
An Argumentation Engine: ArgTrust

Yuqing Tang1,2, Elizabeth Sklar2,3, and Simon Parsons2,3

1 Robotics Institute, Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213, USA

2 Dept of Computer Science, Graduate Center, City University of New York
365 Fifth Avenue, New York, NY 10016, USA

3 Dept of Computer & Information Science, Brooklyn College,
City University of New York, 2900 Bedford Avenue,

Brooklyn, NY 11210 USA
yuqing.tang@cs.cmu.edu,sklar@sci.brooklyn.cuny.edu,

parsons@sci.brooklyn.cuny.edu

Abstract. Argumentation is a well-studied formal model for multiagent
interaction that supports exchange of information about agents’ beliefs
and reasons why agents hold their beliefs. We describe an argumentation
engine, called ArgTrust, that we have implemented in Java, and explain
how the underlying logic formalism is translated into a computational
framework.

1 Introduction

A growing number of application areas have been recognized as appropriate con-
texts for implementing aspects of argumentation in order to provide a formal,
well-studied and well-structured basis for computer-supported reasoning. The
key aspects we focus on include the use of argumentation to prove or disprove
the correctness of a claim and to identify a minimal set of reasons (i.e., evidence)
for why the claim is true or not true. Further, we address situations in which
there may be numeric values (e.g., n ∈ [0, 1]) associated with each piece of evi-
dence that indicate the strength (or weakness) of that element. In this paper, we
introduce an argumentation engine, called ArgTrust4, that we designed based
on the theoretical framework described in [18] and implemented to perform the
generalized task of reasoning about the validity of claims using weighted evi-
dence.

ArgTrust is written in Java, and in addition to the argumentation com-
putation that is described here, can deal with arguments that have numerical
strengths attached to them. In our implementation, an underlying logical for-
malism is decoupled from argument construction and status computation. The
formalism enables connectives (∧,∨,¬ and →) by abstracting them as Java

4 The name comes from the fact that ArgTrust started out as an implementation of
an argumentation system that is used to reason with information that comes from
sources that are trusted to different degrees.

interfaces. By using interfaces, different applications with different logical lan-
guages could include ArgTrust as a component. To date, we have implemented
language interfaces to JASON [4] and the simple first order language used in
[16]. We are currently working on implementing interfaces to other languages,
such as a description logic for arguing about ontological knowledge.

In the literature, there are other implementations of argumentation engines,
such as defeasible logic programming [12] (and its application in robotic envi-
ronments [11]), IACAS [19], Argue tuProlog [7], CaSAPI [5], ArgLab [13] and
others. See [6] for a comprehensive review of argumentation engines. Most of
these argumentation engines are based on various forms of logic programming
or are implemented using Prolog. The choice of logic programming or Prolog,
on one hand, helps to rapidly prototype an argumentation engines; however, on
the other hand, this choice also limits the forms of languages and argumenta-
tion strategies permitted. Our work attempts to address this issue by developing
ArgTrust in a more flexible and extensible way, with the longer term goal of
providing an open source framework that may better fit a wider range of specific
applications and contexts.

2 Argumentation Engine

The ArgTrust engine we describe here is an implementation based on a formal-
ism described in some of our recent related work [18]. This formalism combines
argumentation with work on propagating trust through a social network, and
shows how the results of this propagation can be linked to Dung-style argumen-
tation [10], where the arguments are structured as in [12, 14]. The result is a
methodology in which an agent can reason using information from other agents
(“sources”) that it “knows” through a social network, assigning belief values to
that information depending on how much the source is “trusted”. These trust
values are then propagated through the inference structure of individual argu-
ments towards their conclusions. The propagated values are then assigned to
modulate the strength of these arguments. During the analysis of defeat rela-
tionships amongst arguments, the values that modulate arguments are then used
to weight the arguments and adjust the strength of a defeat accordingly.

This section describes the underlying operation of the ArgTrust engine. We
begin by outlining two algorithms that drive the computation, and then de-
tail how these algorithms translate the underlying logic formalism into Java
functions. Many terms are used that may or may not be known to the reader,
depending on their familiarity with the argumentation literature on which these
are drawn. For convenience and clarity, an Appendix (Section 4, at the end of
this paper) contains definitions for all terms first mentioned, below, in bold font.

2.1 Argumentation Formalism

Given a query q, an agent (Definition 2) can construct an argument (Defini-
tion 5) for q using the knowledge in its information base,Σ, and a domain-specific

rule base, ∆, using the algorithms proposed in our previous work [18]. That
work describes a backward-chaining inference mechanism that constructs all
possible arguments, ARG (Definition 9), from Σ and ∆. Shared inferences are
cached in a hash table which maps each conclusion to a list of inference nodes.
An inference node is either a fact in Σ or an instantiation of an inference rule in
∆ with premises being connected to the inference nodes with these premises as
conclusions. In the hash table, if it is a “fact” inference node, then the hash key
of the node is the fact itself; if it is a “rule” inference node, then the hash key
is the conclusion of the instantiated rule. In this way, the constructed proofs are
cached in the hash table and can be looked up by their conclusions. As a result,
we can avoid the re-construction of the same inference repeatedly, and different
arguments can share inferences.

In addition, for the conclusions that cannot be proven, if Σ and ∆, are static,
then we can also cache the unproven conclusions to a special proof network,
which we refer to as NO-PROOF. This will help avoid repeated proof failure.
As shown in [18], assuming that all inferences re fully cached, this mechanism
guarantees that the complexity of constructing the argumentation graph of a
query is bounded by:

O((|C∆|+ |Σ|)× |P∆|)

where |C∆| and |P∆| are the numbers of distinct conclusions and distinct premises,
respectively, of all possible instantiated rules in ∆. Of course this result does not
mean that inference can be completed in polynomial time since the number of all
possible instantiated rules can be exponential in terms of the arity of predicates
in the language. In practical applications, however, we can limit the arity of the
predicates in the language.

Key to the notion of argumentation is the idea of conflict between arguments,
and so detecting and handling conflicts is a key aspect of ArgTrust. The conflicts
that can be picked up by the types of defeat described in Definition 10 depend
on the capability of the argument construction mechanism to construct negated
premises (premise-undercut), negated intermediate conclusions (intermediate-
undercut), and negated material implications of the inference rules (inference-
undercut). The more knowledge and inference rules that are input to ArgTrust,
the more arguments will be constructed. This can result not only in more ar-
guments that can potentially support the conclusions we are interested in, but
also in more arguments that can potentially undermine the arguments and can
defeat previously constructed arguments. These defeats can both defeat the ar-
guments that support the favored conclusions, as well as defeat the arguments
that undermine those favored arguments. The possible positive and negative ef-
fects of argument construction lead to a reasoning mechanism that forces agents
to put forth information and construct arguments cautiously. In turn, the rea-
soning mechanism forces the argumentation-reasoning process to search the set
of acceptable arguments as early as possible in the process, assuming the agents
are rational and are capable of predicting the effects of putting forth information
and constructing new arguments.

Ideally, we would like the reasoning mechanism to identify any conflict be-
tween arguments that corresponds to a disagreement between statements in the
application domain. If this is the case, then any conflict-free (Definition 14) set
of arguments will correspond to situations in the application domain in which
there are no disagreements. To make it easier to identify conflicts between argu-
ments, we provide what we call defeat rules. These are pairs of formulas in the
underlying predicate language, L (Definition 1):

(defeater,defeatee)

where the defeater is the conclusion of a defeating argument and the defeatee is
the conclusion of a defeated argument. For example, the following expression

(At(now, here),At(now, there))

picks up a conflict that can not be established by inference without the following
rule:

At(now, here)

¬At(now, there)

We call this form of defeat customized defeat.

2.2 Argumentation Semantics

Many argumentation semantics have been proposed in the literature (e.g., [3,
9, 10]). We have chosen to follow the argumentation semantics of Dung [10],
who provides a specific meaning for the system of argumentation we have de-
scribed above. First, it captures the principle “the one who says the last word
wins” found in human argumentation. Second, there is a correspondence between
Dung’s semantics and the equilibrium of n-person games that allows us to relate
argumentation-based and the more traditional game-theoretical approaches to
dialogue [10]. A third reason for choosing Dung’s semantics is for its abstraction
away from the internal representation of an argument. In ArgTrust, this allows
us to implement the argumentation semantics without having to commit to a
specific language in which arguments are constructed. This, in turn, means that
any language which includes the connectives ∧,∨,¬,→ can be imported into our
implementation.

The binary defeat relation, DFT (Definition 10) is particularly important
when conflicts arise during argumentation. This is because DFT allows the res-
olution of these conflicts by determining which other arguments can be used to
defend (Definition 12) conflicting arguments, or arguments being attacked. The
notation of defend captures a concept of collective re-establishment of beliefs in
which a defeated argument can be re-established if there are other arguments
which can defeat its defeaters.

For example, consider the following defeat relation, illustrated in Figure 1:

DFT = {(A1, A2), (A2, A3)}

Although argument A3 is defeated by A2, A2 is in turn defeated by A1 so as to
re-establish the acceptability of A3. Consequently, the argument set A1 defends
argument A3.

A3A2A1

Fig. 1. DFT = {(A1, A2), (A2, A3)}: Arrows represent defeats.

Now, if we extend the defeat relation to contain more defeats:

DFT = {(A1, A2), (A2, A3), (A4, A3), (A5, A4)}

then {A1} alone is not enough to defend argument A3, since A1 cannot defend
A3 against A4. So in this case, we need a larger set, {A1, A5}, to defend A3. This
example is illustrated in Figure 2.

A5 A4

A3

A2A1

Fig. 2. DFT = {(A1, A2), (A2, A3), (A4, A3), (A5, A4)}: Arrows represent defeats.

In complex dialogues, long chains of disputes among mutually attacking ar-
guments are bound to happen, so the argumentation semantics must provide
a means to compute the argument that ultimately wins the dispute. For this,
Dung defines a method to resolve conflicting arguments through a fixed point
(Definition 13) computation. For example, given a linear defeat relation:

DFT = {(A1, A2), (A2, A3), (A3, A4)}

As shown in Figure 3, computing the least fixed point starts by initializing the
set of acceptable arguments, Acc (Definition 13), to the empty set: Acc0 = ∅.
In the next step, since A1 is not defeated by any argument, A1 can be defended
by Acc0, resulting in a larger set of acceptable arguments Acc1 = {A1}. Then,
A2 is the only defeater of A3 and A2 is defeated by A1, therefore Acc1 can defend
A3, resulting in a larger set of acceptable arguments: Acc2 = {A1, A3}. At this
point, applying the defend function FDFT on Acc2 can not defend additional
arguments, namely FDFT(Acc2) = Acc2 where a least fixed point is reached. The
set of acceptable arguments with respect to DFT is thus {A1, A3}.

During reasoning, it is not always the case that a (non-empty) fixed point of
the argumentation framework exists. There can be multiple conflict-free sets of

A3

A1

A1

A4A1 A3A2

A4

A2

ACC0 = ∅

A4

A3

A2 A3A1

A4ACC1 = {A1}

A2

ACC3 = {A1, A3}

ACC2 = {A1, A3}

Fig. 3. The computation of the least fixed point of DFT =
{(A1, A2), (A2, A3), (A3, A4)}.

arguments. Each conflict-free set of arguments might correspond to a possible
coherent solution in the application domain, but the unfolded information is not
enough to determine which extension is more acceptable than others. According
to [10], we can employ the preferred extension semantics (Definition 14).
For example, given a defeat relation:

DFT = {(A,B), (B,A), (A,C), (C,D), (C,E)}
As illustrated in Figure 4, no arguments can be defended by the empty set.
In this case, the fixed point of DFT is the empty set. However, there are pre-
ferred extensions—two maximally admissible sets of arguments: {A,D,E} and
{B,C}. Each of these two extensions can defend against the outside defeaters
and conflict-free within themselves. If we can make a decision on accepting A
or B, we will be able to choose between these two extensions. We can either
generate more arguments so that a conflict-free set of arguments can be reached
or introduce strength measurement (in probabilities or expected utilities) over
the arguments to choose one of these conflicting arguments so that an extension
with stronger arguments can survive.

A

C

B

E

D

A

C

B

E

D

A

C

B

E

D

Fig. 4. Defeat relation: {(A,B), (B,A), (A,C), (C,D), (C,E)}.

3 Computing the Argumentation Semantics

Two primary functions drive the computation in ArgTrust:

– The function getStatus(DFT, A) determines the argumentation status of ar-
gument A in an iterative manner, until the status of all arguments have
converged.

– The function computeStatus(DFT, A) is called by getStatus() to compute
the argumentation status.

Pseudo-code for these functions are given by Algorithm 1 and Algorithm 2,
respectively. The final output is a status label for a given argument, A, and
defeat relation, DFT.

We extend the approach outlined in [8], which defines three possible labels
that indicate the status of an argument: IN (acceptable), OUT (unacceptable)
or UNDEC (undecided). Our extension defines two additional possible labels:
UNDEC ′ and UNDEC ′′. Thus, in ArgTrust, the status of an argument, A,
given a defeat relation, DFT, is one of the following values:

Status = ARG→ {IN,OUT,UNDEC,UNDEC ′, UNDEC ′′}

where IN means the argument is accepted, OUT means the argument is rejected,
UNDEC means the argument is undecided, and UNDEC ′ and UNDEC ′′ are
two special temporary status variables assigned to the argument. UNDEC ′

means that an attempt has been made to compute the status of the argument but
it is still undecided; UNDEC ′′ means that in the previous round of computation
the status of the argument is undecided. The status label computation is per-
formed using a hash table, as described earlier, to avoid repeated re-construction
of the same inferences and repeated proof failure.

Algorithm 1: getStatus(DFT, A): Get the status of argument A in DFT

Input: DFT: a defeat relation; A: the argument of interest
repeat

status← computeStatus(DFT, A);
Change all UNDEC′ status in StatusCache to UNDEC for the arguments
whose status are determined final;
Change all UNDEC′ status in StatusCache to UNDEC′′;

until no arguments have their status changed to IN or OUT ;
return status;

The correctness of Algorithm 1 follows from the result in [8], which states that
grounded extensions are equivalent to the labelings assigned by Algorithm 2 with
the maximal number of arguments labeled with status UNDEC. The function
computeStatus() initially sets the status of every argument encountered to be
UNDEC. Thereafter, Algorithms 1 and 2 iteratively refine the status of the
arguments encountered until no UNDEC arguments can be changed to IN or
OUT .

Algorithm 2: computeStatus(DFT, A): Compute the status of argument
A in DFT
Input: DFT: a defeat relation; A: the argument of interest
if StatusCache has an entry for A, and StatusCache[A] is IN , OUT ,
UNDEC, or UNDEC′ then

return StatusCache[A];
end
if A has no defeaters then

StatusCache[A]← IN ;
return IN ;

else
StatusCache[A]← UNDEC′;

end
for each B such that (B,A) ∈ DFT do

defeaterStatus[B]← computeStatus(DFT, B);
end
if all defeaters’ status are OUT then

result← IN ;
else if there is one defeater’s status that is IN then

result← OUT ;
else if there is one defeater’s status that is UNDEC then

result← UNDEC;
else if there is one defeater’s status that is UNDEC′ then

result← UNDEC′;
end
StatusCache[A]← result;
return result;

Note that if there are no loops in the defeat relation DFT (so we don’t, for
example, have A1 which defeats A2 which defeats A3 which defeats A1), then one
call to computeStatus(DFT, A) will have all the arguments’ status converged.
No UNDEC status will be assumed, in this case the IN arguments are in
the grounded extension as well as the preferred extension of the argumentation
framework. If there are loops in the argumentation framework, then the com-
putation will be guaranteed to stop after N rounds of computation, where N is
the diameter of the argumentation graph.

This can be proved by induction: after N rounds of computation, the argu-
ments whose distances to their known status defeaters is N can be determined
about their status. At round 0, the known status arguments ∅. At round 1, the
undefeated arguments’ status are determined; their distances to ∅ in the argu-
mentation graph is 1. LetDetN−1 be the set of arguments whose status have been
determined in round N−1. After executing computeStatus(DFT, A) for another
round, all the arguments with N distance to ∅ will not change in the subsequent
computation because all its defeaters are of distance less than or equal to N − 1
to ∅, therefore their status will be change again. As computeStatus(DFT, A)
is with the hash cached mechanism, in each round of computation it will ex-
plore every node of the whole argumentation graph at most once, the complex-

ity is bounded by the size of argumentation graph, namely O(|DFT| + |ARG|).
The diameter of DFT is at most |ARG|, therefore the complexity is bounded by
O(|ARG| × (|DFT| + |ARG|)). Note that the number of arguments are bounded
by O((|C∆+ |Σ|)×|P∆|) (see the earlier discussion and our previous work [18]).
This means that the complexity of this specific implementation is polynomial in
terms of the number of all possible instantiations of the rules in ∆ and facts in
Σ. The number of all possible instantiations of rules and facts can be limited in
polynomial size of the knowledge base and rule base if we limit the arity of the
predicates to be a small enough number.

We observe that the arguments whose status will be changed in DetN of
round N are totally determined by the arguments DetN−1. This can help us
improve the space usage of the hash cache StatusCache by removing all the
arguments in DetN−1 except the arguments which immediately defeat an argu-
ment with status UNDEC.

This completes our discussion of the way that ArgTrust computes the status
of arguments, and hence how it implments the Dungian argumentation seman-
tics.

4 Summary

We have introduced an argumentation engine, ArgTrust, and described how it
has been implemented in Java to compute the acceptability, non-acceptability
or undecidability of an argument based on an information base and rule base.
Current work involves deployment of the ArgTrust engine in two different ap-
plication areas: for reasoning about rules that control a firewall in a network
security context [2], and for reasoning about joint activity in a human-robot
dialogue.

Note that in addition to the engine described here, we have developed a tool
for the display of the arguments generated by ArgTrust (these take the form of
the hypergraphs described in the Appendix), and another line of current work
is to identify how complex sets of arguments can best be presented to the user.

Appendix: Definitions

This Appendix contains definitions that are used extensively in this paper. The
definitions are adapted from [1, 17], with two extensions. First, the information
base is expanded to include domain inference rules. Second, the concept of ar-
gument is enriched to include a reasoning structure.

Definition 1 (Predicate Language). A predicate language, L, is based on a
set of predicates (i.e., symbols), p ∈ P, with standard connectives ∧, ∨, →, ¬.
Any term belonging to a predicate in P is finite, and no functional symbols are
allowed for any term belonging to a predicate in P.

We assume that standard semantics apply. In this way, we have a finite set of
grounded predicates.

Definition 2 (Agent, Information Base, Rule Base). An agent, Ag, has an
information base, Σ ⊆ L, and a rule base, ∆. The rule base is a set of inference
rules, δi ∈ ∆ (see Definition 6), where each rule δ specifies a conclusion, c, that
can be drawn from a set of predicates, {p1, . . . pn}. Such a rule is written as
follows:

δ =
{p1, . . . pn}

c

where every predicate, pi(δ), and the conclusion, c(δ), are members of L.

Complex arguments can be very difficult to analyze, and as a consequence, var-
ious graphical forms of argument representation have been developed and found
useful by the community, such as the Araucaria software by [15]. We adapt a
graphical form to write these rules as directed hyper-edges 〈{pi}, {c}〉, as illus-
trated in Figure 5 and defined formally below.

Definition 3 (Rule Network). A rule network, R = 〈V r, Er〉, connects premises
and conclusions of rules in the form of a directed hypergraph where:

1. the set of vertices V r are elements of L (i.e., predicates, p ∈ P);
2. the set of hyper-edges Er are inference rules (i.e., δ ∈ ∆);
3. the initial vertices of an edge e ∈ Er are the premises of the corresponding

rule δ; and
4. the terminal node of that edge is the corresponding conclusion, c.

p1'

c :- p1 AND p2 AND p3

p2' p3'

c'

Fig. 5. A rule network. Rectangular nodes denote instantiated premises (p1′, p2′, p3′)
and conclusion (c′), and the oval hyperedge denotes an inference rule in the general
form “conclusion :- premises” (c← p1 ∧ p2 ∧ p3).

Under certain circumstances, a rule network captures a proof that is constructed
using the rules and premises in a particular Σ, defined formally below.

Definition 4 (Proof Network). For a given information base, Σ, and a rule
base, ∆, a rule network, R = 〈V r, Er〉, is a proof network if and only if every

premise of each δ ∈ Er is either a member of Σ or the conclusion of some
δ′ ∈ Er.
To be a proof network, the rule network has to be constructed from the con-
tents of some knowledge-base—a rule cannot be in the proof network unless its
premises are either in the information base or are derived by applying rules to
premises that are in the information base. We say that a proof network is for a
conclusion c if c is a leaf of the network. For example, Figure 5 is a proof net-
work for conclusion c′ if {p1′, p2′, p3′} ⊆ Σ and c← {p1 ∧ p2 ∧ p3} ⊆ ∆, where
p1′, p2′, p3′ and c′ are instantiated versions of p1, p2, p3 and c, respectively.

Some proof networks correspond to arguments, defined below:

Definition 5 (Argument, Support, Conclusion). An argument, A, is a
pair 〈H,h〉, where H = 〈V r, Er〉 is a proof network (the support) for h (the
conclusion), and h is the only leaf of H. Constraints on h and H with respect to
Σ and ∆ follow from Definitions 3 and 4.

Definition 6 (Inference Rules). The set of inference rules, R(H), is the set
of rules, δ ∈ Er, that have been instantiated in H. It follows that R(H) ⊆ ∆.

Definition 7 (Pure Premises). The set of pure premises, P (H), is the set
of nodes in H with no incoming edges:

P (H) = {v ∈ V r | there exists no 〈x, v〉 ∈ Er, x ∈ L}

Note that h /∈ P (H), because by definition, h is a leaf of H and must be the
result of an inference rule, and thus must have an incoming edge.

Definition 8 (Intermediate Conclusions). The set of intermediate conclu-
sions, C(H), of H is the set of all conclusions of rules δ ∈ Er other than h (the
ultimate conclusion of the argument H itself):

C(H) = V r − {h} − P (H)

The set of pure premises of H can be expressed similarly, as the set of premises,
δ ∈ Er, that are not (intermediate) conclusions of H:

P (H) = V r − {h} − C(H)

We can remove the internal structure from our definition of argument (given in
Definition 5) and keep only the pure premises and ultimate conclusion, resulting
in A = 〈h, P (H)〉, which is the same definition of argument as described in [1].

Definition 9 (All Possible Arguments). The set of all possible arguments,
ARG, is the set of all arguments, A = 〈H,h〉, that can be constructed from an
agent’s information base, Σ, and rule base, ∆.

A key notion in argumentation is that arguments defeat one another. That
is, one argument casts doubt on another by, for example, contradicting the con-
clusion of the second argument. Arguments may defeat one another in a number
of ways, and we differentiate different forms of defeats as follows:

Definition 10 (Defeat, Rebut, Undercut). An argument 〈H1, h1〉 defeats
another argument 〈H2, h2〉 if it rebuts, premise-undercuts, intermediate-undercuts,
or inference-undercuts it, where:

– An argument 〈H1, h1〉 rebuts another argument 〈H2, h2〉 iff h1 ≡ ¬h2.

– An argument 〈H1, h1〉 premise-undercuts another argument 〈H2, h2〉 iff there
is a premise p ∈ P (H2) such that h1 ≡ ¬p.

– An argument 〈H1, h1〉 intermediate-undercuts another argument 〈H2, h2〉 iff
there is an intermediate conclusion c ∈ C(H2) such that c 6= h2 and h1 ≡ ¬c.

– An argument 〈H1, h1〉 inference-undercuts another argument 〈H2, h2〉 iff there
is an inference rule δ ∈ ∆(H2) such that

δ =
p1, . . . , pn

c

and h1 ≡ ¬(p1 ∧ . . . ∧ pn → c).

When an argument 〈H1, h1〉 defeats another argument 〈H2, h2〉, 〈H1, h1〉 is said
to be a defeater of 〈H2, h2〉, and 〈H2, h2〉 is said to be the defeatee. The
relation defeat collects all pairs (〈H1, h1〉, 〈H2, h2〉) such that 〈H1, h1〉 defeats
〈H2, h2〉. We denote the set of all possible defeats as DFT.

Definition 11 (Argumentation framework). An argumentation framework,
AF, is a pair, AF = 〈ARG,DFT〉, where ARG is a set of arguments, and DFT is
the binary relation defeat over the arguments.

Definition 12 (Defend). Let AF = 〈ARG,DFT〉 be an argumentation frame-
work and S ⊆ ARG be a set of arguments. An argument, A1, is defended by a
set of arguments, S, iff ∀A2 ∈ ARG: if (A2, A1) ∈ DFT then ∃A3 ∈ S such that
(A3, A2) ∈ DFT.

Definition 13 (Characteristic Function, Acceptable Arguments, Fixed
Point). Let AF = 〈ARG,DFT〉 be an argumentation framework and S ⊆ ARG be
a set of arguments.

– A characteristic function is:

FDFT(S) = {A ∈ ARG | A is defended by S with respect to DFT}

– The set of acceptable arguments, denoted by AccFDFT , is the least fixed point
of the function FDFT with respect to set inclusion.

Definition 14 (Conflict-free, Admissible Set, Preferred Extension). Let
AF = 〈ARG,DFT〉 be an argumentation framework and S ⊆ ARG be a set of
arguments.

– S is conflict-free if there are no two arguments A1, A2 ∈ ARG such that
(A1, A2) ∈ DFT.

– A conflict-free set S is admissible iff for any argument A1 ∈ ARG where
(A1, A2) ∈ DFT and A2 ∈ S, then there exists an argument A3 ∈ S such
that (A3, A1) ∈ DFT.

– A preferred extension of AF is the maximum admissible set S ⊆ ARG with
respect to set inclusion.

Definition 15 (Complete Extension, Grounded Extension). An admis-
sible set S is a complete extension iff all arguments defended by S are also in
S.
A conflict-free set S is a grounded extension if it is the minimal (with respect
to set inclusion) complete extension.

Acknowledgments

This research was partially funded by the National Science Foundation, under
grant CNS 1117761.

References

1. L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue, and negotiation.
In W. Horn, editor, ECAI 2000, Proceedings of the 14th European Conference on
Artificial Intelligence, pages 338–342, Berlin, Germany, August 20-25 2000.

2. A. Applebaum, Z. Li, A. R. Syed, K. Levitt, S. Parsons, J. Rowe, and E. Sklar.
Firewall configuration: An application of multiagent metalevel argumentation. In
Proceedings of the 9th Workshop on Argumentation in Multiagent Systems, 2012.

3. T. J. M. Bench-Capon. Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

4. R. Bordini, J. Hübner, and M. Wooldridge. Programming multi-agent systems in
AgentSpeak using Jason. Wiley series in agent technology. J. Wiley, 2007.

5. D. Bryant and P. Krause. An implementation of a lightweight argumentation
engine for agent applications. In M. Fisher, W. van der Hoek, B. Konev, and
A. Lisitsa, editors, Logics in Artificial Intelligence, volume 4160 of Lecture Notes
in Computer Science, pages 469–472. Springer Berlin / Heidelberg, 2006.

6. D. Bryant and P. Krause. A review of current defeasible reasoning implementations.
Knowl. Eng. Rev., 23:227–260, September 2008.

7. D. Bryant, P. J. Krause, and G. A. W. Vreeswijk. Argue tuProlog: A lightweight
argumentation engine for agent applications. In Proceedings of the 2006 conference
on Computational Models of Argument: Proceedings of COMMA 2006, pages 27–
32, Amsterdam, The Netherlands, The Netherlands, 2006. IOS Press.

8. M. Caminada and D. Gabbay. A logical account of formal argumentation. Studia
Logica, 93(2):109–145, Dec. 2009.

9. C. Cayrol and M.-C. Lagasquie-Schiex. Graduality in argumentation. Journal of
Artificial Intelligence Research, 23:245–297, 2005.

10. P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77:321–357, September 1995.

11. E. Ferretti, M. Errecalde, A. J. Garćıa, and G. R. Simari. An application of
defeasible logic programming to decision making in a robotic environment. In
LPNMR, pages 297–302, 2007.

12. A. J. Garcia and G. R. Simari. Defeasible logic programming: an argumentative
approach. Theory and Practice of Logic Programming, 4(2):95–138, 2004.

13. M. Podlaszewski, M. Caminada, and G. Pigozzi. An implementation of basic ar-
gumentation components. In The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 3, AAMAS ’11, pages 1307–1308, Rich-
land, SC, 2011. International Foundation for Autonomous Agents and Multiagent
Systems.

14. H. Prakken. An abstract framework for argumentation with structured arguments.
Argument and Computation, 1(2):93–124, 2011.

15. C. Reed and G. Rowe. Araucaria: Software for argument analysis, diagramming and
representation. International Journal on Artificial Intelligence Tools, 13(4):983–,
2004.

16. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (3nd Edi-
tion). Prentice Hall, December 2009.

17. G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning
and its implementation. Artificial Intelligence, 53(2-3):125–157, 1992.

18. Y. Tang, K. Cai, E. Sklar, P. McBurney, and S. Parsons. Using argumentation
to reason about trust and belief. Journal of Logic and Computation, 2011. (to
appear).

19. G. Vreeswijk. IACAS: an interactive argumentation system : user manual version
1.0. Technical reports in computer science. University of Limburg, Department of
Computer Science, 1994.

