Mathematical Tripos Part 1B Michaelmas Term 2012

QUANTUM MECHANICS

Example Sheet 2

1. Show that the probability current j for a stationary state $\psi(x)$ of a particle scattering off an arbitrary potential V(x) in one dimension is real and independent of x. Given that $\psi(x)$ has the asymptotic behaviour

$$\psi(x) = \begin{cases} e^{ikx} + Ae^{-ikx} & x \ll 0\\ Be^{ikx} & x \gg 0 \end{cases},$$

show that $|A|^2 + |B|^2 = 1$. How should you interpret this?

2. A particle is incident on a square potential barrier of width a and height U_0 . Assuming that $U_0 = 2E$, where $E = \hbar^2 k^2 / 2m$ is the kinetic energy of the incident particle, find the transmission probability. [You should work from first principles rather than quote formulae from the lectures because the algebra simplifies in this special case.]

3. Consider the time-independent Schrödinger equation in Q.8, Ex.Sheet 1. Show that for any real k,

$$\psi(x) = e^{ikx}(\tanh x - ik)$$

is a solution, and find its (scaled) energy ε . Show that this is the wavefunction of a scattering state where the reflection probability vanishes. Find the transmission amplitude, and verify that the transmission probability is 1.

4. The Hamiltonian for the one-dimensional harmonic oscillator of angular frequency ω and mass m is

$$\hat{H}_{\rm SHO} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2.$$

By considering the action of this operator on a complete set of momentum eigenfunctions or otherwise, show that the energy eigenvalues for this Hamiltonian is non-negative. In class we showed that its energy spectrum is $E_n = (n + \frac{1}{2}) \hbar \omega$ and found the wavefunctions $\psi_0(x), \psi_1(x)$ and $\psi_2(x)$ corresponding, respectively, to n = 0, 1 and 2. Verify that ψ_0 and ψ_2 have even parity and that ψ_1 has odd parity. Use this to deduce that ψ_1 is orthogonal to both ψ_0 and ψ_2 . Verify that ψ_0 and ψ_2 are also orthogonal, i.e.

$$\int_{-\infty}^{\infty} \psi_2^* \psi_0 \, dx = 0 \, .$$

5. What condition must an operator \hat{A} satisfy to be Hermitian? Show that the expectation value of a Hermitian operator is real. Show that $i[\hat{A}_1, \hat{A}_2]$ is Hermitian if \hat{A}_1 and \hat{A}_2 are Hermitian and do not commute.

6. A particle of mass m is in a one-dimensional infinite square well, with U = 0 for 0 < x < a and $U = \infty$ otherwise. In class, we showed that its energy eigenstates have energies $E_n = (\hbar \pi n)^2 / 2ma^2$ for positive integer n.

Consider a normalized wavefunction of the particle at time t = 0

$$\psi(x,0) = Cx(a-x).$$

Determine the real constant C. Is this an eigenfunction of the Parity operator around the axis of symmetry x = a/2? If so, what is its parity. If not, explain.

Find $\psi(x,t)$, the wavefunction at time t. [Write $\psi(x,0)$ as a linear combination of normalized energy eigenstates; i.e., as a Fourier series.] What is the parity of this state at time t?

A measurement of the energy E is made at time t > 0. Show that the probability that this yields E_n for even n is zero. Why is this? Show that the probability that the measurement yields E_n is $960/\pi^6 n^6$ for odd n. Which value of E is the most likely and why is its probability so close to unity?

7. A particle is confined to the one-dimensional box 0 < x < a. If you have not already done this for Q.6, show that the energy levels are proportional to n^2 for positive integer n, and find the corresponding complete set of normalized stationary states $\psi_n(x)$. Let $\langle A \rangle_n$ denote the expectation value of any operator A in the state ψ_n . Show that

$$\langle x \rangle_n = \frac{1}{2}a$$
, $\langle (x - \langle x \rangle_n)^2 \rangle_n = \frac{a^2}{12} \left(1 - \frac{6}{n^2 \pi^2} \right)$.

Hence show that the classical expectation values, i.e. with the particle bouncing back and forth and equally likely to be anywhere in the box, are recovered in the $n \to \infty$ limit.

8. A two-state quantum system has orthonormal energy eigenstates ψ_1 and ψ_2 , with energy eigenvalues E_1 and $E_2 = E_1 + \Delta E$ ($\Delta E > 0$). These energy eigenstates form a complete set of wavefunctions for the system. Let \hat{S} be a linear operator such that $\hat{S}\psi_1 = \psi_2$ and $\hat{S}\psi_2 = \psi_1$. Show that the eigenvalues of \hat{S} are ± 1 and write down the corresponding normalized eigenfunctions ϕ_{\pm} in terms of the energy eigenstates. Compute the expectation values $\langle E \rangle_{\pm}$ of the energy in the states ϕ_{\pm} .

The observable corresponding to \hat{S} is measured and the value +1 is found. The system is then left undisturbed for a time t, after which \hat{S} is measured again. What is the probability that the measured value of \hat{S} will again be +1. Show that this probability vanishes when $t = T \equiv \pi \hbar / \Delta E$.

*In a second run of this experiment it is decided to measure S at a large number n of small time intervals T/n. Each measurement yields either +1 or -1, with the wavefunction being reset at ϕ_+ or ϕ_- , respectively, by the measurement. Show that the probability amplitude for the state to be found in the +1 eigenstate after a time interval T/n, given that it started in this eigenstate, is

$$A_n = 1 - \frac{i}{n\hbar} T \langle E \rangle_+ + \mathcal{O}(\frac{1}{n^2}) \,.$$

The probability that all n measurements of S will yield the value +1 is therefore $P_n = (|A_n|^2)^n$. Show that

$$\lim_{n \to \infty} P_n = 1.$$

[If you interpret ϕ_+ and ϕ_- to be the 'not boiling' and 'boiling' states of a two-state 'quantum kettle' then you have just proved that a watched kettle never boils. This is also known as the quantum Zeno effect. Note that it is a real physical effect, in contrast to the ancient (so-called) Zeno paradox.]

9. The Hamiltonian operator for a particle in one dimension is $\hat{H} = \hat{T} + \hat{U}$ where $\hat{T} = \hat{p}^2/2m$, and U is any potential. Show that the expectation value $\langle \hat{T} \rangle$ is positive in any (normalized) state. By considering $\langle \hat{H} \rangle$, show that the energy of the lowest bound state (assuming there is one) has energy above the minimum of \hat{U} .

Suppose ψ is an eigenstate of \hat{H} with energy E. Show that, for any operator \hat{A} , and in the state ψ

$$\langle [\hat{H}, \hat{A}] \rangle = 0$$
.

By taking $\hat{A} = \hat{x}$, show that $\langle \hat{p} \rangle = 0$. Now let $U(\hat{x}) = k\hat{x}^n$ for constants k and n; by taking $\hat{A} = \hat{x}\hat{p}$ derive the virial theorem

$$2\langle \hat{T} \rangle = n \langle \hat{U} \rangle$$

Hence show that

$$\langle \hat{T} \rangle = \frac{n}{n+2} E \, . \label{eq:tau}$$

10. A particle of mass m moves in one dimension subject to the potential $U(x) = \frac{1}{2}m\omega^2 x^2$. Express the expectation value of the energy E in terms of $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$, $\Delta \hat{x}$ and $\Delta \hat{p}$. Hence show, using the uncertainty relation for \hat{x} and \hat{p} , that in any state

$$\langle E \rangle \ge \frac{1}{2} \hbar \omega \,.$$