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Abstract. Trust is a mechanism for managing the uncertainty about autonomous
entities and the information they store, and so can play an important role in any
decentralized system. As a result, trust has been widely studied in multiagent
systems and related fields such as the semantic web. Here we introduce a for-
mal system of argumentation that can be used to reason about trust. We explore
some of the simple properties of the system and we illustrate its application on a
benchmark problem from the trust literature.

1 Introduction

Trust is a mechanism for managing the uncertainty about autonomous entities and the
information they deal with. As a result trust can play an important role in any decentral-
ized system. As computer systems have become increasingly distributed, and control in
those systems has become more decentralized, trust has been an increasingly important
concept in computer science [4, 15]. Thus, for example, we see work on trust in peer-to-
peer networks, including the EigenTrust algorithm [18] — a variant of PageRank [24]
where downloads from a source play the same role as outgoing hyperlinks and which
is effective in excluding peers who want to disrupt the network — and the work in [1]
that prevents peers manipulating their trust values to get preferential downloads. [33]
is concerned with slightly different issues in mobile ad-hoc networks, looking to pre-
vent nodes from getting others to transmit their messages while refusing to transmit the
messages of others.

The internet, as the largest distributed system of all, is naturally a target of much of
the research on trust. There have, for example, been studies on the development of trust
in ecommerce [27], on mechanisms to determine which sources to trust when faced
with multiple conflicting sources [32], and mechanisms for identifying which individ-
uals to trust based on their past activity [2]. One interesting development is the idea of
having individuals indemnify each other by placing some form of financial guarantee
on transactions that others enter into [6, 7].

Trust is an especially important issue from the perspective of autonomous agents
and multiagent systems [30]. The premise behind the multiagent systems field is that of
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developing software agents that will work in the interests of their owners, carrying out
their owners’ wishes while interacting with other entities. In such interactions, agents
will have to reason about the amount that they should trust those other entities, whether
they are trusting those entities to carry out some task, or whether they are trusting those
entities to not misuse crucial information. As a result we find much work on trust in
agent-based systems [29].

In such work it is common to assume that agents maintain a trust network of their
acquaintances, which includes ratings of how much those acquaintances are trusted,
and how much those acquaintances trust their acquaintances, and so on. One natural
question to ask in this context is what inference is reasonable in such networks, and the
propagation of trust — both the transitivity of trust relations [28, 31] and more complex
relationships like “co-citation” [16] have been studied, and in many cases empirically
validated [16, 19, 20].

In a previous paper [25], we suggested that, given the role that provenance plays
in trust [12, 13], argumentation — which tracks the origin of data used in reasoning
— might play a role. [21] also argues for the utility of argumentation in the context
of reasoning about trust. In this paper we develop a general system of argumentation
that can represent trust information, and be used in combination with a trust network.
This system makes it possible for an agent to construct arguments where belief in the
conclusions is related to the degree of trust in the agents who supplied the information
used as premises in the arguments. We present one instantiation of the system, and
demonstrate that it gives intuitively appealing results on an illustrative example.

2 Background

2.1 Some graph theory

Since graphs of various kinds will crop up throughout this paper, we start with a little
graph theory, based on the introductory chapters of [8]. A graph is a pair G = �V,E�
of sets. V is the set of vertices (or nodes). E is the set of edges (or arcs), and is a
set of subsets of V . Each element e ∈ E is the set of nodes joined by that edge.
For much of this paper we will be concerned with hypergraphs, graphs in which (hy-
per)edges join three or more vertices. Thus if V = {v1, v2, v3, v4, v5}, E might be
{{v1, v2}, {v3, v4}, {v1, v3, v5}}. If V

� ⊆ V and E
� ⊆ E then G

� = �V �
, E

�� is a
subgraph of G, which we write as G� ⊆ G.

Many of the graphs we use will be directed graphs. A directed graph is a graph in
which each edge has an initial vertex (or set of vertices) and a terminal vertex (or set of
vertices). Thus for:

E = {{v1, v2}, {v3, v4}, {v1, v3, v5}},

v1 might be the initial vertex and v2 the terminal vertex of the first edge, and {v1, v3}
might be the initial vertices of the third (hyper) edge and v5 the terminal edge.

A path in an undirected graph G is just a graph path that is a subgraph of G and for
which V = {v0, v1, v2, . . . , vk} and E = {{v0, v1}, {v1, v2}, {vk−1, vk}}. Where this
is unambiguous, we will write the path as simply �v0, v1, v2, . . . , vk�. Clearly E has to



be such that there is an edge joining every subsequent pair of vertices in V . When the
graph is directed, we distinguish between an undirected path, as defined above, and a
directed path which obeys an additional constraint on path, that for every vi and vi+1

in V , vi is the initial vertex of the edge that joins vi and vi+1, and vi+1 is the terminal
vertex. When we consider paths in hypergraphs, the constraint is that for every pair of
vertices in the sequence, there is an edge in E that contains both vertices, and if that
hypergraph is directed, the first edge in the pair must be one of the initial vertices, and
the second must be a terminal vertex of the edge in question.

A connected graph is one for which there is a path between any pair of vertices.
If the graph is directed, it is connected if there is an undirected path between any pair
of vertices. A cycle is an (undirected) path v0, . . . , vk, vo. A graph that doesn’t contain
any cycles is called a forest, and a forest that is connected is called a tree. The usual
graph-theoretic terminology calls any vertex which is a member of only one edge a leaf.
In the directed graphs we use, we will place an additional constraint on leaves. A leaf is
a vertex that is part of only one edge, and which is the terminal vertex of that edge. In
contrast, a root is a vertex that is part of only one edge, and which is the initial vertex
of that edge.

2.2 Trust Networks

Given this graph theory, we can now describe the first important set of concepts that
we will be dealing with. We are interested in a set of Agents Ags and the relationships
between them. In particular, we are interested in how these agents trust one another.
Following the usual presentation (for example [16, 19, 20, 28, 31]), we start with a trust

relation:
τ ⊆ Ags×Ags

which we can think of as identifying which agents trust one another. If τ(Agi, Agj) for
Agi, Agj ∈ Ags, then Agi trusts Agj . Note that this is not a symmetric relation, so it is
not necessarily the case that τ(Agi, Agj) ⇒ τ(Agj , Agi). It is natural to represent this
trust relation as a directed graph, and we have:

Definition 1. A trust network for a set of agents Ags is a pair

T = �Ags, {τ}}

where {τ} is the set of pairwise trust relations over the agents in Ags so that if τ(Agi, Agj)
is in {τ} then {Agi, Agj} is a directed arc in T .

In this graph, the set of agents is the set of vertices, and the trust relations define the arcs.
We are typically interested in minimal trust networks, which are connected — these thus
capture the relationship between a set of agents all of whom, in one way or another,
have something to say about trust in another member of the group. A directed path
between agents in the trust network indicates that one agent indirectly trusts another.
For example:

�Ag1, Ag2, . . . Agn�



is a path from agent Ag1 to Agn, which requires that:

τ(Ag1, Ag2), τ(Ag2, Ag3), . . . , τ(Agn−1, Agn)

and looking at the path gives us a means to compute the trust that Ag1 has in Agn given
the trust that each agent along the path has in the next agent along the path. The usual
assumption here is that we can place some measure on the trust that one agent has in
another, so we have:

tr : Ags×Ags �→ �

where tr gives a suitable trust value. For example, we might have:

tr
[0,1] : Ags×Ags �→ [0, 1]

with a value of 0 indicating that there is no trust between the agents in question and a
value of 1 indicating the fullest possible degree of trust between the agents. We assume
that tr and τ match, so that:

tr(Agi, Agj) �= 0 ⇔ (Agi, Agj) ∈ τ

tr(Agi, Agj) = 0 ⇔ (Agi, Agj) �∈ τ

Now, this just deals with the direct trust relations encoded in τ . It is usual in work on
trust to consider performing inference about trust by assuming that trust relations are
transitive. This is easily captured in the notion of a trust network:

Definition 2. If Agi is connected to Agj by a directed path �Agi, Agi+1, . . . Agj� in

the trust network T then Agi trusts Agj according to T

The notion of trust embodied here is exactly Jøsang’s “indirect trust” or “derived trust”
[17] and the process of inferring it is what [16] calls “direct propagation”.

If we have a function tr, then we can compute:

tr(Agi, Agj) = tr(Agi, Agi+1)⊗tr
tr(Agi+1, Agi+2)⊗tr

. . .⊗tr
tr(Agj−1, Agj)

for some function ⊗tr. Here we follow [31] in using the symbol ⊗, to stand for this
operation, while allowing it in practice to be one of a number of possible operations as
we will discuss below. Sometimes it is the case that there are two or more paths through
the trust network between Agi and Agj indicating that Agi has several opinions about
the trustworthiness of Agj . If these two paths are

�Agi, Ag
�
i+1, . . . Agj� �Agi, Ag

��
i+1, . . . Agj�

and

tr(Agi, Agj)
� = tr(Agi, Ag

�
i+1)⊗tr

tr(Ag
�
i+1, Ag

�
i+2)⊗tr

. . .⊗tr
tr(Ag

�
j−1, Agj)

tr(Agi, Agj)
�� = tr(Agi, Ag

��
i+1)⊗tr

tr(Ag
��
i+1, Ag

��
i+2)⊗tr

. . .⊗tr
tr(Ag

��
j−1, Agj)

then the overall degree of trust that Agi has in Agj is:

tr(Agi, Agj) = tr(Agi, Agj)
� ⊕tr

tr(Agi, Agj)
��
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Fig. 1. Example trust graphs. (a) shows a complete graph, (b) shows an agent-centric version from
John’s point of view, and (c) shows an agent-centric view from Alice’s point of view.

again using the standard notation ⊕ for a function that combines trust measures along
two paths [31]. The literature contains several instantiations of ⊗ and ⊕. For example,
[28] discusses using multiplication or minimum for ⊗ and using maximum for ⊕, while
[19] uses a weighted average that in essence adopts multiplication for ⊗ and addition
for ⊕4. [17] and [31] use operators derived from Dempster-Shafer theory.

As an example of a trust graph, consider Figure 1 (a) which shows the trust rela-
tionship between John, Mary, Alice, Jane and Dave. This is adapted from the example
in [19] normalizing the values to lie between 0 and 1. The solid lines are direct trust
relationships, the dotted lines are indirect links derived from the direct links. Thus John
trusts Jane and Dave because he trusts Mary and Mary trusts Jane and Dave. However,
John does not, even indirectly, trust Alice.

Since we will often be considering the viewpoint of a given agent, it is useful for us
to define the concept of an agent-centric trust graph:

Definition 3. An agent-centric trust graph T is a trust network with a single root.

The agent-centric trust graph with Ag at its root is said to be the network from Ag’s
point of view or the “Ag-centric network”. Thus Figure 1 (b) is the John-centric ver-
sion of the graph in Figure 1 and Figure 1 (c) is the Alice-centric version. We use this
terminology because:

Proposition 1. For an agent-centric trust network T with Ag at the root, Ag trusts

every agent in the network according to T .

Proof. An agent-centric trust network has just one root and so it is a tree. Every tree

is connected, and in a directed tree such as T , there is a directed path from the single

4 Trust values are multiplied along paths and summed across paths, but the result is weighted by
the value of the first link in each path, and a threshold is applied.



root to every node (if there was not, there would be more than one root). Thus a directed

path connects Ag to every other agent in T and by Definition 2, Ag trusts every agent

according to T .

Thus an agent-centric trust network identifies the agents that are, direct and indirectly,
trusted by the agent corresponding to the root, and every agent in the agent-centric trust
network is trusted by the agent at the root. In addition, we can immediately see that:

Proposition 2. For any trust network T = �Ags, {τ}� there exists a distinct agent-

centric trust network T �
for each node in T , and every T �

will be a sub-graph of T .

Proof. For the first part, we can construct a trust network T � = �Ags
�
, {τ}�� for every

agent Agi by recursively identifying the agents Agj it is linked to by directed arcs from

T , and every agent that those Agj are linked to, and so on. (If there are no outgoing

arcs from an Agi, the graph will just include that agent). Since these graphs all have

different root nodes, they are distinct. For the second part, it is clear that during this

construction process, Ags
� ⊆ Ags and {τ}� ⊆ {τ}, so T � ⊆ T .

Proposition 3. Given a trust network T that contains Agi and Agj and an Agi-centric

trust network T �
such that T � ⊆ T , Agi trusts Agj according to T �

iff Agi trusts Agj

according to T .

Proof. From Proposition 2, T � ⊆ T . As a result, every arc in T �
is a link in T , and so

every path in T �
is a path in T . Thus Agi trusts Agj according to T �

only if Agi trusts

Agj according to T . For the “if” part, again consider the recursive construction of T �

sketched in the proof of Proposition 2. If there is a directed path from the root of T �
to

some agent in T , then that path will be in T �
and so Agi trusts Agj according to T �

for

every Agj that it trusts according to T .

Thus an Agi-centric trust network that is derived from a trust network T exactly iden-
tifies the agents that, according to T , Agi trusts. As a result, when we consider what
Agi reasons about, we lose nothing by ignoring the parts of T that aren’t in the Agi-
centric network — they only contain agents that Agi can safely ignore because they
aren’t trusted.

2.3 Argumentation

Now we turn our attention to the structure of the agents. An agent Ag has knowledge
base Σ = P ∪ ∆. P is a set of premises, each of which is a logical statement in a
language L. ∆ is a set of inference rules δ each of which is of the form:

δ =
{p1, . . . pn}

c

where every pi and c are members of L. In other words the inference rules link some set
of premises pi to a conclusion c. We will also write these rules as �δ, c�. In this paper,
since here we draw heavily on the work of [19], these rules will be much like the normal
default rules used in that work. However, for the purposes of this formalism ∆ can be
any set of inference rules, for example the natural deduction style rules of [22]. We can
represent inference using these rules as another graph.



Watch(hce)

δdave =
IndieF ilm(x)∧DirectedBy(x,Almodovar)

Watch(x)

IndieF ilm(hce) DirectedBy(hce,Almodovar)

Fig. 2. A rule network. The rectangular nodes denote premises and the oval, which represent a
hyperedge, denotes an inference rule.

Definition 4. A rule network R is a directed hypergraph �V r
, E

r� where (1) the set

of vertices V
r

are elements of L, (2) the set of edges E
r

are inference rules δ, (3) the

initial vertices of an edge e ∈ E
r

are the premises of the corresponding rule δ, and (4)

the terminal node of that edge is the corresponding conclusion c.

Thus a rule network simply connects premises and conclusions of rules. For a simple
rule network, see Figure 2 (again this is taken from [19]). Under certain circumstances
a rule network captures a proof made using the rules and premises in a particular Σ:

Definition 5. For a given knowledge base Σ = P ∪∆, a rule network R = �V r
, E

r�
is a proof network if and only if every premise of each δ ∈ E

r
is either a member of P

or the conclusion of some δ
� ∈ E

r
.

To be a proof network, the rule network has to be constructed from the contents of
some knowledge-base — a rule can’t be in the proof network unless its premises are
either in the knowledge base or are derived by applying rules to premises that are in the
knowledge base.

We say that a proof network is for a conclusion c if c is a leaf of the network. If:

Σ = {IndieF ilm(hce), DirectedBy(hce,Almodovar)}

∪
�
IndieF ilm(x) ∧DirectedBy(x,Almodovar)

Watch(x)

�

then Figure 2 is a proof network for Watch(hce). Some proof networks correspond to
arguments:

Definition 6. An argument A from a knowledge base Σ = P ∪ ∆ is a pair �h,H�
where H = �V r

, E
r� is a proof network for h, and h is the only leaf of H .

H is the support of the argument, and h is the conclusion. C(H) is the set of interme-

diate conclusions of H , the set of all the conclusions of the δ ∈ E
r other than h. P (H)

is the set of pure premises of H , the premises of the δ ∈ E
r that aren’t intermediate

conclusions of H .

Proposition 4. If �h,H� is an argument, then H is a connected graph.



Proof. The proof network of an argument is allowed only one leaf. Since it is a proof

network, the leaf has to be a conclusion of a rule whose premises are either part of Σ,

and thus roots of the graph, or the conclusions of other rules. Working backwards from

the leaf/conclusion, it is clear that there can be no components of the graph that aren’t

connected to the leaf, and so the graph must be connected.

Proposition 5. If �h,H� is an argument, then there is only one hyperedge �δi, h� in H .

Proof. This follows directly from the fact that h is a leaf of H . If there was more than

one rule in H with h as its conclusion, h would not be a leaf.

Thus an argument does not have any duplicated reasoning that supports its conclusion,
and an argument is thus a proof network that is minimal in the sense that it sanctions
no inferences other than its conclusion and intermediate steps that become premises of
rules required to generate the conclusion.

Since our agents are going to often deal with information that is not certain, we will
assume that each agent Agi has a function which assigns a degree of belief — which
might be established as described in [21] — to elements of the logical language it uses
for premises and rules:

beli : L �→ �

Furthermore, as with trust, we will often use a function that returns degrees of belief
between 0 and 1:

bel
[0,1]
i : L �→ [0, 1]

As we build arguments, we need to combine the degrees of belief assigned to premises
and rules. For a rule:

δ =
{p1, . . . , pm}

c

we assume that there is a conjunction operation, ⊗bel, which establishes the degree of
belief in c as:

beli(c) =
�
beli(p1)⊗bel · · · ⊗bel

beli(pm)
�
⊗bel

beli(δ)

In other words, the degree of belief an agent has in the conclusion of an inference rule
is the belief it has that all the premises hold and the rule holds.

A key notion in argumentation is that arguments attack one another. That is one
argument casts doubt on another by, for example, denying the conclusion of the second
argument. We distinguish a number of ways that an attack may occur.

Definition 7. An argument �h1, H1� attacks an argument �h2, H2� if it rebuts, premise

undercuts, intermediate undercuts, or inference-undercuts it, where:

– An argument �h1, H1� rebuts another argument �h2, H2� iff h1 ≡ ¬h2.

– An argument �h1, H1� premise-undercuts another argument �h2, H2� iff there is a

premise p ∈ P (H2) such that h1 ≡ ¬p.

– An argument �h1, H1� intermediate-undercuts another argument �h2, H2� iff there

is an intermediate conclusion c ∈ C(H2) such that c �= h2 and h1 ≡ ¬c.



– An argument �h1, H1� inference-undercuts another argument �h2, H2� iff there is

an inference rule δ ∈ ∆(H2) such that δ = p1,...,pn

c and h1 ≡ ¬(p1∧. . .∧pn → c).

Our definition of an argument is similar to both that of Garcia and Simari [11] and that
of Prakken [26]. Both [11] and [26] record the inference rules in the argument, with
[11] just recording which rules are used while [26], like we do here, keeps the entire
structure of the derivation. A minor syntactic difference between our work and [26] is
that we define arguments via a reasoning network instead of a recursively through sub-
arguments. This is done deliberately to enable the framework to combine arguments
and trust relationships uniformly into a network on which we can perform inference by
an extension of existing trust propagation mechanisms and which we can use to explain
arguments and their relationship to trust in specfic individuals.

3 Arguments and Trust

So far we have described how trust is propagated between agents, and how each agent
builds arguments. We now combine the two together.

3.1 Trust and belief

We assume that an agent Agi is interested in using information not only from its own
knowledge base Σ, but also information from other agents — for example let’s imagine
that Agi is using φ which Agj told Agi was true. To do this Agi needs to take into
account of its degree of trust in Agj , and we assume that it does this by taking the trust
value that it can compute for Agj through the trust network that joins them, as outlined
in Section 2.2. Having computed this value, which we will call tr(φ) we further assume
that Agi can convert this value into a degree of belief that it can use in argumentation,
thus assuming a function:

ttb : � �→ �

that can take any trust value and map it to the correct degree of belief. Depending on
the semantics of the degrees of trust and belief, this function may be the identity — that
would be correct if the trust values Agi has for every Agj is simply Agi’s subjective
belief that what Agj says is true — which is the notion of trust in [10, 23]. In any case,
for Agi, its belief in φ may be computed:

beli(φ) = ttb(tr(Agi, Agj))

In other words the belief that Agi has in φ is a function of the trust that Agi has in
Agj . What we have so far assumes that Agj expresses the opinion that φ is true. If Agj

expresses some degree of belief in φ, bel(φ), Agi can compute its degree of belief in φ:

beli(φ) = ttb(tr(Agi, Agj))⊗bel
belj(φ)

In other words, the belief that Agi has in φ is a combination of Agj’s belief in φ and
the belief that Agi has in anything Agj says is true, which itself is computed from the
trust that Agi has in Agj .
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Fig. 3. A trust-extended proof network

3.2 Trust-extended argumentation

Since we believe that it is useful to keep track of where different pieces of information
came from (for example in case the trust values in our trust network change). We find
the concept of the trust-extended proof network, which marries trust networks and ar-
gument graphs, to be useful. This concept is formally defined below, and an example is
given in Figure 3.

Definition 8. An trust-extended proof network Rt
is a pair �T ,R� of an agent-centric

trust network T and a proof network R such that every rule δi and every leaf pj of

R are connected to a node Agk in T by an arc �Agk, δi� or �Agk, pj� that denote,

respectively, that δi ∈ ∆k and pj ∈ Σk respectively.

An example of a trust-extended proof network is given in Figure 3.
The idea behind the trust-extended proof network is that it relates the premises of an

argument to their source. Such a network therefore captures the reasoning of the agent
at the root of the trust network, including which pieces of information it has used from
the agents it trusts. It is simple to show that:

Proposition 6. A trust-extended proof network has one root and possibly many leaves,

but only one leaf that is a conclusion of the proof network.

Proof. A trust-extended proof network is proof-network where every root in the proof

network is linked to a node in agent-centric trust network. Since is there is, by definition,

only one root in the trust network, there is only one root in the trust-extended proof

network. Equally, though there may be many leaves of the trust network that aren’t

linked to elements of the proof network, the proof network by definition only has one

conclusion, and this will therefore be the only conclusion of the trust-extended network.

Thus a trust-extended proof network relates a single agent to a single conclusion, and
we can easily extend the notion of an argument — which as we recall from Definition 6
is a pair of a proof network and its conclusion — with the trust information of a trust-
extended proof network:



Definition 9. A trust-extended argument A
t

from the union of a set of knowledge bases

{Σ1, . . . Σn} belonging to a set of agents Ags = {Agi, . . . Agn}, all of which are in

T , is a pair �h,Rt� where Rt
is a trust-extended proof network for h, and h is the only

leaf of Rt
.

In the same way that an argument is relative to a knowledge base, so a trust-extended
argument is relative to a set of agents, and, in particular, to the set of knowledge bases
of those agents. Furthermore, the conclusions of a trust-extended argument are relative
to a specific agent. Given a trust-extended argument, the only agent that is sanctioned
to infer the conclusion of the argument is the one at the root of the trust graph. Thus,
like the graph, the conclusions are agent-centric.

The last element of our model is a trust-extended argument graph. This is a set of
trust-extended arguments with the attack relationships between the arguments denoted
by labelled links. There are four kinds of attack link, one for each of the kinds of link
identified in Definition 7. Such a graph is shown in Figure 4.

This particular graph, which corresponds to the example discussed in the next sec-
tion, shows two arguments that John can develop. The blue section in the middle of the
graph is a trust network which shows the relationship between John, Mary, Dave and
Jane. The two green sections on either side show arguments that John can develop. Each
of these uses information from John’s knowledge (the rectangular nodes linked to the
john node in the trust graph) and an inference rule from one of John’s acquaintances
(the oval nodes linked to the dave and jane nodes in the trust graph). The conclusions
of these two arguments (the rectangular nodes at the bottom of the graph) are joined by
two rebut relations (the two arguments rebut each other).

4 An Example

In this section we show how our system can capture the example from [19] which con-
siders reasoning in the FilmTrust [9, 14] database. In this example, we are concerned
with a certain agent John who is invited to watch a film by one of his friends. John is
part of the trust network from Figure 1(a), and furthermore has the following informa-
tion about the film in question 5:

IndieF ilm(hce), SpanishF ilm(hce), DirectedBy(hce,Almodovar)

Since this doesn’t help him to decide whether to watch the film, John asks people in his
social network (all of whom are members of his trust network) for their opinions and
learns:

δjane =
IndieF ilm(x) ∧ SpanishFilm(x)

¬Watch(x)

δdave =
IndieF ilm(x) ∧DirectedBy(x,Almodovar)

Watch(x)

5 “Almodovar” here is Pedro Almodovar, and “hce” is an abbreviation for his 2002 film Hable

con ella (Talk to her). It is, of course, arguable whether “hce” is an independent film, but since
the original example considered it to be one, so will we.
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From this information, John can construct two simple arguments which are depicted in
Figure 4, and which we can gloss as:

I should watch hce because it is an independent film and it is directed by
Almodovar, and Dave says that any independent film directed by Almodovar is
watchable.

I shouldn’t watch hce because it is a Spanish independent film, and Jane says
that Spanish independent films are unwatchable.

These arguments rebut each other and we can use the trust information to determine
which argument defeats the other, but to do that we have to make some choices about
the trust measure tr that we use. In particular we need to instantiate the combination
operation ⊗tr. Here we will follow [28] in using minimum for ⊗tr, which, along with
the trust graph in Figure 1(a) tells us that:

tr(john, dave) = 0.8 tr(john, jane) = 0.7

and these are the values we see in Figure 4.
Now, these values need to be turned into belief values. For now we choose to handle

beliefs using possibility theory [5] — which is basically equivalent to the approach
adopted by [3] to handle variable strength arguments. In addition, we choose to interpret
the degree of trust that one agent, Agi, has in another, Agj , to be the degree of belief
that Agi has that what Agj says is true (as in [10, 23]). In other words the degree of
belief that John has in a statement from Dave is exactly John’s degree of trust in Dave.
As a result:

beljohn(δdave) = 0.8 beljohn(δjane) = 0.7

In order to reach conclusions about watching hce, these rules need to be combined with
John’s initial knowledge, all of which he believes completely so that:

beljohn(IndieF ilm(hce)) = 1

beljohn(SpanishFilm(hce)) = 1

beljohn(DirectedBy(hce,Almodovar) = 1

Since these are possibility values, we use minimum for ⊗bel, and so:

beljohn(Watch(hce)) = 0.8 beljohn(¬Watch(hce)) = 0.7

from which John may wish to conclude that he should watch the film.
While this is a simple example, it shows that our approach handles the combination

of trust and argumentation in an intuitively appealing way as well as agreeing with the
analysis in [19].

5 Summary

In this paper we have introduced a general approach to combining argumentation with
information about trust in a way that allows us to take information about the degree to



which other agents are trusted when reasoning with information obtained from them.
The approach we introduced makes no commitment to a specific approach to computing
trust — it can be instantiated with any of a number of numerical systems for propagat-
ing trust information such as [19, 28, 31]. In addition to introducing this system, we
explored a number of the basic properties of the system, and illustrated it use, in combi-
nation with one specific choice for propagating trust information, on an example from
[19], showing how our system obtains the same solution as [19].
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