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QUANTUM MECHANICS

Example Sheet 1

Speed of light: c = 3.00× 108 m s−1

Planck’s constant: ~ = 1.055× 10−34 J s (h = 2π~ = 6.63× 10−34 J s)

Fine-structure constant: α ≡ e2

4πε0~c ≈
1

137

Mass of electron: me = 9.11× 10−31 kg

Mass of proton: mp = 1.67× 10−27 kg

Electron volt: 1 eV = 1.60× 10−19 J

Bohr radius: r0 = 0.529× 10−10 m

1. When the surface of a sample of potassium is illuminated with light of wavelength 3 × 10−7 m it emits

electrons with kinetic energy 2.1 eV. When the same sample is illuminated with light of wavelength 5×10−7 m

it emits electrons with kinetic energy 0.5 eV. Use Einstein’s explanation of this ‘photoelectric’ effect to obtain

a value for Planck’s constant ~, and find the minimum energy E0 needed to free an electron from the surface

of potassium.

2. Let ψi(x), i = 1, 2, be two normalized stationary state wavefunctions. Assume that they are orthogonal,

so that ∫ ∞
−∞

ψ∗1(x)ψ2(x) dx = 0 .

Show that the linear superposition αψ1 + βψ2, for complex constants α and β is normalized if and only

if |α|2 + |β|2 = 1. Suppose now that ψ1 and ψ2 are normalized but not orthogonal. Show that there is a

unique constant γ, with |γ| ≤ 1, such that ψ = ψ1 − γψ2 is orthogonal to ψ2. Given that |γ| < 1 show that

ψ/
√

1− |γ|2 is normalized.

3. Show that the operator

P̂ ≡ ∂

∂x

is not Hermitian. Show that it has purely imaginary eigenvalues. (Such an operator is called an anti-

Hermitian Operator.)

4. Consider the generalized Boolean Operator for the qubit

N̂θ =

(
− cos θ sin θ

sin θ cos θ

)
.

Show that this operator is Hermitian and hence corresponds to an observable. Calculate the eigenvalues and

normalized eigenvectors for N̂θ.

• Consider the case where θ = π. Write down its normalized eigenvectors χup and χdown.

• A general qubit state can be written in this basis as

ψ = αχup + βχdown , α, β ∈ C

with normalization |α|2 + |β|2 = 1. We want to make a measurement associated with the this

operator N̂θ=π. What are the probabilities of measuring the states associated with χup and χdown?
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• Consider another operator N̂θ=π/2. What are its eigenvalues and normalized eigenvectors? Suppose

we begin with a state ψ and then a measurement of an observable associated with N̂θ=π was made

and an eigenvalue of +1 was obtained. We now make another observation associated with N̂θ=π/2

on this resulting state. Calculate the probability of obtaining an eigenvalue of +1.

• * The Uncertainty Principle of the qubit. Calculate the commutator of two Boolean Operators with

real parameters θ = α, β

[N̂α, N̂β ] ≡ N̂αN̂β − N̂βN̂α.

The commutator (as will be discussed in Chapter 7 of the lectures) of two observables quantifies our

inability to measure with arbitrary precision simultaneously both observables, hence there exist an

inherent uncertainty. Show that the condition for the commutator to vanish is α − β = nπ where

n = 0, 1, 2, 3, . . ..

5. Consider a two-state system

ψ(t) = α(t)

(
1

0

)
+ β(t)

(
0

1

)
, α, β ∈ C.

Its dynamics is described by the Schrodinger’s Equation for a two-state system

i~
dψ

dt
= Ĥ(t)ψ(t)

where the Hamiltonian matrix is

Ĥ =

(
E −ε
−ε E

)
, E � |ε| , ε, E ∈ R.

Find the probability amplitudes α(t) and β(t) as a function of time t > 0, given the initial condition α(0) = 0

and β(0) = 1. Show that the total probability of this state is conserved as a function of time.

6. A particle with m = ~, moving freely in one dimension has wavefunction

ψ(x, t) =
1

π
1
4 (1 + it)

1
2

exp

(
−x2

2(1 + it)

)
.

Verify that this wavefunction is normalized. Compute the probability density and probability current and

verify that they are compatible with conservation of probability.

Consider the probability of finding the particle in an arbitrary finite interval a ≤ x ≤ b. Show that this

probability vanishes in the limit t→∞ (with a and b held fixed).

7. Show that the stationary state wavefunctions of a particle in a potential V (x) with V (−x) = V (x) either

have definite parity or can be chosen to have definite parity. Discuss the odd-parity bound states in the

one-dimensional square well with potential V = 0 for |x| > a, V = −U otherwise, where U is a positive

constant. Use a graphical method to show that there is no odd-parity bound state if 2mU < (~π/2a)2.

8. Sketch the potential

V = −~2

m
sech2 x

and show that the time-independent Schrödinger equation for a particle in this potential can be written as

A†Aψ = (ε+ 1)ψ

where ε = 2mE/~2 and

A =
d

dx
+ tanhx , A† = − d

dx
+ tanhx .
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Show, by integrating by parts, that for any normalized wavefunction ψ,∫ ∞
−∞

ψ∗A†Aψ dx =

∫ ∞
−∞

(Aψ)∗(Aψ) dx

and hence that the eigenvalues of A†A are non-negative. Hence deduce that the ground state wavefunction

must have ε ≥ −1. Show that there is a wavefunction ψ0(x) with ε = −1, satisfying

dψ0

dx
+ tanhxψ0 = 0 .

Find and sketch ψ0(x).

9. Write down the time-independent Schrödinger equation for the wavefunction ψ of a particle moving in a

potential V = −Uδ(x) for positive constant U (and δ(x) the Dirac delta function). Integrate the equation

over the interval −ε < x < ε, for arbitrary positive constant ε, and hence show that there is a discontinuity

at x = 0 in the derivative of ψ(x):

lim
ε→0

[ψ′(ε)− ψ′(−ε)] = −2mU

~2
ψ(0) .

Show that there is a unique bound state (E < 0) solution ψ0(x). Find this ground state solution, and its

energy.

10. Show that the Parity operator in one dimension

P̂ψ(x) = ψ(−x)

is Hermitian and hence is an observable. Is a momentum eigenstate of eigenvalue p invariant under the

action of the parity operator? If it is, calculate its eigenvalue associated with the parity operator. If it is

not, explain in physical terms why not.
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