Einstein’s theory.

Bending of Light
! The first prediction is simple: light bends in a gravitational field

! This is spectacularly confirmed in many 
experiments and observations

Inertial Frame Accelerating Frame

g

Figure 3.3: Gravitational Lensing

3.2.3 Gravitational Redshift

Now instead of shining the light horizontally, we shine the light vertically from the top of the lab to

the bottom. Suppose the lab starts at rest when the light is emitted, and accelerates upwards with

acceleration g, and the height of the box is h, then the velocity of the lab when the light hits the bottom

would be

v = gt =
gh

c
. (3.23)

A detector at the bottom of the lab can then measure the frequency ν′ of the light – but since the lab

velocity of the emission is zero while the lab velocity at measurement is v, this results in the Doppler

effect (neglecting relativistic effects)

ν′ = ν
(

1 +
v

c

)
= ν

(
1 +

gh

c2

)
, (3.24)

where ν is the frequency at emission. Since ν′ > ν, the frequency of light has blue shifted. If instead

we have shot the light from bottom to the top, it would have red shifted. But the Equivalent principle
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tells us that this effect must be present if the lab is instead under the influence of a gravitational field g.

This is known as gravitational redshifting effect.

Since g = −∇Φ using Eq. (3.20), and if the gravitational acceleration g is constant (e.g. near the

surface of the Earth), then Φ = −gh, and Eq. (3.24) becomes

ν′ = ν

(
1− Φ

c2

)
. (3.25)

This effect was first observed in the Pound-Rebka Experiment in 1959.

3.2.4 Gravitational Time Dilation

Since frequency is the inverse of time ν = 1/T , where T is the period, we can invert Eq. (3.25)

T = T ′
(

1− Φ

c2

)
, (3.26)

which tells you that if time T has passed on top of the lab, then time T ′ < T would have passed at the

bottom of the lab (remember that Φ < 0). Thus somebody who is on the surface of the Earth (and thus

deeper in the potential well) would experience time slower than someone who lives in a tall building. So

if you want to live longer, don’t live in a high rise. This effect, called gravitational time dilation,

has been observed using very accurate atomic clocks. The GPS sat-nav constellation actively corrects for

this effect as the time dilation effect is about 45µs a day which is not small – a real world use of general

relativity. The idea was used to good dramatic effect in the Christopher Nolan sci-fi movie Interstellar.

3.3 Curved Spacetime

As we mentioned in section 3.2.1, gravity is universal and hence everything is affected by it with no

exception. Combined with the fact that accelerating frames are not inertial lead to a very difficult

problem.

To see why this is so, consider how you would measure the electromagnetic fields : you set up a group

of electrically neutral detectors resting (i.e. unaccelerated) in their inertial frames (these are known as

inertial observers), and then you release a charged test particle. The detectors will then measure

motion of the particle, and from there we are can compute the electric (and magnetic) fields (say using

the Lorenz force law). The detectors, since they are electrically neutral, will remain inertial and hence is

not affected by the charged test particle. Once you make all the measurements, since the detectors are all

in inertial frames, you know how to reconstruct the entire “global” electromagnetic field as we discussed

in the previous section – pick some favorite inertial frame and then Lorentz transform every other frame

to it. However, if you try to do the same thing with the gravitational field – release a test particle and

measure its motion to compute the gravitational field, the Equivalent principle ensures that the detectors

themselves affect and will be affected by the gravitational field, so they no longer stay inertial – once you

release them they will accelerate towards each other and as we have studied before, they no longer stay

inertial.

Einstein’s solution to his conundrum is to embrace this “problem” as a feature, and he proposed that

Gravity is not a force, but a property of the fact that spacetime is curved, and all free-

falling (unaccelerated by any other means) objects simply follow the shortest path (called

a geodesic) between two points.

To define the “length”, we hark back to the idea of the metric we discussed earlier. There we said

that the metric defines a notion of “length” in spacetime,

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (3.27)
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(a) Measuring the electric and magnetic fields using in-

ertial frames.

(b) Since gravity affect the detectors, the detectors’

frames cannot stay inertial.

The dx2 + dy2 + dz2 part of the metric Eq. (3.27) describes an Euclidean flat space – Euclidean

in the sense that parallel lines stay parallel – as you have learned such a space the length is simply

L =
√
x2 + y2 + z2 so an infinitisimally small length would be dl =

√
dx2 + dy2 + dz2. The addition of

the “special” time coordinate −c2dt2 means that it is a spacetime length, and such a spacetime is called

Minkowski flat space. What about curved spacetime? Remember from our formula of time dilation

Eq. (3.26), we can take the very small T limit, so T → dt, and hence

dt′2 = dt2
(

1− Φ

c2

)−2
≈
(

1 +
2Φ

c2

)
dt2. (3.28)

But now, as Einstein said, all theories must obey Lorentz transformation, and this transformation “mix”

up all the t and x terms. In general, a curved metric looks like

ds2 =
∑
µ,ν

gµνdx
µdxν , (3.29)

where µ, ν = (t, x, y, z) and gµν is a 4 × 4 matrix of functions. Thus Minkowski flat space gµν is just

diag(−1, 1, 1, 1), but in general curved space the metric can be very complicated. And it’s clear that

the actual measured length ds will depend on the functions gµν . We will talk about the how to find the

“shortest path” in section 3.3.2 later, but next let’s talk about black holes.

3.3.1 Black Holes

Going back to Eq. (3.28). Recall that Φ is the gravitational potential, so for a point particle of mass M

Φ(r) = −GM
r

. (3.30)

Very far from r = 0, i.e r � GM , then Φ = 0, so dt is then the time measured by an observer, say Alice,

far away from this gravitational source. Now if Bob jumps in towards the source, as he approaches the

center, he will instead measure the time dt′ on his watch. So if he sends a signal out to Alice, for every

dt′ tick according to his watch, Alice will receive (1− 2GM/rc2)−1/2dt′ ticks – as Bob gets closer to the

center, she would notice that Bob’s ticks taking longer and longer to arrive. Bob is redshifting from her

point of view. At the point

rsch =
2GM

c2
, (3.31)

Alice will have to wait an infinity between Bob’s ticks. In other words, Alice no longer sees Bob. This

special radius, rsch is called the Schwarzschild radius, and anything that passes it will be lost forever

– not even light can escape it. This point of no return is called the Event Horizon, and is what define

a black hole. More than a hundred black holes have already been discovered, mostly through their

gravitational waves emission when they collide against each other.
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Figure 3.5: An image of the super massive black hole at the center of the M87 galaxy, taken by the Event

Horizon Telescope.

3.3.2 Finding the Shortest Paths

In the epigraph of this chapter, John Wheeler succintly described General Relativity. Let’s talk about the

first part of this epigraph spacetime tells matter how to move. We have already stated in the section 3.3

above that objects in a curved spacetime follows the shortest path. Indeed, we have already learned how

to calculate this in the previous Chapter 2! This problem can be solved for any general metric gµν (which

will result in the Geodesic Equation), but for this introductory lecture, we’ll do a simple example to

illustrate the point.

Now ds2 is the length (squared), so what we want is to find the path which minimizes ds. The action

is then

S = −mc
∫ 2

1

|ds| , (3.32)

where we have added in a factor of mc to keep the units right. Also, we have sneakily used |ds| instead

of ds since5 ds2 < 0. Let’s redo the problem of gravitational redshift we have discussed in section 3.2.3,

which has the metric

ds2 = −
(

1 +
2Φ(x)

c2

)
c2dt2 + dx2 , (3.33)

which we can plug into the action Eq. (3.32) to get

S = mc

∫ 2

1

dt

√(
1 +

2Φ

c2

)
− ẋ2

c2
, (3.34)

where we have used dx/dt in the last term to pull out the dt. Assuming that the potential is small Φ� c2

and the velocity is small (i.e. non-relativistic) ẋ� c, we get

S ≈
∫ 2

1

dt

(
1

2
mẋ2 −mΦ + . . .

)
, (3.35)

where . . . mean terms which are small or constant so we can neglect them.

But look! This is exactly the form of “Kinetic Energy minus Potential Energy” which we discussed in

Chapter 2, where the potential energy is now V (x) = mΦ(x) and the kinetic energy is (1/2)mẋ2. This

is just Newtonian gravity and dynamics – and you can now see that the “Newtonian gravity” is actually

induced by gravitational time dilation! In full general relativity, the . . . terms will become important –

thus when Φ and ẋ are no longer small, we have to take into account the general relativistic effects.

5This is not as terrible as it seems. You can swap the signs of dt and dx in the metric and everything would still work

– whichever you used is a choice of convention, called the “metric signature”. Indeed, it is a constant amusement between

physicists to argue about which is better – although obviously the one we used in this lecture is better.
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Figure 3.6: The volume and shape of a cloud of particles changes under the presence of matter field

affecting the underlying spacetime curvature.

3.3.3 The Einstein Equation

Finally, we talk about the second part of Wheeler’s epigraph matter tells spacetime how to curve. Unfor-

tunately, this is when our ability to use simple physics come to an end, and there is really no easy way

to describe it. Indeed, it is the genius of Einstein to be able to find how this actually works. Roughly,

the statement ments

Curvature = Matter . (3.36)

In equation form this is,

Gµν = 8πGTµν , (3.37)

which probably means nothing to you.

However, there is a nice way to at least describe to you the content of Eq. (3.37). Suppose we have

some matter which has some energy density ρ and some pressure P , which is not rotating or have little

vortices6. Then if we consider a volume V initially (you can imagine a cloud of massless particles inside

this volume which will follow the shortest paths described by the spacetime), then Einstein equation says

that spacetime will curve in such a way that the volume and shape of the cloud evolves as7

V̈

V
= −4πG

(
ρ+ 3

P

c2

)
. (3.38)

This is illustrated in Fig. 3.6. The point is that how the spacetime curves depend on the properties of

the underlying matter described by its pressure and energy density (and usually a few other things).

Let’s consider the case where the universe is filled with a lot of particles of mass m which are either

not moving or moving very slowly. The energy density is then ρ = nmc2/V , where n is the number of

particles in the volume V and we have used E = mc2 to account for the energy of the particles. If the

particles are not moving, then it exerts no pressure, hence P = 0. Then Eq. (3.38) becomes

V̈ = −4πGnmc2 , (3.39)

which shows that V̈ < 0 – i.e. gravity is attractive for “normal” stuff like particles with masses. We can

easily integrate Eq. (3.39) once to find

V̇ = −4πGnmc2t+ C, (3.40)

where C is a constant which depends on the initial conditions. What Eq. (3.40) tells us is as follows, if

C � 4πGnmc2t at t today, then V̇ > 0 today. If the universe is filled with such particles, then it says

that if the Universe started off with a big C, then the universe is expanding. But we have measured

that the universe is still expanding today! So the universe expansion rate C initially must be very big

6To be precise, we have a perfect fluid.
7This equation is a simplified version of the Raychaudhuri equation.
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– hence The Big Bang. However, if all that is in the universe are such particles, eventually the first

term in Eq. (3.40) will eventually become bigger than C, and the universe will start to contract until a

Big Crunch is reached. We can actually measure V̇ of the universe today – it is known as the Hubble

Parameter, and it presently is between the value of 67 and 73 Mpc/km/s. But more importantly, we

can also measure V̈ , and instead of V̈ < 0, we found that V̈ > 0!! This means that ρ + 3 Pc2 < 0 – since

ρ > 0 always then P < 0. This weird stuff with negative pressure is called Dark Energy, and it is a

great mystery what it actually is made out of.

Beyond this simple example, I am afraid you will have to take an actual course on General Relativity.

3.4 Assignment Topics

• Precession of the Perihelion of Mercury : Historically, the orbit of the planet Mercury deviates from

the predictions of Newtonian gravity, and is one of the motivations for general relativity. Describe

the issue, and how Einstein solve the problem using the theory of general relativity.

• Detection of Gravitational Waves by LIGO : Gravitational waves is a prediction of General relativity.

Describe qualitatively what they are, and the black hole collision event GW150914 which produce

the gravitational waves observed by LIGO observatory.

• Astrophysical black holes: Presently, the only known sure way of making black holes is through the

collapse of a massive stars. Such black holes are called “astrophysical black holes”. Describe why

a massive star can collapse into Black holes.
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Chapter 4

Statistical Mechanics and the 2nd

Law of Thermodynamics

More is different

Phillip W. Anderson

4.1 Things always gets worse

You room always get messier. An egg break but never “unbreak”. The milk mix with your cup of tea,

but never “unmix”. These are your everyday experiences. If I play a movie backwards, it would not take

you very long to realize that it was going backwards.

Wait! Is the last sentence true? What if the movie I played to you is actually a movie of a planet

orbiting around a star – then you would not have known that I’ve pulled a prank on you. Why is that?

The reason is simple – if we look at Newton’s law of motion (again!)

F = m
d2x

dt2
, (4.1)

and now I reverse time from t→ −t, then dt→ −dt but dt2 → dt2, and Eq. (4.1) remains the same.

What this tells us is that Newton’s 2nd law of motion is time reversal invariant – a solution going

forward is time is also a solution going backwards in time. This is why if I play the movie of a planet

orbiting a star backwards, you would not have noticed it. In fact, all the laws of physics that we

Figure 4.1: Adding milk to a cup of tea.
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currently know off are time reversal invariant1.

But then, why do you immediately realize it when I played a movie of a egg breaking backwards?

This is a conundrum known as the The Arrow of Time problem. Nevertheless, if you think a bit

more carefully about the difference between the egg-breaking movie and the orbiting-planet movie, you

would realize that they are qualitatively different. In the orbiting-planet movie, the system is very simple

– you have a planet which is basically a point particle, orbiting around a star which is another point

particle. You can model the system with only 2 particles, even if the planet and star itself might be very

complicated systems on their own – you don’t need to understand the details. On the other hand, to

model the egg breaking, you do need to understand the details of how the egg is made – how the shell is

put together, how the egg white and yolk slosh around the inside and the spill out onto the floor, how the

whole system interact all the forces needed to break it etc. In other words, to understand egg breaking,

you need to understand how many things are put together and how these things interact with each other.

Another example is that of your tea mixing with milk – a cup of tea consists of about 1024 particles

of water molecules, tea molecules and milk molecules. Each of these molecule obey a dynamical law –

actually mostly Newton’s law in the case of mixing – if I play the movie of a single molecule zipping

about backwards you won’t be able to notice that. But when we put together all 1024 molecules, you can

tell if the movie of a tea mixing with milk is played backwards. In fact, even if we have a supercomputer

(we don’t) that can solve the 1024 equations (we didn’t), what do we want to know about the system?

It is useless to know the microscopic details like the positions and velocities of every single molecule –

instead what we want to know are macroscopic properties like its temperature, its pressure, how fast

the mixing occur etc.

The study of Statistical Mechanics is our very successful attempt to answer this question. From

it, we developed a framework of understanding how, when we put many things together, new physical

phenomena arises. These new physical laws have a very different character from the “laws” you have

learned before like Newton’s Law – they are emergent from the interactions of a large number of things

interacting with each other in many complicated ways. More is indeed different. What we want to do is

to show you how the basic principles of statistical mechanics will lead to an understanding of why egg

break but not unbreak. But before we do that, let’s take a history lesson!

4.2 The 2nd Law of Classical Thermodynamics

So this whole “things always get worse” issue did not escape the old scientists, especially in the 18th and

19th centuries. What they came up with was a set of empirical “laws”, which are called the Laws of

Thermodynamics. They mostly didn’t know how to derive these laws – they literally made it up. But

remarkably, it was very successful and correct.

There is the First Law of Thermodynamics (see Fig. 4.2). Consider a piston filled with gas in a

volume V with some pressure P . This piston can do some work (or have work done to it) dW , and we

can heat up the piston by transfering some quantity of heat dQ. The gas itself can hold some internal

energy E, roughly the energy that all the molecules of the gas. So simple conservation of energy tells

us that the change in the internal energy is

dE = dQ+ dW . (4.2)

The first “law” of thermodynamics is really just a restatement of the law of conservation of energy, so

it’s really nothing new.

1This is actually not 100% true – the weak nuclear force is ever so slightly non-time-reversal invariant, but the effect is

so small that it takes very special experiments to detect it. Needless to say, it is something we never actually see in our

every day experiences.
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Figure 4.2: A piston with some gas it in.

What’s new, and profound, is the Second Law of Thermodynamics. This is the law which try to

understand the whole “why egg doesn’t unbreak” business. It first makes the observation that a broken

egg is “disordered” while an unbroken egg is “ordered”. By “disorder” it vaguely means that there are

so many ways that we can have a broken egg and there is an inherent “randomness” associated with it.

The number of scare-quotes in the previous sentence tells you that the scientists were not quite sure how

to describe it – it would take a genius to figure this out as we see later – but they could at least give it

a name : Entropy S. The more “disordered” a system is, the higher the entropy of the system; so an

unbroken egg has low entropy while a broken egg has high entropy. Then “things always get worse” can

be expressed as

2nd Law Part 1 :
dS

dt
≥ 0 . (4.3)

To be precise, this is true only in closed systems where the system doesn’t interact with anything

external. This means that dQ = dW = 0 – since either of these processes (putting in/taking out heat

and doing work on/by) will mean that the system has interacted with the external environment.

To quantify S, the old physicists need to associate it with something they can measure. So they

proposed

2nd Law Part 2 : dS =
dQ

T
, (4.4)

where T is the temperature of the system (something eminently measurable). As it turns out, the

physicists lucked out and this is exactly right2. Notice that you can decrease S if you are allowed to

interact with the system like doing work or taking heat out – you can make your room less messy by

cleaning up and doing work on it!

But can we actually derive the 2nd Law of Thermodynamics? Turns out that, yes we can! In this

lecture, we will show you how.

4.3 The 2nd Law from Counting

Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906 by his own

hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is your turn to study statistical

mechanics. (David Goodstein)

4.3.1 Microstates and Macrostates

The aforementioned genius who figured it all out was Ludwig Boltzmann, who made the realization

that the Laws of Thermodynamics are probabilistic laws3. He realized that the statement “things always

2To be specific, it is for a very special kind of process called reversible process.
3You might wonder whether this probability is due to the probablistic nature of quantum mechanics. The answer is no.

On the other hand, the interplay between the probabilitistic mature of statistical mechanics and quantum mechanics has
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get worse” must be modified into

Things probably get worse.

More precisely, he says that entropy probably increases. To illustrate that – suppose I give you a

million coins, and ask you the arrange each coin by randomly flipping each of them. So you will flip a

million coins and arrange them in a line. Let’s say 1 means head, and 0 means tail, then you would get

something like

100010100101001010101111100101010110...

But, very rarely, sometimes you get a long series of 11111111 just by chance. In fact, you could get a

million 1 in a row which our physical laws allow, but the probability of that happening is 0.51000000000,

which is not very likely. This is the sense of what Boltzmann mean – entropy can increase naturally, but

it is just not very likely – in fact, it is almost impossible to observe entropy decrease in the real world for

a close system.

Note that this whole argument relies on a large number of coin-flips – it makes no sense if we just

talk about a single coin flip (or even 3 coin flips). This is the core of Boltzmann’s argument – that the

2nd Law arises when there is a large number possibilities – either many events such as the coin-flip or

that there are many objects. Let’s look at the coin-flip case again – there are many possibilities

110101010010100010101010001...

100100100111001010010010100...

001010101000111110010100101...

...

111111111111111111111111111...

...

001010010010110010100101001...

101011011111010000101001001...

000101011110001010010010010...

001010010111100100001010101...

...

But it’s clear that an event like 111111111111111111... is very special, while the other possibilities

– even if they are unique – are not that “special”. Each of this possibility is called a microstate. For

a million coins, the total number of possible microstates will be equal to 21000000000, which is a mind-

boggling big number. The set of all possible microstates is called an ensemble. So if you randomly pick

a microstate out of this ensemble, your chance of getting a million 1 in a row is just impossibly small.

You can rightfully complain that “special” is not very well defined. We can define it as follows. Let

N0 be the total number of 0 and N1 be the total number of 1, and then we will can define the following

quantity

m = N1 −N0 , (4.5)

to be its macrostate. We can now ask – how many microstates are there for each possible value of the

macrostate m? Let’s put in some numbers to illustrate. Consider N = 16 coins (instead of a million) so

that we don’t fill up all these pages with numbers. For m = −16, or m = 16, it’s clear that there is only

one way : all 0 and all 1 respectively. If m = −14, then we have 15 0’s and a single 1, and since the 1

can be any of the 16 positions, we have 16 ways etc. We can write down a nice formula for this. Suppose

yielded a rich vein of new physical ideas.
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Figure 4.3: The number of possible microstates W (m) for each microstate m.

W (m) is the number of ways for the macrostate to be m, then

W (m) =
N !

N0!N1!
. (4.6)

W (m) is called the statistical weight of the system. As m gets closer to 0, which is when there are equal

number of 1 and 0, W (m) will increase until we reach a maximum when m = 0 where W (m = 0) = 12870

– see Fig. 4.3. Now, we add a new fundamental assumption

All microstates are equally probable.

This assumption means that the probability of picking a microstate with macrostate m is then

P (m) =
W (m)∑
mW (m)

. (4.7)

Thus the bigger the W (m), the more likely you end up picking it by random chance.

Put another way, for each macrostate m, there may be many possible microstates associated with it.

But there are some macrostates where there are very few (or even just a single) microstate associated

with it, like m = −16 or m = 16, and we can then call these macrostates “special”. If I randomly pick

a microstate from the ensemble, chances are you will pick where m is closer to 0 than not, since this is

where most of the microstates are4.

Boltzmann now makes the remarkable assertion : he stated that the statistical weight W is related

to the entropy S by the Boltzmann Entropy Formula

S = kb lnW , (4.9)

where kb = 1.38065 m2kgs−2K−1 is known as the Boltzmann constant. Thus a macrostate with many

microstate, say m = 0 has a high entropy, while a “special” macrostate like m = 16 or m = −16 has a low

4For very large N , calculating factorials can kill your calculator. Fortunately, there is a nice approximate formula

W (m) ≈ 2Ne−m2/2N , (4.8)

which is a Normal Distribution.
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Figure 4.4: Boltzmann’s grave at Zentralfriedhoft in Vienna, with his eponymous formula engraved.

entropy. This gives meaning to the vague notion of “disorder” we talked about in the previous section.

Boltzmann said that, don’t think about “disorder” or “randomness”, instead think about the number of

microstates for each macrostate. He quantified entropy. This profound realization effectively started the

whole study of statistical mechanics.

Unfortunately, Boltzmann had a difficult time trying to convince scientists of his time the profundity

of his idea, and he was ostracised throughout his life. He got depressed, and took his own life in 1906.

This formula is engraved on his grave stone.

4.3.2 Evolving the Ensemble

Let’s see how this leads to the 2nd Law! Notice that the second law dS/dt ≥ 0 is a time-derivative – it

pertains to the evolution of the system, or its dynamics. Flipping coins has no dynamics, so let’s invent

a rule for it.

For every coin, there is a 1 in 6 chance (a die roll) that the coin will flip to 1 (if it is initially 0) or

0 (if it is initially 1) every small time period ∆t.

So, if I have a single coin, then the “evolution” of the coin would go something like this –

Time −→
111111111100011110000011111111100011110000000 (4.10)

Although this rule is probabilistic, if I flip the order above around

Time −→
000000011110001111111110000011110001111111111 (4.11)

you can’t really tell the difference, so the evolution is “time-reversal invariant5”!

Using this rule, we can then evolve our set of N = 16 coins. Let’s start with all 1, i.e. the m = 16

macrostate. In the beginning, we will move rapidly towards m = 0 – since there are more 1’s to flip,

chances are that we will get driven towards smaller m. But as we collect more and more 0’s, sometimes

0 will flip back to 1, and thus we can sometimes get m moving from a smaller back to bigger number.

5Since the probability for a flip at each time is uncorrelated with the previous one, it will also be uncorrelated with the

future one.
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For example, the following sequence of events may occur :

1111

1111

1111

1111
m = 16 →

1111

1011

1111

1110
m = 12 →

1101

0011

1010

1111
m = 6 →

0101

0001

1110

1101
m = 2 →

0000

0011

0010

1111
m = −2 →

0010

1001

0110

1110
m = 0 . . . (4.12)

As the macrostate reaches near m = 0, the number of 1’s and 0’s will then be approximately equal, and

hence since the numbers of 1 and 0 flipping would be roughly the same at that stage, we expect the

system to stabilize at around m = 0. Such a point is called the equilibrium point – generically a

system left to its own devices would want to evolve towards this state. The reason is simple of course

– there are just so many more microstates at equilibrium point than any other point – W (m = 0) is

maximum.

Thus, statistically, since m evolves from m = 16, which is a very special low entropy point using the

Boltzmann formula Eq. (4.9), towards m = 0, the equilibrium point which is also the point of highest

entropy, this means that
dS

dt
≥ 0 , (4.13)

which is (at least the first part of) the 2nd Law of Thermodynamics we discussed in Eq. (4.3)! Further-

more, it also predicts that the equilibrium state is the final state of any closed system – it doesn’t matter

where the system begin, it wants to go to the equilibrium state.

Despite its simplicity, this coin system does a decent job modeling the real world system of a para-

magnet when heated to a constant and high temperature T . A paramagnet consists of a lattice of

magnetic dipoles, which can have two possible states, ↑ and ↓ – you can think of these dipoles as tiny

magnets with either N or S polarity. So its magnetization is then the difference between the number

of ↑ dipole and ↓ dipole – this is N↑ −N↓. So if you replace 1 with ↑ and 0 with ↓, the macrostate of

the paramagnet is then simply the m we have defined in Eq. (4.5). As we heat up the magnet, the little

dipoles gain energy and start to flip, and the whole system gets driven to an equilibrium state where

there is no magnetization. You can try this experiment : just heat up a magnet and see what happens

(this is known as Curie Law).

Finally, what about the 2nd part of the 2nd Law Eq. (4.4)? Here, the old physicists got it the wrong

way round – that equation is supposed to define entropy, but Boltzmann already provided the actual

formula for S which is Eq. (4.9). Instead, temperature itself is defined by entropy! In other words, Eq.

(4.4) can be taken as a definition for temperature6 in a reversible system.

4.4 Information is Physical

One of the most recent and exciting development in theoretical physics is the realization that the seem-

ingly different field of information theory, started in the 1940s by the great Claude Shannon, is

actually intimately related to statistical mechanics. To tell this story, we will start in the 19th century,

where Maxwell in 1867 pointed out a thought experiment which seems to violate the 2nd Law of Thermo-

dynamics. We will then see that the resolution of this paradox involves understanding how information

is actually physical.

6To be precise, temperature is defined as 1/T = ∂S/∂E where E is the internal energy.
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Figure 4.5: Maxwell Demon can open the gate strategically such that all the particles will eventually be

trapped on one side while the other side is empty

.

4.4.1 Maxwell Demon and Szilard’s Engine

Maxwell proposed the following experiment (Fig. 4.5). Imagine a box of gas particles which are moving

around at some given temperature and some internal energy. We can partition the box into two halves

with equal volumes, with a gate in between. There is a magical being, the Maxwell Demon, who can

control the gate (which is assumed to be massless and hence takes no energy to open and close). The

Demon observes each particle, and as a particle on the right side of the box approaches the gate, it will

open the gate and let the particle to the left side, shutting the gate after. It can then do this for all the

particles on the right side, until all of the particles have been sequestered on the left side. Given that

we have the same number of particles, with the same kinetic energy, but with half the space, this means

that the total number of possible microstates have gone down (by half actually), and hence the entropy

must have gone down. Since the Demon apparently used no energy to open and shut the gate, it has

done no work – so has the 2nd Law being violated?

This problem vexxed scientists for a long time. The first step to resolving the problem came when Leo

Szilard proposed a simplified version of the Maxwell Demon problem, and showed that while the Demon

has not used any energy to open or shut the gate, it has actually used something else – its knowledge!

The Szilard Engine goes as follows. Imagine the same set up as the Maxwell Demon, but with only

one particle. Instead of a box, it is a piston.

Now the Demon observes the particle. If it sees the particle on the right side, then it will open the

gate to let the particle in to the left. If it sees the particle on the left side then shut the gate, then it will

do nothing. In both cases, the particle is now trapped on the left side – the Demon now possess a bit of

information which is that the particle is on the left side. Why is it a bit? Remember a bit is either 1 or

0 – so whether a particle is on the left or right side corresponds to a bit.

Once the particle is trapped on the left side, the Demon pushed the piston in, and then open the

gate, Fig. 4.7. The “pressure” of the gas of single particle will push the piston out with some pressure

P , allowing the Demon to extract work W out of the system. If we assume the piston is in temperature
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Figure 4.6: Szilard’s Engine Part 1 : The Demon obtains knowledge about the location of the particle,

and use it to set up the system such that the particle is on the left side.

T and the volumes V of the two sides are equal, then this work is given by the standard formula

W =

∫ 2V

V

PdV , (4.14)

and then using the ideal gas law PV = kbT , we have

W = kbT log 2 . (4.15)

At the end of the experiment, the particle could be anywhere in the piston again, so the Demon’s

knowledge of the particle is outdated (his brain is still stuck on “Left” – this will be important later). In

other words, the Demon has traded one bit of useful information to do kbT log 2 of work!. Szilard’s engine

beautifully illustrates the deep connection between information theory and thermodynamics. Knowledge,

literally, is power.

4.4.2 Landauer’s Principle

Nevertheless, Szilard’s engine just emphasised the Maxwell Demon paradox – the Demon can use this

work to reduce the entropy of the system. Thus what is the true resolution of this paradox? It turns out

that it is only 1982 that this paradox was resolved. In 1960, Rolf Landauer pointed out that while the

Demon can make measurement of where the particle is without increasing the entropy of the system7,

the Demon still needs to store the information somewhere. In our figure, this storage is illustrated in

the thought bubble of the Demon. At the end of the engine cycle in Fig. 4.7, the Demon is now stuck

with an outdated information “Left”, when in the start of the cycle in Fig. 4.6, it has started with an

empty “?”. Thus the cycle is actually not closed! To completely close the cycle, this piece of outdated

7Technically, this means that measurement processes can be reversible.
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Figure 4.7: Szilard’s Engine Part 2 : The Demon uses its one bit of information to extract work out of

the system, but ended up with outdated information (“Left”) when the particle location is unknown.

information “Left” needs to be erased, and Landauer showed that to erase this bit of information actually

raises the entropy of the system8 (which include the piston and the Demon itself) by kbT log 2! Now you

can ask, well, what happens if the Demon actually has more than one bit of storage – so why can’t the

Demon keep just adding information. This question was answered by Chuck Bennett in 1982, when he

pointed out that adding more memory doesn’t actually close the cycle. Each cycle, the Demon acquire

more and more information, but the information it acquired is useless (since it has been used to do work),

and thus this increase the entropy of the whole system. In other words, the Demon’s memory entropy

increased to compensate for the loss of entropy of the environment. Thus the 2nd Law was finally saved

from Maxwell Demon in 1982, 115 years after it was introduced.

4.5 The Beginning and the End of the Universe

Since the 2nd Law of Thermodynamics says that entropy must always increased, what happens when we

apply the principle to the entire universe? If we take a look at the cosmos today, one of the weird and

strange things today we see is that it is actually very ordered – the universe looks more or less the same

regardless of where you are, in every single direction. This is known as the Cosmological Copernican

Principle. This means that the entropy of the universe today is actually quite low.

8Here is a way to see why. Imagine that the memory bank of the Demon is a box and a single token. The Demon has a

very simple system to keep track of Left and Right – put the token on the left side of its memory box if the particle in the

piston in the Left, and right side if the particle is on the Right side. Since the token is not moving, the Demon’s memory

box allows it to keep track of where the particle is. How does the Demon erase this knowledge? It must make the system

such that the memory box does not allow him to keep the definiteness of the position of the token. A simple way to do this

is simply to heat up the token, and make it move around! Once it is freely flying around, the Demon has lost knowledge,

and the memory box no longer keep the information. Heating up such a system requires kb ln 2 energy.
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But since the 2nd Law says that the entropy of the universe must always increase, and we are at a

very low entropy state today, then this means that the entropy of the universe must be incredibly

low at the beginning. You ask : so what? Since there is no physical law that prevents the universe

from starting at a very low entropy state, there is no problem. However, since the flow of entropy defines

the Arrow of Time, and as we discussed, all of the known physical laws (except the weak nuclear force,

in a very small way) is time-reversal invariant, the question of why does time always flow forward is

completely equivalent to the question why did the universe began at a low entropy state. This is known

as the cosmological initial state problem, and presently, it is unsolved.

Another way to put it is as follows. How does one choose which state would be the initial state of

the universe? Absent any idea or theory, then it seems like the only choice is to choose one randomly.

But as we have learned, a random state would not be a special low entropy state, and we are very likely

to end up choosing a very high entropy state since there are so many more of those. So, this means that

either we got very lucky, as a universe, or there is some deep yet unknown “theory of initial conditions”

which has yet to be discovered.

4.5.1 Black Hole Thermodynamics

So much about the beginning of the universe. What about the end of the universe? Today, we see around

us galaxies of stars mixed with hot and cold gas in the universe. Gravity is universal, thus all this matter

will eventually attract each other, and they will collapse onto each other to form black holes. If you wait

for a really long time, the universe will consists of mostly black holes.

This leads immediately to a problem. Every black hole is characterized by three numbers : its mass

M , it’s spin J , and it’s charges Q. It doesn’t matter what you used to make the black hole, at the end

every black hole can be characterized by these three numbers. This is neatly summarized by the phrase

black holes have no hair. The problem is now as follows : what happens to all the information you have

used to make the black hole? For example, suppose you make a black hole with a set of the universe’s

most valuable encyclopedia – and the books all go into the black hole and never come out again. Is all

this knowledge lost? This seems to violate the 2nd Law of Thermodynamics : you can just discard all

the your high entropy things into the black hole (for example, imagine throwing the memory bank of

our Maxwell Demon in the previous section into the black hole), and suddenly the universe’s entropy has

been lowered! Since it seems like all the matter in the universe will eventually become black holes, does

this mean that the somehow the universe violated the 2nd Law?

This paradox inspired Jacob Bekenstein, to conjecture in 1973 (as a PhD student!) that perhaps

black holes are not “low entropy” objects as seemingly suggested by the no-hair theorem, but they are

objects with very high entropy. He put this fact together with Stephen Hawking’s Black Hole Area

Theorem which says that the black hole horizon’s area can only increase9, and proposed that the area

of the black hole ABH is proportional to the entropy it must carry, i.e.

SBH ∝ ABH . (4.16)

This rather audacious proposal was eventually proven correct, by Hawking himself (who initially

thought Bekenstein was wrong). In fact Hawking showed that

SBH =
kbA

4l2p
, (4.17)

where lp is the Planck Length given by

lp =

√
~G
c3
≈ 1.6× 10−35 m. (4.18)

9Roughly speaking, since R ∝ M , then A = 4πR2 ∝ M2, and since black hole can absorb mass but not emit mass

classically, M must always increase, and hence A always increase.
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This is a remarkable formula – it combine the all four fundamental constants: G for gravitation, ~
for quantum mechanics, c for special relativity and the Boltzmann constant kb into a single formula.

It implies that somehow, black holes are key to understanding the unification of gravity and quantum

mechanics. The relationship between entropy and area of the black holes have inspired physicists to

propose the idea of Black Hole Thermodynamics, which suggests that black holes obey the following

“1st Law” of Black Hole Thermodynamics

dE =
κ

8π
dA+ ΩdJ + ΦdQ , (4.19)

where κ is the surface gravity, Ω is the angular velocity and Φ is the electrostatic potential. The “2nd

Law” of Black Hole Thermodynamics is the Hawking Area Theorem dA/dt ≥ 0 as mentioned above. We

will discuss how Hawking came about this conclusion in the next chapter 5.

This is not the end of the story though! Given that we (mostly) know what the laws of physics

are, we can calculate what would be a state of maximum entropy of the universe. Turns out that this

maximum entropy state is actually just a universe filled with a homogeneous bath of radiation at the

same temperature everywhere – the so-called Heat Death of the universe. If we believe in the 2nd Law,

the universe always must evolve towards Heat Death, but this is not the same as what we logically expect

from evolving the matter, which is a universe filled with black holes. What gives? The answer, as some

of you might already know, is that black hole actually is not the final state of matter, but instead it will

still emit Hawking Radiation. We will leave the discussion of this till next chapter 5.

4.5.2 Recurrence time

Finally, we will talk about an attempt to understand the origins of the universe using statistical mechanics.

We argue that a system always wants to move towards equilibrium simply because that there are simply

so many more accessible microstates at that point. However, there is no microphysical reason that,

statistically, the system cannot evolve into a microstate that is very far away from the equilibrium

point, just by random chance. In other words, if we wait long enough, we will come back to the same

configuration of particles10.

This is known as the Poincaré Recurrence time, and roughly it is

tp ∼ ee
S

(4.20)

where S is the maximum entropy (at equilibrium), which is a very long time indeed, If we consider the

entire observable universe as our combined system, then we can compute the recurrence time as

trec ∼ 1010
1010

2

years. (4.21)

This has been suggested as a solution to the problem of cosmological origins as follows. The universe

is eternal, and spends most of its time in thermal equilibrium and hence is at the Heat Death. However,

once in a Poincaré time (i.e. a really long while), the universe randomly fluctuates to a state of lower

entropy. It will then statistically evolve towards the state of maximum entropy following the 2nd law, and

we are simply living in this very special moment where the universe is still evolving to its equilibrium. In

this universe, there is infinite time, so everything and anything can happen an infinite number of times.

There are many issues with this model, and one of them is helpfully pointed out by Utahraptor in Fig.

4.8.

10This is not a guarantee – it requires the system to obey Liouville’s theorem and ergodicity – if the orbits of the

trajectory in phase space is bounded (which it usually is), then given infinite time to evolve, the trajectory will intersect

every phase point an infinite amount of times, including those very rare phase points that are far away from equilibrium.
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Figure 4.8: T-Rex contemplating Poincaré recurrence, though Utahraptor insightfully points out that the

recurrence requires the universe to be ergodic, which is not necessarily true. Credit : www.qwantz.com.

4.6 Assignment Topics

• Charles Bennett and his resolution to the Maxwell Demon paradox : Describe how Benette uses

Landauer’s Principle to resolve the Maxwell Demon paradox. There is a good Scientific American

article in 1987 which he wrote that will make a good reference.

• The Boltzmann Brains paradox : One of the problems of using the Poincaré Recurrence time to

resolve the cosmological initial state problem is that it gives rise to the so-called “Boltzmann

Brains”. Describe what they are, and why they are a problem.

• The Inflationary Cosmology : Another attempt at solving the cosmological initial state problem is

a theoretical idea called “cosmic inflation”. Describe what it is, and how it proposes to solve the

problem.
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Chapter 5

Quantum Gravity and the Black

Hole Information Paradox

I was taught that the way of

progress was neither swift nor

easy.

Marie Curie

5.1 What’s keeping us in our jobs?

While there are many unsolved problems in theoretical physics today, and we have mentioned a fair few

in these lectures so far, e.g. what is Dark Energy and Dark Matter, how did the universe begin and how

would it end, why is there a limit to the speed of light, it is increasingly clear to us that perhaps our

failure to answer these questions may lie in our failure to understand a long known problem – how do we

unify quantum mechanics and gravity ? In other words, what is the right theory of quantum gravity?

In this lecture, we will explain to you why this is such a difficult problem. As you will soon see, the fact

that we can actually talk about this in a meaningful way in an introductory lecture is in a way amazing

– you have already learned most of the physics in all the earlier Chapters to (hopefully) understand the

main cause! But it is also the source of its difficulty – the obstruction is extremely fundamental and

hence it is very hard to work around it. So, now let’s put together all the knowlege we have learned so

far in these lectures to tell you this story.

5.2 The Black Hole Information Paradox

In section 4.5.1, we alluded to the fact that black holes must radiate Hawking Radiation. Let’s see

how this come about. To recap, Bekenstein conjectured that black holes must carry entropy proportional

to their area,

SBH ∝ ABH , (5.1)

and that since dABH/dt ≥ 0 then dSBH/dt ≥ 0, obeying the 2nd Law. But Hawking noted that this is

not all of the 2nd Law – remember that there is a 2nd part of the 2nd Law, which is

dS =
dQ

T
, (5.2)

which, as we argue, defines the temperature T . So, any system that has entropy must also possess a

temperature T . And if it has a temperature T , then it must also emit blackbody radiation. But
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obviously, black holes are black, so there can be no radiation...no? Hawking initially thought so, and

hence he thought Bekenstein was wrong. On the other hand, it is known that blackbody radiation

can only be derived when we incorporate quantum mechanics into our study of statistical mechanics

(something unfortunately we didn’t have the time cover in these lectures). So perhaps the answer lies in

somehow incorporating some quantum mechanics into the physics of black holes? This is exactly what

Hawking did.

5.2.1 Virtual Particles from Quantum Mechanics

Hawking’s calculation in his famous 1975 paper Particle Creating by Black Holes was a tour de force – a

masterpiece in clear cut calculation and explanation that I think any other explanation of that paper is

just a cheap imitation. Sadly for us, the paper is very technical, so we would not be able to discuss it in

our introductory lecture. What I will tell you now though, is a heuristic version (actually proposed by

Hawking himself). So let’s begin.

The main ingredient we need from quantum mechanics is the Heisenberg Uncertainty Principle Eq.

(1.2),

∆x∆p ≥ ~
2
. (5.3)

However, this version is a non-relativistic version – we know from our study of special relativity that

velocities, and hence momenta, is a frame dependent quantity. When we incorporate the physics of

special relativity into quantum mechanics, what we get is the following

∆E∆t ≥ ~
2
, (5.4)

which is what I like to call the “interest-free loan version of quantum mechanics”. The equation roughly

states that

Any system can borrow free energy from the vacuum of up to ∆E for a period of time ∆t, as long as

there is nobody making an observation during this period.

To see how this works, let’s consider the case of an electron moving along some velocity v. This

electron can be relativistic, so its total energy is given by the formula Eq. (3.15) E = γmec
2 where me

is the rest mass of the electron as we have studied in Chapter 3. Now quantum mechanics says that, at

any point in time, there is some probability of the electron “borrowing” some quantity of energy ∆E,

which it then proceed to use to make a photon with energy ∆ = ~ω, where ω is the frequency of the

photon. But quantum mechanics says that you also have to pay it back within the time ∆t < ~/2∆E –

so the more you borrow, the less time you have to enjoy it – and the photon gets “reabsorbed” by the

electron and returned to the bank. Since you pay back as much as you borrow, this loan is interest free.

We illustrate this in the Fig. 5.1 below.
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Figure 5.1: An electron borrowed energy ∆E to make a photon, which it then absorbs back after time

∆t, with ∆E∆t ≥ ~/2.

Does this violate energy conservation? Yes! But that’s ok, because you will never actually observe

it in real life anyhow! The “borrowed” photon is known as a virtual particle, and such an event is

called a quantum fluctuation. This is because even “empty space” is subject to quantum uncertainty.

As it turns out, we don’t even need the electron to borrow an electron – empty space itself can borrow

energy to make virtual particles! For example, it can borrow energy to make a virtual particle and a

virtual anti-particle, which fly around for a while before coming back together to annihilate each other1,

releasing energy which is then used to pay back the “loan”, Fig. 5.2.

Figure 5.2: Empty space itself borrowed energy ∆E to make a pair of particle and anti-particle, which

then self-annhilate after time ∆t, with ∆E∆t ≥ ~/2.

Nevertheless, while energy doesn’t have to be conserved, momentum must be conserved – the interest-

free loan version of the Heisenberg Uncertainty Principle does not say there is uncertainty in the momen-

tum. This will be crucial later.

1The reason why it has to be a pair of particle and its anti-particle is because they have to find a way to “pay back” the

loan somehow, and the only way for two particles to return the energy is to self-annihilate. Free energy, like free money, is

great and you can do a lot of crazy things with it, but it still has its limitations.
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5.2.2 Black Hole Thermodynamics Again and Hawking Radiation

Such a quantum fluctuation of empty space itself is known as vacuum fluctuation, and it is indeed all

around us. You are surrounded by vacuum fluctuation, and this effect is physically measured! So far so

good. But now consider what would happen if such a fluctuation occurs very near the event horizon of a

black hole. A pair of particle and anti-particle appear, and suppose one of them appear inside the black

hole, and the other appear outside, then the one inside will fall into the black hole, and the one outside

will fall “away” from the black hole, see Fig. 5.3.

Figure 5.3: A pair of virtual particles were created near the black hole horizon, and one falls into the

black hole, and the other falls away from the black hole to become Hawking radiation.

The virtual particle that falls away from the black hole will become Hawking Radiation, while the

virtual particle that falls into the black hole will reach the singularity in the middle. Since the outgoing

radiation is now “real” and observable, the loan has to be paid by someone – the black hole. Thus the

black hole loses mass in the process. Hawking did this calculation in detail, and not only did he compute

the fact that such radiation can occur, he showed that the radiation actually has a blackbody form with

the Hawking temperature

TBH =
~c3

8πkbGM
, (5.5)

where M is the mass of the black hole. This remarkable formula includes the fundamental constants of

all the physics we have studied: c for the speed of light and special relativity, G for gravity and general

relativity, ~ for quantum mechanics and kb for statistical mechanics! Thus a black hole is not black, but

radiates with a temperature which is inversely proportional to its mass – the smaller the mass of the

black hole, the more intense the radiation. For the black holes that we have already detected using the

LIGO observatory that is about 20 times the mass of the sun, their temperature is roughly 3× 10−7 K,

which is very tiny and indeed much cooler than the present temperature of the universe2 T = 2.73 K.

Hawking then took this result to the natural conclusion – given that we have a temperature, then we

can use the 2nd law to calculate the entropy. Since the heat transferred out of the black hole must be

2This actually imply that these black holes are still absorbing more energy than radiating them, so they are getting even

colder and radiate even less.
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related to the mass loss, thus dQ = c2dM , using E = mc2, we get

dSBH =
dQ

TBH

=
8πkbG

~c
MdM

=
4πkbG

~c
dM2 , (5.6)

which we can then integrate to get

SBH =
4πkbGM

2

~c
. (5.7)

Recall that the Schwarzschild radius Eq. (3.31) is rsch = 2GM/c2, and hence M2 = r2schc
4/4G2, so the

above Eq. (5.7) the becomes

SBH =
πkbr

2
schc

3

G~
. (5.8)

Using the fact that the area ABH = 4πr2sch, we finally get

SBH =
kbABHc

3

4G~
, (5.9)

which is exactly the Bekenstein-Hawking Entropy Eq. (4.17) that we have discussed in chapter3 4.

5.2.3 Where did all the information go?

Since the black hole radiates, and if we wait long enough, it will eventually radiate away all its mass, and

poofs, disappear, having converted all its mass into radiation which is at a higher entropy than the black

hole itself (and hence obey the 2nd Law). So, will the black hole radiates out all the information that

has been thrown in? In other words, if I have made a black hole by throwing in a set of encylopaedia

of important physics knowledge, then can I recover this knowledge by collecting all the radiation that

comes out of the black hole and somehow reconstruct the books? Does the black hole radiate out what

we used to make it?

The answer is a resounding no! The problem is as follows. Recall that each radiated particle is half

of the virtual particle-anti-particle pair. Now, while it doesn’t matter which of this pair of particles, i.e.

either the particle or anti-particle, gets radiated away, the key point is that if the radiated particle is

an anti-particle, then the particle that falls back into the black hole must be a particle, and vice versa.

This means that the pair of particles are entangled, exactly the way we have described in section 1.2.2.

Let’s use ↑ to denote a particle and ↓ to denote an anti-particle, the quantum state of this pair of virtual

particles is

ψ =

√
1

2
(↑↓ + ↓↑) . (5.10)

How much information is contained in such a pair? It turns out that it contains exactly a single bit of

information4. As we have learned in chapter 4, each bit of information is physical – you can use it to

do kb ln 2 of work. But the problem is that we need to bring both pair of particles together to be able to

reconstruct this single bit of information. If you like, to be able to reconstruct the state Eq. (5.10), we

need the data from the measurement of both particles5! But since the infalling particle goes back into

3Sometimes the Boltzmann constant kb is dropped in the Bekenstein-Hawking formula Eq. (5.9). The Boltzmann

constant strictly speaking is not a fundamental constant – it is simply a conversion factor that allows us to convert from

temperature to energy and vice versa. In fact, statistical mechanics tells us that temperature and energy are closely related

and we should have measured them using the same units. Of course we didn’t know this fact until late on, and hence kb
was the result of this historical oddity.

4Technically, the entanglement entropy is kb ln 2, which is also the entropy of a single classical bit.
5Or more precisely, the statistics of many measurements of a pure ensemble of Eq. (5.10) states.
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the black hole, and when the black hole eventually radiated until it poofs, we have no way of recovering

the other part of the entangled state. In other words, Hawking radiation is entangled with the stuff in

the black hole, but when the black hole evaporates, suddenly the radiation has nothing to be entangled

with, and hence the entanglement information is lost. This is the black hole information paradox,

and at present it is an unsolved problem. Physicists believe that a resolution of this problem will require

a deep understanding of quantum gravity.

5.3 Why is it so hard to unify Quantum Mechanics and Gravity?

We have finally reached the last part of our short introduction to modern concepts in theoretical physics.

In this section, we will put together all the knowledge we have learned to tell you why a theory of quantum

gravity – a theory which unify quantum mechanics and gravity is so hard.

5.3.1 Unification of quantum mechanics and special relativity

“Unification” means that we want to find a way to write down the equations that describe the apparently

different theories, which are seemingly inconsistent with another, in a consistent whole such that they are

predictive. There are roughly two flavour of “unifications”. There is the so-called unification of forces,

where physicists have showed that the weak nuclear force and the electromagnetism can be unify into a

single electroweak force – presently physicists are trying to unify the electroweak and the strong nuclear

force into a Grand Unified Theory.

Today, we want to talk about the second kind of unification, which is the unification of the theoretical

framework which underlies our physical laws themselves. A classic example is the unification of quantum

mechanics and special relativity – we have alluded to the fact when we discussed the “interest free

loan” version of the Heisenberg Uncertainty Principle in section 5.2.1 that quantum mechanics was

initially developed for non-relativistic particles – the so-called Schrödinger’s Equation that describe

the quantum state of a particle was not invariant under Lorenz Transformation. When physicists tried

to generalize quantum mechanics to relativistic particles in the early part of the 20th century, i.e. make

quantum mechanics Lorentz invariant, they started to find all sorts of inconsistencies and unexplained

phenomena – anti-particles, spins of particles etc, which at that time were undiscovered. By unifying

special relativity and quantum mechanics, these “unexplained phenomena” became predictions, and when

the first anti-particle, the positron (predicted by Paul Dirac) which is the positive charged version of

the electron, was discovered in 1932 by Anderson, it was clear that physicists were on the right track.

Nevertheless, it took a while to iron out all the issues with this unification, and the result – quantum

field theory – is now one of the most remarkable achievement of theoretical physics. We have successfully

unified c and ~.

5.3.2 What we know and how do we put them together?

The next goal is to unify c, ~ and G. We have all the ingredients – let’s put them all in one place.

• Quantum Mechanics : The Heisenberg Uncertainty Principle tells us that empty space is full

of quantum fluctuations, and you can borrow free energy ∆E if you pay it back without anyone

observing it within ∆t such that

Rule QM1 : ∆E∆t ≥ ~/2 , (5.11)

.
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Furthermore, quantum mechanics tell us that the probability amplitude A of any event is given by

a sum over all histories, i.e.

Rule QM2 : A =
∑

all paths

eiS/~ , (5.12)

where S is the action which describe the physics of this event.

• Special Relativity : Energy and mass are equivalent, and are related by the formula

Rule SR : E = mc2 . (5.13)

• General Relativity : General relativity tells us that if we compress a quantity of mass m smaller

than its Schwarzschild radius rsch given by

Rule GR : rsch =
2GM

c2
, (5.14)

then a black hole will form. The center of the black hole is a singularity, which is an infinity.

Recall from section 5.2.1 that the Rule QM1 (Heisenberg Uncertainty Principle) allows an electron

to borrow free energy to make a photon. Since the more energy you borrowed – and hence the more

energetic the photon is – the shorter time you can keep the photon, the photon can travel less distance

before it was reabsorbed to pay back the loan. We can represent this by drawing smaller loops as shown

in Fig. 5.4.

Figure 5.4: The more energy you borrow, the more energetic the photon, but the less time it lives, so it

travel less distance.

In fact, you can take out more than one loan! And not only that, the virtual particles themselves can

also take out loans, leading to all the following possibilities shown below in Fig. 5.5.

Figure 5.5: Other possibilities afforded to us by the Heisenberg Uncertainty Principle – there is an infinite

number of ways the electron can move from left to right.

Each of these diagram is a possible history of the electron moving from left to right. Quantum

mechanics (Rule QM2) now tells us that the probability amplitude A of an electron moving from left to

right is the sum over all these possibilities (see Fig. 5.6).
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Figure 5.6: The probability amplitude of an electron moving from left to right is the sum over all possible

histories, taking into account the freedom afforded to us by the Heisenberg Uncertainty Principle.

The probability of an electron moving from left to right is then given by |A|2 as usual. Such figures

shown in Figs. 5.4, 5.5 and 5.6 are known as Feynman diagrams and is used by physicists to keep

track of all the possibilities which they need to do when they calculate A. This calculation is actually

non-trivial – indeed you will learn how to calculate such things when you take an advanced quantum

field theory course and its knowledge separates the casuals from the hardcore. Nevertheless, it is the

mathematics that’s hard, not the idea behind it, which is as simple as we just described to you. When

you sum over an infinite number of terms, you either get a finite number or an infinite number. If you

get a finite number, that means that your theory actually makes sense – you get a finite number and

give this prediction to your experimentalist friends who can then test your theory for you. Theories in

which such a sum gives finite values are called complete theories6. In fact, the theory of the electron

and photons which I just described to you is a complete theory known as quantum electrodynamics,

which was formulated by Feynman, Julian Schwinger and Shinichiro Tomonaga who jointly won

the Nobel prize for this work in 1965. It is verified experimentally up to 1 part in 1010 and is one of our

most successful theory in terms of predictiveness.

5.3.3 Incomplete theories and how to fix it

What about theories that, after doing the sum over histories, give you an infinite number? Such theories

are incomplete. As the name implies, it usually means that we are missing some crucial ingredient.

Let’s see how we can fix incomplete theories by considering a famous incomplete theory : the Fermi

Theory of Beta Decay. A beta decay is when a neutron decays into a proton, emitting an electron in

the process. Enrico Fermi realized that to conserve momentum, one would need to add a 4th particle

which is very light, which he called the neutrino (“little one”), i.e. n+ ν → p+ e (see Fig. 5.7). Such a

process occurs, for example, when a Carbon-14 atom decays into a Nitrogen-14 atom.

6Actually, a naive summation of all the terms did lead to an infinite result, which was known as the ultraviolet catas-

trophe, named because the infinities seem to come from when we try to sum up terms which has very high energies (i.e. “in

the ultraviolet”). Physicists realized that these infinities actually cancel via some somewhat dubious mathematical trick,

and although eventually Kenneth Wilson, building on work done by Leo Kadanoff showed that it is consistent. Contro-

versially, Wilson was awarded the Nobel prize in 1982 but not Kadanoff. This framework is known as Renormalization.

Theories which can be “renormalized” are finite, while theories which are not “renormalizable” are infinite and incomplete.
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Figure 5.7: Fermi Beta Decay where a neutron interacted with a neutrino to make a proton and an

electron.

Fermi’s theory was experimentally verified in 1956 in the Cowan-Reines experiment, which detected

the predicted neutrino – what they did was to look for the inverse beta decay, which is ν̄ + p→ n+ e.

The theory actually works very up to a point – it will give very accurate predictions for low energy decays

if you ignore quantum mechanics but even so its accuracy will begin to drop as the decay process become

more and more energetic until it’s completely wrong when the energies reach around a hundred times the

mass of the proton. But worse still, if you now try to include quantum mechanics into the calculation,

i.e. calculate the sum over histories allowing quantum fluctuations as shown in Fig. 5.8, we will find that

the result is an infinity. Fermi Beta Decay is an incomplete theory.

Figure 5.8: The sum over histories of a Beta Decay process – we have dropped the particle names for

simplicity. Each particle can borrow free energy to create virtual particles, which can also borrow energy

to make virtual particles etc. This sum results in an infinity.

So how do we fix it? The fact that theory makes bad predictions at high energies suggests that perhaps

there is a missing particle or force in the theory. Let’s see how this might arise in the following way.

Consider an electron borrowing some energy to make a virtual photon again, but instead of reabsorbing

it when the time comes to pay it back, it was absorbed by another nearby electron, see Fig. 5.9.
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Figure 5.9: Two electrons can exchange a virtual photon, generating a force between them. This is

actually how electrostatic force works!

While the energy is paid back, remember that since momentum must be conserved, the first electron

has given some of its momentum to the photon, but hasn’t gotten it back. Instead the momentum gets

transferred to the second electron – thus momentum has been exchanged between the two electrons. In

other words, applying Newton’s 3rd Law, there is a repulsive force between the two electrons, exactly how

you would expect when you try to put two electrons close together – an electrostatic force will repulse

them. In fact, this is the origin of all forces – they are nothing but exchanges of particles.

Now, if we compare the diagrams in Fig. 5.7 and 5.9, suggests that if there is a missing particle or

force in the Fermi Beta Decay process, perhaps it has the structure in Fig. 5.10, where we call this new

particle or force W .

Figure 5.10: A hypothesized W particle that acts as a force between the two pair of particles.

What is the mass mW of this particle? Special Relativity Rule SR says that if we borrow enough

E > mW c
2, then Rule QM2 says that it must be incorporated into our calculations. Also, we know that

the mass of mW must be big – if it is small we would have seen it already! In fact, since Fermi Beta

Decay theory begins to give bad predictions around a hundred times the mass of the proton, we suspect

that maybe this is the mass of mW . Actually, this is exactly right! In fact, we are missing more than one

particle, but instead a trio of particles W+, W− and Z plus a very special particle H, which all have more

or less the mass of a hundred times the mass of the proton. If we incorporate all this into our theory,

and recalculate the Feynman sum over histories, we find that it will give us finite numbers – the theory

is completed by adding more massive particles into it. W± and Z was discovered in the Super Proton

Collider in 1983 (1984 Nobel prize). This force carried by W± and Z is known as the weak force.

The last particle H is a very special particle – it is the Higgs particle, and it was needed to give

the particles the right masses in a self-consistent way. But the key point is that when we discovered W±

and Z, we knew that H must be there, because or else the theory is no longer complete! This sureness

is what convinced us to spend so much money to build the Large Hadron Collider, which eventually

detect the Higgs in 2012 (and yes, another Nobel prize). This complete theory which combined quantum

electrodynamics and electroweak force is now known as the Electroweak theory.
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This idea – an incomplete theory which breaks down at some energy level often means that there is

a missing particle with masses around the energy is a powerful organizing principle in physics. When we

encounter a theory which gives us some infinities, it is a way to tell us that “there are some new physics

which we don’t understand hiding somewhere when we go to higher energies”7. We can break down the

life-cycle of a particle physicist’s thinking process in Fig. 5.11.

Figure 5.11: The idea that there are some new physics hiding in our non-renormalizable theories is a

powerful organising principle – it allows us to systematically search for new physics.

5.3.4 Fixing Gravity?

What about gravity? Is it a finite complete theory? In other words, if we force gravity to obey the rules

of quantum mechanics, then it must be subject to quantum fluctuations. Gravity is a force, so there must

be a force carrier particle. The force carrier for quantum electrodynamics is the photon, which is also

light waves. Einstein told us that a quanta of light have energies E = ~ω where ω is now the wavelength

of the light waves. In other words, light can be considered as a particle (the photon) or waves. We know

that gravity waves exists (we detected it in 2015!), so if we apply quantum mechanics to the gravity

waves, then gravity waves can also be considered to be a particle called the graviton, which is then the

force carrier for gravity.

In Einstein’s General Relativity, the only possible vacuum wave solutions are actually gravity waves,

so gravitons are the only “particle” in gravity. Nevertheless, we can apply quantum mechanics Rule QM2

(Heisenberg Uncertainty Principle) to it, and hence gravitons are now allowed to borrow energy to make

virtual gravitons, which can also borrow energy to make more virtual gravitons etc. This means that the

probability of a graviton moving from left to right, according to Rule QM2 (sum over histories), must

look like Fig. 5.12.

7Nowadays, non-renormalizable theories are considered low energy effective theories of some more complete UV theory.
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Figure 5.12: Applying quantum mechanics to gravity, the probability amplitude of a graviton moving

from left to right is then the sum over all the histories allowed by the creation of virtual gravitons.

As you probably have guessed (else this lecture won’t exists!), when we do the sum, we get an infinity.

The quantum theory of general relativity is not a complete theory.

But wait! Didn’t we just show you how to fix a theory? Maybe there is a missing force or particle

that is massive? Let’s call this particle P . What would be the mass of P , MP ? Well, we know that

general relativity works really well, special relativity works really well, and quantum mechanics works

really well. The fundamental constants associated with these theories are G, c and ~ respectively. So if

the theory breaks down because we put them together, then perhaps we can guess that the MP must

be related to all three constants. In fact, there is only one way to put the constants together to make a

mass, which is

MP =

√
~c
G

= 2.18× 10−8 kg , (5.15)

which is known as the Planck mass. While it is small in terms of kilograms, it is actually ginormously

huge in terms of particle mass – it is 1019 times the mass of the proton!

Suppose now a virtual P particle is emitted. Since it is so massive, it takes a lot of energy ∆E = MP c
2,

which according to the Heisenberg Uncertainty Principle, it will only live for a very short time given by

∆t = ~/∆E = ~/(2Mpc
2). This means that, even if it travels at the speed of light, it will at most travel

the distance

d = c∆t =
1

2

G

c2

√
~c
G

=
1

2

GMP

c2
=
rsch

4
. (5.16)

In other words, P ’s whole virtual life is spent within its Schwarzschild radius rsch! General relativity

Rule GR then tells us that P must collapse into a black hole. Inside the black hole is a singularity, and

singularities are infinities. We tried to fix a infinity, and ended up with another infinity! Our attempt to

unify quantum mechanics and gravity has failed.

The fact that I can explain this failure to you using the simple basic rules of special relativity, general

relativity and quantum mechanics mean that it is a very deeply fundamental problem – it is not caused

by some missing “trick” or difficult mathematics, but by just taking our very well known and tested

theories and driving it to its natural conclusion. This makes the unification of quantum mechanics and

gravity really hard – we have very little wiggle room! Something is deeply wrong with our understanding

of the foundational theories.
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5.4 A road towards quantum gravity : String Theory

So what next? There are many attempts to try to formulate a theory of quantum gravity. The most

successful attempt at the moment is String Theory – by “successful” I mean it in comparison with

other theories in terms of development status. It might be totally wrong still, but it has given us some

tantalizing clues that perhaps we are on the right path.

The infinities of Feynman’s sum over histories can be traced to the fact particles are assumed to

interact at points in spacetime – and hence the Feynman diagrams look like lines. We can get rid of the

infinities if “fatten” the lines. A fattened Feynman diagram then describes the interactions of loops of

strings instead of particles as shown in Fig. 5.13.

Figure 5.13: A fattened (right) Feynman diagram describes the interactions of closed loops of strings,

instead of point particles. Sometimes the diagrams are called “pants” diagrams – very American so

apologies to British people.

String theory has made two intriguing predictions which suggests that it is in the right path. First,

it automatically incorporate gravitons – gravity is “built-in” and doesn’t have to be added in by hand.

Secondly, Cumrum Vafa and Andrew Strominger, using a particularly special version of string

theory, successfully computed the Hawking-Bekenstein Entropy of a black hole. Unfortunately though,

String Theory has made no explicit testable experimental predictions, and itself has a lot of theoretical

inconsistencies which renders it at the moment more of a hopeful punt then a true theory of quantum

gravity.

Happily though, this means that we all still have jobs.

5.5 Assignment Topics

• The Large Hadron Collider and the Discovery of Higgs: Describe briefly the Large Hadron Collider

and how it was used to discover the Higgs particlea.

• The Firewall: Recently, physicists has suggested an alternative way to view the black hole infor-

mation paradox problem known as the “the Firewall”. Describe the Firewall, and explain why it is

not a solution but an alternative formulation.

• The Casimir Effect: The vacuum fluctuation effect can be detected using the so-called Casimir

Effect, which has been measured. Describe the experiment.
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Epilogue

So this is the end of our short tour on the modern concepts of theoretical physics. They are deliberately

made as simple as possible to illustrate the core ideas. Think of it as a terrible movie trailer which gives

away all the plot points without telling you the details. Hopefully though, that these spoilers won’t stop

you from going out to actually learn the thing for real by pursuing a degree in physics!
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