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1. Show that the probability current j for a stationary state ψ(x) of a particle scattering off an arbitrary

potential V (x) in one dimension is real and independent of x. Given that ψ(x) has the asymptotic

behaviour

ψ(x) =

{
eikx +Ae−ikx x� 0

Beikx x� 0
,

show that |A|2 + |B|2 = 1. How should you interpret this?

2. A particle is incident on a square potential barrier of width a and height U0. Assuming that U0 = 2E,

where E = h̄2k2/2m is the kinetic energy of the incident particle, find the transmission probability.

[You should work from first principles rather than quote formulae from the lectures because the algebra

simplifies in this special case.]

3. Consider the time-independent Schrödinger equation in Q.8, Ex.Sheet 1. Show that for any real k,

ψ(x) = eikx(tanhx− ik)

is a solution, and find its (scaled) energy ε. Show that this is the wavefunction of a scattering state where

the reflection probability vanishes. Find the transmission amplitude, and verify that the transmission

probability is 1.

4. The Hamiltonian for the one-dimensional harmonic oscillator of angular frequency ω and mass m is

ĤSHO =
p̂2

2m
+

1

2
mω2x̂2.

By considering the action of this operator on a complete set of momentum eigenfunctions or otherwise,

show that the energy eigenvalues for this Hamiltonian is non-negative. In class we showed that its

energy spectrum is En =
(
n+ 1

2

)
h̄ω and found the wavefunctions ψ0(x),ψ1(x) and ψ2(x) corresponding,

respectively, to n = 0, 1 and 2. Verify that ψ0 and ψ2 have even parity and that ψ1 has odd parity. Use

this to deduce that ψ1 is orthogonal to both ψ0 and ψ2. Verify that ψ0 and ψ2 are also orthogonal, i.e.∫ ∞
−∞

ψ∗2ψ0 dx = 0 .

5. What condition must an operator Â satisfy to be Hermitian? Show that the expectation value of

a Hermitian operator is real. Show that i[Â1, Â2] is Hermitian if Â1 and Â2 are Hermitian and do not

commute.

6. A particle of mass m is in a one-dimensional infinite square well, with U = 0 for 0 < x < a and U =∞
otherwise. In class, we showed that its energy eigenstates have energies En = (h̄πn)2/2ma2 for positive

integer n.

Consider a normalized wavefunction of the particle at time t = 0

ψ(x, 0) = Cx(a− x) .

Determine the real constant C. Is this an eigenfunction of the Parity operator around the axis of symmetry

x = a/2? If so, what is its parity. If not, explain.
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Find ψ(x, t), the wavefunction at time t. [Write ψ(x, 0) as a linear combination of normalized energy

eigenstates; i.e., as a Fourier series.] What is the parity of this state at time t?

A measurement of the energy E is made at time t > 0. Show that the probability that this yields En

for even n is zero. Why is this? Show that the probability that the measurement yields En is 960/π6n6

for odd n. Which value of E is the most likely and why is its probability so close to unity?

7. A particle is confined to the one-dimensional box 0 < x < a. If you have not already done this for

Q.6, show that the energy levels are proportional to n2 for positive integer n, and find the corresponding

complete set of normalized stationary states ψn(x). Let 〈A〉n denote the expectation value of any operator

A in the state ψn. Show that

〈x〉n =
1

2
a , 〈(x− 〈x〉n)

2〉n =
a2

12

(
1− 6

n2π2

)
.

Hence show that the classical expectation values, i.e. with the particle bouncing back and forth and

equally likely to be anywhere in the box, are recovered in the n→∞ limit.

8. A two-state quantum system has orthonormal energy eigenstates ψ1 and ψ2, with energy eigenvalues

E1 and E2 = E1 + ∆E (∆E > 0). These energy eigenstates form a complete set of wavefunctions for the

system. Let Ŝ be a linear operator such that Ŝψ1 = ψ2 and Ŝψ2 = ψ1. Show that the eigenvalues of Ŝ are

±1 and write down the corresponding normalized eigenfunctions φ± in terms of the energy eigenstates.

Compute the expectation values 〈E〉± of the energy in the states φ±.

The observable corresponding to Ŝ is measured and the value +1 is found. The system is then left

undisturbed for a time t, after which Ŝ is measured again. What is the probability that the measured

value of Ŝ will again be +1. Show that this probability vanishes when t = T ≡ πh̄/∆E.

*In a second run of this experiment it is decided to measure S at a large number n of small time

intervals T/n. Each measurement yields either +1 or −1, with the wavefunction being reset at φ+ or φ−,

respectively, by the measurement. Show that the probability amplitude for the state to be found in the

+1 eigenstate after a time interval T/n, given that it started in this eigenstate, is

An = 1− i

nh̄
T 〈E〉+ +O(

1

n2
) .

The probability that all n measurements of S will yield the value +1 is therefore Pn = (|An|2)n. Show

that

lim
n→∞

Pn = 1 .

[If you interpret φ+ and φ− to be the ‘not boiling’ and ‘boiling’ states of a two-state ‘quantum kettle’

then you have just proved that a watched kettle never boils. This is also known as the quantum Zeno

effect. Note that it is a real physical effect, in contrast to the ancient (so-called) Zeno paradox.]

9. The Hamiltonian operator for a particle in one dimension is Ĥ = T̂+Û where T̂ = p̂2/2m, and U is any

potential. Show that the expectation value 〈T̂ 〉 is positive in any (normalized) state. By considering 〈Ĥ〉,
show that the energy of the lowest bound state (assuming there is one) has energy above the minimum

of Û .

Suppose ψ is an eigenstate of Ĥ with energy E. Show that, for any operator Â, and in the state ψ

〈[Ĥ, Â]〉 = 0 .

By taking Â = x̂, show that 〈p̂〉 = 0. Now let U(x̂) = kx̂n for constants k and n; by taking Â = x̂p̂ derive

the virial theorem

2〈T̂ 〉 = n〈Û〉 .
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Hence show that

〈T̂ 〉 =
n

n+ 2
E .

10. A particle of mass m moves in one dimension subject to the potential U(x) = 1
2mω

2x2. Express the

expectation value of the energy E in terms of 〈x̂〉, 〈p̂〉, ∆x̂ and ∆p̂. Hence show, using the uncertainty

relation for x̂ and p̂, that in any state

〈E〉 ≥ 1

2
h̄ω .
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