Dr. Eugene A. Lim
eal40@damtp.cam.ac.uk

Michaelmas Term 2012

QUANTUM MECHANICS

Example Sheet 2

1. Show that the probability current j for a stationary state $\psi(x)$ of a particle scattering off an arbitrary potential $V(x)$ in one dimension is real and independent of x. Given that $\psi(x)$ has the asymptotic behaviour

$$
\psi(x)= \begin{cases}e^{i k x}+A e^{-i k x} & x \ll 0 \\ B e^{i k x} & x \gg 0\end{cases}
$$

show that $|A|^{2}+|B|^{2}=1$. How should you interpret this?
2. A particle is incident on a square potential barrier of width a and height U_{0}. Assuming that $U_{0}=2 E$, where $E=\hbar^{2} k^{2} / 2 m$ is the kinetic energy of the incident particle, find the transmission probability. [You should work from first principles rather than quote formulae from the lectures because the algebra simplifies in this special case.]
3. Consider the time-independent Schrödinger equation in Q.8, Ex. Sheet 1. Show that for any real k,

$$
\psi(x)=e^{i k x}(\tanh x-i k)
$$

is a solution, and find its (scaled) energy ε. Show that this is the wavefunction of a scattering state where the reflection probability vanishes. Find the transmission amplitude, and verify that the transmission probability is 1 .
4. The Hamiltonian for the one-dimensional harmonic oscillator of angular frequency ω and mass m is

$$
\hat{H}_{\mathrm{SHO}}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}
$$

By considering the action of this operator on a complete set of momentum eigenfunctions or otherwise, show that the energy eigenvalues for this Hamiltonian is non-negative. In class we showed that its energy spectrum is $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$ and found the wavefunctions $\psi_{0}(x), \psi_{1}(x)$ and $\psi_{2}(x)$ corresponding, respectively, to $n=0,1$ and 2 . Verify that ψ_{0} and ψ_{2} have even parity and that ψ_{1} has odd parity. Use this to deduce that ψ_{1} is orthogonal to both ψ_{0} and ψ_{2}. Verify that ψ_{0} and ψ_{2} are also orthogonal, i.e.

$$
\int_{-\infty}^{\infty} \psi_{2}^{*} \psi_{0} d x=0
$$

5. What condition must an operator \hat{A} satisfy to be Hermitian? Show that the expectation value of a Hermitian operator is real. Show that $i\left[\hat{A}_{1}, \hat{A}_{2}\right]$ is Hermitian if \hat{A}_{1} and \hat{A}_{2} are Hermitian and do not commute.
6. A particle of mass m is in a one-dimensional infinite square well, with $U=0$ for $0<x<a$ and $U=\infty$ otherwise. In class, we showed that its energy eigenstates have energies $E_{n}=(\hbar \pi n)^{2} / 2 m a^{2}$ for positive integer n.

Consider a normalized wavefunction of the particle at time $t=0$

$$
\psi(x, 0)=C x(a-x)
$$

Determine the real constant C. Is this an eigenfunction of the Parity operator around the axis of symmetry $x=a / 2$? If so, what is its parity. If not, explain.

Find $\psi(x, t)$, the wavefunction at time t. [Write $\psi(x, 0)$ as a linear combination of normalized energy eigenstates; i.e., as a Fourier series.] What is the parity of this state at time t ?

A measurement of the energy E is made at time $t>0$. Show that the probability that this yields E_{n} for even n is zero. Why is this? Show that the probability that the measurement yields E_{n} is $960 / \pi^{6} n^{6}$ for odd n. Which value of E is the most likely and why is its probability so close to unity?
7. A particle is confined to the one-dimensional box $0<x<a$. If you have not already done this for Q.6, show that the energy levels are proportional to n^{2} for positive integer n, and find the corresponding complete set of normalized stationary states $\psi_{n}(x)$. Let $\langle A\rangle_{n}$ denote the expectation value of any operator A in the state ψ_{n}. Show that

$$
\langle x\rangle_{n}=\frac{1}{2} a, \quad\left\langle\left(x-\langle x\rangle_{n}\right)^{2}\right\rangle_{n}=\frac{a^{2}}{12}\left(1-\frac{6}{n^{2} \pi^{2}}\right) .
$$

Hence show that the classical expectation values, i.e. with the particle bouncing back and forth and equally likely to be anywhere in the box, are recovered in the $n \rightarrow \infty$ limit.
8. A two-state quantum system has orthonormal energy eigenstates ψ_{1} and ψ_{2}, with energy eigenvalues E_{1} and $E_{2}=E_{1}+\Delta E(\Delta E>0)$. These energy eigenstates form a complete set of wavefunctions for the system. Let \hat{S} be a linear operator such that $\hat{S} \psi_{1}=\psi_{2}$ and $\hat{S} \psi_{2}=\psi_{1}$. Show that the eigenvalues of \hat{S} are ± 1 and write down the corresponding normalized eigenfunctions $\phi_{ \pm}$in terms of the energy eigenstates. Compute the expectation values $\langle E\rangle_{ \pm}$of the energy in the states $\phi_{ \pm}$.

The observable corresponding to \hat{S} is measured and the value +1 is found. The system is then left undisturbed for a time t, after which \hat{S} is measured again. What is the probability that the measured value of \hat{S} will again be +1 . Show that this probability vanishes when $t=T \equiv \pi \hbar / \Delta E$.
*In a second run of this experiment it is decided to measure S at a large number n of small time intervals T / n. Each measurement yields either +1 or -1 , with the wavefunction being reset at ϕ_{+}or ϕ_{-}, respectively, by the measurement. Show that the probability amplitude for the state to be found in the +1 eigenstate after a time interval T / n, given that it started in this eigenstate, is

$$
A_{n}=1-\frac{i}{n \hbar} T\langle E\rangle_{+}+\mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

The probability that all n measurements of S will yield the value +1 is therefore $P_{n}=\left(\left|A_{n}\right|^{2}\right)^{n}$. Show that

$$
\lim _{n \rightarrow \infty} P_{n}=1
$$

[If you interpret ϕ_{+}and ϕ_{-}to be the 'not boiling' and 'boiling' states of a two-state 'quantum kettle' then you have just proved that a watched kettle never boils. This is also known as the quantum Zeno effect. Note that it is a real physical effect, in contrast to the ancient (so-called) Zeno paradox.]
9. The Hamiltonian operator for a particle in one dimension is $\hat{H}=\hat{T}+\hat{U}$ where $\hat{T}=\hat{p}^{2} / 2 m$, and U is any potential. Show that the expectation value $\langle\hat{T}\rangle$ is positive in any (normalized) state. By considering $\langle\hat{H}\rangle$, show that the energy of the lowest bound state (assuming there is one) has energy above the minimum of \hat{U}.

Suppose ψ is an eigenstate of \hat{H} with energy E. Show that, for any operator \hat{A}, and in the state ψ

$$
\langle[\hat{H}, \hat{A}]\rangle=0
$$

By taking $\hat{A}=\hat{x}$, show that $\langle\hat{p}\rangle=0$. Now let $U(\hat{x})=k \hat{x}^{n}$ for constants k and n; by taking $\hat{A}=\hat{x} \hat{p}$ derive the virial theorem

$$
2\langle\hat{T}\rangle=n\langle\hat{U}\rangle
$$

Hence show that

$$
\langle\hat{T}\rangle=\frac{n}{n+2} E
$$

10. A particle of mass m moves in one dimension subject to the potential $U(x)=\frac{1}{2} m \omega^{2} x^{2}$. Express the expectation value of the energy E in terms of $\langle\hat{x}\rangle,\langle\hat{p}\rangle, \Delta \hat{x}$ and $\Delta \hat{p}$. Hence show, using the uncertainty relation for \hat{x} and \hat{p}, that in any state

$$
\langle E\rangle \geq \frac{1}{2} \hbar \omega .
$$

