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Abstract. Maintaining network connectivity is crucial for multi-robot
and human-robot teams. If robots lose their network connection, they can-
not receive commands or share sensor data with teammates. Most research
in the multi-robot systems and human-robot interaction communities
assumes 100% network connectivity, 100% of the time; but this is unreal-
istic for real-world domains. Indeed, this assumption could be associated
with significant risk, depending on the robots’ task domain. This paper
presents preliminary results for measuring the impact of communication
loss on multi-robot team performance. A series of controlled experiments
were conducted, with physical and simulated robots, where the probabil-
ity of packet loss is gradually increased from 0% to 75%. The experiments
show that the multi-robot team exhibits a non-linear decrease in perfor-
mance with respect to an increase in percentage of packets dropped.
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1 Introduction

Consideration of communication network quality is a real and significant issue in
multi-robot and human-robot teams. An unreliable network connection can mean
that messages get dropped and robots lose their ability to receive commands,
transmit sensor data and generally interact with either human or robot team-
mates. In real-world settings, mobile phones drop calls and bandwidth degrades
when signal strength declines, even with high-speed 4G networks. As autonomous
mobile robots transition from research laboratories into operational environ-
ments such as factories, hospitals, schools and homes, it becomes imperative that
they are able to communicate reliably with those around them, whether human
or robot. Humans in close proximity rely on non-digital forms of communication,
such as speech and gestures; and there is much attention paid, in human-robot
interaction and artificial intelligence, to the investigation of methods for robots
to communicate in similar ways, using speech recognition, natural language gen-
eration and gesturing. In addition, robots will frequently be deployed in task
domains where they are not co-located with humans, such as search-and-rescue,
humanitarian de-mining or nuclear plant monitoring. It is these types of non-
proximal relationships that are of concern in our work.
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The study presented here examines the impact of degrading communication
quality in a multi-robot team. The long term goal of this line of work is to quan-
tify the effects and assess the risks associated with poor communication quality
on multi-robot and human-robot teams in a physical environment. In the study
described in this paper, we conducted a series of experiments in which the suc-
cess of message transmission in a multi-robot team is not guaranteed. Our working
hypothesis is that poor-quality communication will hinder the execution of tasks
which require interaction amongst robots or between robots and local server(s),
for example, where mission-critical information is stored, such as a detailed map of
the robot’s environment. To evaluate this hypothesis, a simple method of random
packet loss was implemented and applied to infect communication functions, to
measure howa robot teamcopeswith poor communication.Our overarching objec-
tive is to demonstrate how changes in communication quality impact task perfor-
mance, using a number of metrics and experimental conditions. Experiments were
conducted in simulation and with physical robots. The experiments show that the
multi-robot team exhibits a decrease in performance with respect to an increase in
percentage of packets dropped. This result is not unexpected, but the contribution
of this work is that now we have a framework and results that allow us to quantify
the impact of communication loss on specific performance metrics.

The remainder of this paper is organised as follows. Section 2 presents our
approach and describes details of our methodology. Section 3 outlines our exper-
imental setup, including the software and hardware environment developed for
empirical studies. Section 4 presents the results and statistical analysis of our
experiments. Section 5 briefly highlights related work in multi-robot and human-
robot systems. Finally, Sect. 6 summarises our results and mentions our imme-
diate next steps and future directions with this line of research.

2 Methodology

In order to experiment with the notion of packet loss in a multi-robot team,
we implemented a probabilistic function that is interjected into our system’s
messaging server (detailed in the next section). This function will fail to send
messages, at a rate no greater than a value passed to the function. In other
words, in order to simulate 25% packet loss, this function is called with a value
of 0.25; and inside the function, messages are only transmitted 75% of the time.
During an experimental run, the chosen packet-loss value remains static until
the end of that experiment.

An experimental schema F is defined as a tuple: F = 〈N,T, S, P 〉 where N
is the size of the robot team (number of robots); S is a specific experimental
scenario; T is a set of tasks; and P is a simulated loss in communication quality.
The values used for the experiments described here are:

– N = 2
– T = 6
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– S = {S1, S2}
– P = {0%, 25%, 50%, 75%}

Each scenario, S, is defined as having a map M , a team of robots with start-
ing locations {(x1, y1)...(xN , yN )} and a set of task locations {(x1, y1)...(xT , yT )}.
Following other related work [4,7,12,13], the tasks and locations can be classi-
fied as: single-robot (SR) vs multi-robot (MR) tasks; clustered start (CS) vs
distributed start (DS) locations; independent (IT) vs constrained (CT) tasks;
static (SA) vs dynamic (DA) arrival of tasks; instantaneous (ID) vs extended
(ED) task duration. In the work presented here, we restrict the scenarios to
〈SR,CS, IT, SA, ID〉; although future work will explore the full range of types
of tasks.

3 Experiments

Our experiments were conducted using the MRTeAm framework [12], which inte-
grates ROS [9] controllers for individual robot navigation with the RabbitMQ1

messaging system for handling inter-robot communication. The ROS navigation
stack provides communication, localisation and path-planning capabilities. A key
feature of ROS is that the same robot controllers can be used in a simulated envi-
ronment as well as with physical platforms. We used the Stage [3] environment for
simulation experiments, which includes an emulator for our physical platform:
the Turtlebot22. This robot has a differential drive base and an RGB-depth
camera (the Asus Xtion3, which is a clone of the Microsoft Kinect [10]), and
an on-board laptop (the Acer Travelmate B1174 running Ubuntu). The robots
communicate with each other by sending and receiving messages via WiFi. Our
RabbitMQ service runs on a local server.

The operating environment for our robots is an office setting with rooms
opening off of a circular corridor (illustrated in Figs. 4 and 5). The corridor
has multiple sets of fire doors, which typically stay closed. Thus our physi-
cal experiments were restricted to that portion of the corridor which could be
reached without needing to open the fire doors. We use the campus WiFi for our
robots, which is a local instantiation of eduroam5 that supports IEEE 802.11b
and 802.11 g standards.

For our experiments, we had our robot team execute missions consisting of
exploration tasks in which the robots went to particular locations, ostensibly to
perform surveillance tasks, though the experiments described here only involved
the robots travelling to their assigned locations. At the beginning of a mission,
robots received from the server a set of tasks—locations to visit. While robots
moved to each of their assigned task location(s), messages6 passed between the
1 https://www.rabbitmq.com/.
2 http://www.turtlebot.com/.
3 https://www.asus.com/3D-Sensor/Xtion PRO LIVE/.
4 https://www.acer.com/ac/en/GB/content/professional-series/travelmateb.
5 https://www.eduroam.org/.
6 Specifically, the messages that were passed were ROS amcl pose msg messages.

https://www.rabbitmq.com/
http://www.turtlebot.com/
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
https://www.acer.com/ac/en/GB/content/professional-series/travelmateb
https://www.eduroam.org/
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robots, via our server (running RabbitMQ), facilitating the robots’ sharing their
locations (“pose” information). This helps the team members know where each
other are in the environment during a mission.

During an experiment, data are obtained by using a particular schema Fi

with a given scenario and packet-loss value. In total eight different schema con-
figurations are identified (N ×T ×S ×P with |N | = 1, |T | = 1, |S| = 2, |P | = 4).
Two scenarios, S1 and S2 (illustrated in Figs. 4 and 5) were defined for running
experiments in simulation and with physical robots, respectively. The packet
loss parameter P has four allocated values, {0%, 25%, 50%, 75%} (also denoted
as PL-0, PL-25, PL-50 and PL-75, respectively). For each configuration, a total
of 25 simulations and 20 physical runs were obtained.

3.1 Performance Metrics Rationale

The MRTeAm framework collects thirty-two performance metrics in all, recorded
after each experimental run. Only the parameters relevant to the research ques-
tion considered here are reported in this paper, namely: execution time, total
movement time, total distance travelled, near collisions, delay time and
idle time. These are described, in turn, below.

The execution time is the total time taken for the robot team to complete
all the tasks allocated to them. As can be seen in Fig. 1a, for the simulation runs,
the execution time increases with each increase in parameter P . For the physical
runs, shown in Fig. 1b, the trend is similar but with greater variance in results.
The increase in variance is as expected, and it is a result of the noisy physical
environment.

(a) simulation (b) physical

Fig. 1. Results for execution time, with increasing P

The total movement time metric (Fig. 2) shows the time spent moving
during a mission by all the robot team members combined. For both the simu-
lated and physical runs, a pattern similar to that exhibited by execution time is
noticed, which shows that the robots spend more time moving with increasing
P . However, as noted in the previous metric, the variance for the physical runs
is much greater than that of the simulated runs.
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(a) simulation (b) physical

Fig. 2. Results for total movement time, with increasing P

The total distance travelled metric is the total distance travelled by all
the robot team members combined. The trend is identical to execution time and
total movement time.

The total collisions metric counts the number of times that the robots
either collided or came close to each other and had to execute a collision avoid-
ance behaviour. This metric exhibits unexpected results, as shown in Fig. 3. The
results have identical patterns for both simulated and physical runs (discussed
further in Sect. 4). The increase between PL-0 and PL-25 is expected, though it
is unexpected for collisions to decrease for P greater than PL-25. This outcome
has been identified to result from the high amount of messages being dropped
by the function in the code which updates the pose of consequent robot-team
members. Note that, for purposes of these experiments, the robot controller does
not record collisions detected by the robot’s bump sensors.

(a) simulation (b) physical

Fig. 3. Results for number of near collisions, with increasing P

The performance metrics total delay time and total idle time are not
as relevant for testing communication quality directly, but still reflect aspects
of team performance. Delay time is related to the total “near collisions”. The
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MRTeAm framework employs a simplistic collision avoidance behaviour: when
two robots come within a pre-defined ε of each other, they both stop; the robot
that is closest to its next task location is given right-of-way, and the other robot
waits until the first robot has cleared its path. The amount of time that a robot
stops in order to let another robot pass is called “delay time”. The second metric,
idle time, is related to the efficiency with which the team collectively completes
all the tasks assigned to the them. When a robot finishes executing its assigned
tasks, it waits until all the other robots on the team have finished executing their
assigned tasks. That amount of waiting time is called “idle time”.

4 Analysis of Results

In this section, we describe our statistical analysis of the experimental results
obtained and presented in the previous section. Our aim is to show that there
are statistically significant differences between the different levels of packet loss.
First we test the distribution of the raw data for normality, to determine whether
our data sets are parametric or non-parametric. Then we run t-tests to evaluate
for statistical significance.

4.1 Shapiro-Wilk Test

The Shapiro-Wilk test is used to show that the data samples obtained from the
experiment are more likely to have a normal distribution. The algorithm used
for the Shapiro-Wilk test is from scipy.stats.shapiro [1].

Shapiro-Wilk test is highly recommended for sample sizes less than 50. For
a sample size of ≤ 25, the Shapiro-Wilk value (W) needs to be in the range
0.918–0.989 [14], and for a sample size of ≤ 20, the W value needs to be in the

Table 1. Shapiro-Wilk values for execution time.

(a) Simulation

Parameter Shapiro-Wilk (W)

PL-0 0.974

PL-25 0.979

PL-50 0.983

PL-75 0.956

(b) Physical

Parameter Shapiro-Wilk (W)

PL-0 0.606

PL-25 0.746

PL-50 0.718

PL-75 0.799
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Table 2. Shapiro-Wilk values for total movement time.

(a) Simulation

Parameter Shapiro-Wilk (W)

PL-0 0.892

PL-25 0.926

PL-50 0.876

PL-75 0.907

(b) Physical

Parameter Shapiro-Wilk (W)

PL-0 0.868

PL-25 0.708

PL-50 0.836

PL-75 0.930

Table 3. Shapiro-Wilk values for distance travelled.

(a) Simulation

Parameter Shapiro-Wilk (W)

PL-0 0.967

PL-25 0.557

PL-50 0.917

PL-75 0.974

(b) Physical

Parameter Shapiro-Wilk (W)

PL-0 0.724

PL-25 0.634

PL-50 0.842

PL-75 0.833

range 0.905–0.988 [14]. However, since the test is very biased on sample size and
is only hypothesised, we additionally examined quantile-quantile (Q-Q) plots to
visually verify the normality of the distribution. Since the Q-Q plots are used as a
visual aid we did not include these in the Analysis Section. The “near collisions”
metric returns non-parametric data. Therefore, it needs to be interpreted in a
different fashion compared to the other metrics. Moreover, the results actually
show an increase in near collisions with P equal to PL-25, but a sudden decrease
for P greater-than-equal to PL-50, which is an unexpected decrease due to the
individual robots’ navigation dropping localisation messages. Below, Tables 1,
2 and 3 show the performance metrics given a packet-loss parameter, which
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are expected to be parametric. The simulation results for the W value indicate
that the data is normally distributed, whereas the physical results initially show
similar properties but with much higher variance in the data (primarily because
there is noise in communication and localisation in the physical environment).

4.2 Paired t-test

The paired t-test is used to analyse the experimental data and test for
the null hypothesis (H0). The H0 tests if, for a given metric, two different
and independent packet-loss parameters return identical means. The method
scipy.stats.ttest ind [1] is used to perform a standard independent paired t-test
calculation. In this experiment, the alternate hypothesis (HA) is accepted if the
significance level is 5% or less, which means that there is 95% probability that
the results achieved did not occur by chance.

In the general case for the simulation runs, the alternative (HA) hypothe-
sis is accepted for the performance metrics for the highest subsidiary parameter
(PL-75). This implies that, for the tested performance metrics, if P is greatly
increased, it shows significant reduction in performance for the multi-robot team.
This result is not observed across all the performance metrics tested in the physical
runs. We believe that several factors contribute to this result: the scenario (S2) is
much simpler to navigate than scenario S1 and there is noise in the localisation for
the physical robots (but not in the simulation). Similar to Sect. 3.1, two separate
tables are used to show the hypothesis decision for each particular performance
metric for the simulation and physical runs (Tables 4, 5, 6, 7, 8 and 9).

Table 4. The table shows the t-test, p-value and the hypothesis decision for execution
time for the simulation runs.

Primary parameter Subsidiary parameter T p Hypothesis (H0/HA)

PL-0 PL-25 −3.63 0.00 HA

PL-50 −3.86 0.00 HA

PL-75 −3.87 0.00 HA

PL-25 PL-50 0.03 0.98 H0

PL-75 −1.18 0.27 H0

PL-50 PL-75 −1.03 0.31 H0
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Table 5. The table shows the t-test, p-value and the hypothesis decision for execution
time for the physical runs.

Primary parameter Subsidiary parameter T p Hypothesis (H0/HA)

PL-0 PL-25 −1.22 0.23 H0

PL-50 −1.83 0.07 H0

PL-75 −2.55 0.01 HA

PL-25 PL-50 −0.94 0.36 H0

PL-75 −1.66 0.10 H0

PL-50 PL-75 −0.67 0.51 H0

Table 6. The table shows the t-test, p-value and the hypothesis decision for total
movement time for the simulation runs.

Primary parameter Subsidiary parameter T p Hypothesis (H0/HA)

PL-0 PL-25 −0.63 0.53 H0

PL-50 −1.86 0.07 H0

PL-75 −4.79 0.00 HA

PL-25 PL-50 −1.19 0.24 H0

PL-75 −3.97 0.00 HA

PL-50 PL-75 −2.50 0.02 HA

Table 7. The table shows the t-test, p-value and the hypothesis decision for total
movement time for the physical runs.

Primary parameter Subsidiary parameter T p Hypothesis (H0/HA)

PL-0 PL-25 −0.21 0.83 H0

PL-50 −0.99 0.33 H0

PL-75 −1.67 0.10 H0

PL-25 PL-50 −0.63 0.53 H0

PL-75 −1.14 0.26 H0

PL-50 PL-75 −0.48 0.63 H0
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Table 8. The table shows the t-test, p-value and the hypothesis decision for total
distance for the simulation runs.

Primary parameter Subsidiary parameter T p Hypothesis (H0/HA)

PL-0 PL-25 −0.33 0.75 H0

PL-50 1.07 0.23 H0

PL-75 2.03 0.05 HA

PL-25 PL-50 0.98 0.33 H0

PL-75 1.59 0.12 H0

PL-50 PL-75 0.75 0.46 H0

Table 9. The table shows the t-test, p-value and the hypothesis decision for total
distance for the physical runs.

Primary parameter Subsidiary parameter T p Hypothesis (H0/HA)

PL-0 PL-25 −0.54 0.59 H0

PL-50 −1.90 0.06 H0

PL-75 −2.48 0.02 HA

PL-25 PL-50 −1.10 0.28 H0

PL-75 −1.72 0.09 H0

PL-50 PL-75 −0.75 0.50 H0

4.3 Trajectories

The results of the trajectory representations are analysed to identify change in per-
formance with change in P . Trajectory Fig. 4 represents a simulated run, showing
scenario S1, and trajectory Fig. 5 represents a physical run, showing scenario S2.
With the trajectory representations, it can clearly be seen why there are differences
between the simulated and physical run results.

5 Related Work

The primary motivation for this line of research was due to past experiences
with multi-robot teams where there had been a variety of network connectivity
problems. Multi-robot team communication is an important and complex issue
when it comes to performing heterogeneous tasks (e.g. two or more robots work-
ing together to move heavy objects out of the way to reach a goal). However,
communications have limitations and infrastructure may break down.

In works by Zadorozhny and Lewis [18] and Murphy et al. [8] the authors
investigate different communication methods in the human-robot communica-
tion domain. An extra constraint exists on the human-robot system, which is
that robots need to be equipped with specific sensors to communicate/trans-
mit information to a human controller, as highlighted by Murphy et al. [8].
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Fig. 4. Simulation run showing robot team trajectory in an office setting, with PL-0,
and 2 robots (robot 1 shown in red and robot 2 shown in green). (Color figure online)

Fig. 5. Physical run showing robot team trajectory in an office setting, with PL-0, and
2 robots (robot 1 shown in red and robot 2 shown in green). (Color figure online)
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[8,18] mention the constraints experienced by communication limitations, but
none of the aforementioned works focus on solving or quantifying this issue.

By widening our research, we found similar issues in the human-human com-
munication domain. The researched works [2,15,17] all had the common goal of
establishing a communication network in a disaster area, where a network would
be fragmented or non-existent. The purpose of this was to then allow a “teth-
ered” link between the general public and first responders (police/ambulance).
In [2] the authors investigate ways to improve message passing and to create
effective ad-hoc networks.

In [16], the authors examine possible formation strategies in simulations to
assist and maintain communications, while multi-robot teams perform explo-
ration and victim-locating tasks. Moreover, although [16] does not focus on
reducing communication failure, they concentrate on providing improved com-
munication for multi-robot teams. The research by Jensen et al. [6] employs their
own Sweep Exploration Algorithm (SEA) for the coverage of unknown environ-
ments. The algorithm allows a multi-robot team to expand their exploration in
a tree-like structure. A constraint is placed on the multi-robot team to always
maintain communication between members. The method used by Jensen et al. [6]
introduces some weaknesses prone to failure, particularly in physical environ-
ments. Another work by Gunn and Anderson [5] describes a framework for
multi-robot teams that allocates roles and allows robots to dynamically change
roles depending on mission requirements or environmental conditions (e.g. to
compensate for a lost team member or to complete a victim-locating task). The
primary goal for the framework is to assist in team maintenance and task man-
agement, but the authors note that for large percentages of communication loss,
the performance of all methodologies was poor. This was mainly due to a very
high message failure rate, which resulted in failure to allocate tasks, and made
team coherence impossible to maintain over time.

These findings are the source of our long-term motivation with respect to the
eventual deployment of multi-robot teams to help first responders.

6 Conclusions and Future Work

We have presented results of a preliminary set of experiments that attempt to
quantify the impact of packet loss on a multi-robot team. Two different scenarios
were evaluated, one with a team of simulated robots and the other with a team
of physical robots. The two scenarios (S1 and S2) are very different and thus
limit the accuracy of the results for the simulation and physical runs. However,
when examining the results of the simulation and physical runs, similar trends
emerge specifically in the “execution time”, “total movement time”, “total dis-
tance travelled” and the “near collisions” metrics. The results obtained give
a starting baseline for how communication quality affects multi-robot teams.
However, the experiments do not give conclusive insight on how degradation of
communication quality affects the performance metrics that are tested. Unfor-
tunately, it is difficult to run S1 with the physical robots because the locations
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of the tasks in scenario S1 are inside people’s offices, and we don’t necessarily
have access to all those points. Instead, our immediate next step is to develop
a third scenario S3 that adds complexity to the mission and can be evaluated
both in simulation and with physical robots.

In future work, we will use an ad-hoc network (similarly to those described
in [2,8,11]) to facilitate communication amongst robots and between the robots
and the server. This will allow the robots to measure real signal strength and
adapt their behaviour accordingly, so that they do not lose connectivity. We will
investigate further the strategies proposed by Takahashi et al. [16] in a physical
environment, and additionally employ certain aspects of the SEA algorithm by
Jensen et al. [6].
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